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Abstract. In this work, the Boundary Element Method based on the Convolution Quadrature Method for the numerical
solution of integral formulations in the time domain is described. In the present approach the basic integral equation
of the BEM is numerically approximated by a quadrature formula, whose weights are calculated using the Laplace
transform of the fundamental solution. An important feature of this method is its applicability to problems where the
fundamental solution in time-domain does not exist, or where its computational implementation is very difficult. In terms
of the numerical implementation, the proposed formulationonly requires to define the size of the time-step, and this
feature is one of the advantages of the actual formulation with respect to other numerical methods that operate directly
in the Laplace transformed domain. When very fine meshes are required, the computation of the influent matrices is
very time-consuming. This work shows how the matrices of this integral representation can be computed using the fast
Fourier transform to reduce significantly the computational complexity of this task. Some numerical examples of typical
problems of wave propagation and transient heat conductionare presented to demonstrate the versatility and reliability
of the method.
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1. INTRODUCTION

This work presents a formulation of a time-domain Boundary Element Method (TD-BEM) for the analysis of scalar
wave propagation and heat transfer problems. TD-BEM approaches present convolution integrals with respect to the time
variable. One of the recognized disadvantages of the classical TD-BEM approaches lie in the high computational cost
concerning the calculation of the matrices, and also the evaluation of the time-dependent integrals due to the convolution
performed from the initial time to the current time. In this work the TD-BEM employs the Convolution Quadrature Method
(CQM) firstly described by Lubich (1988a,b) and Lubich and Schneider (1992). In the CQM, fundamental solutions in
the Laplace transformed-domain are considered and a numerical approximation of the basic integral equations of the TD-
BEM is worked out by a quadrature formula based on a linear multi-step method. The main advantage of the CQM-based
BEM is that provides a direct procedure to obtain a stable TD-BEM approach, and that it can be applied to problems
where the TD fundamental solution is not available or has a very difficult expression.

In the works (Gaul and Schanz, 1999; Schanz, 2001; Schanzet al., 2005) can be found implementations of the CQM-
based BEM to elastodynamics, viscoelasticity and poroelasticity problems. The works (Abreuet al., 2003, 2006, 2009)
applied the CQM-based BEM to scalar wave propagation problems, and applications for potential theory can be found in
the paper (Vera-Tudelaet al., 2006). Furthermore, with the aim to accelerate and improvethe computational efficiency,
it was combined with the multipole method to formulate a CQM-based BEM for diffraction of waves problems (Saitoh
et al., 2004, 2007). All approaches shown that CQM-based BEM is very robust and suitable to such kind of problems.

The BEM has been already also used to solve transient heat conduction problems. In the literature, different BEM
approaches have been used to address this topic. One approach is by using convolution schemes, where the TD funda-
mental solution is introduced to state a transient boundaryintegral equation model (Wrobel, 2002). Other approach is to
define a time-stepping procedure: this approach requires domain integration which, in their turn, can be addressed using
the dual reciprocity technique, triple reciprocity technique or similar ones (Tanaka and Chen, 2001; Kassab and Divo,
2006; Ochiaiet al., 2006). Other common alternative approaches to address transient heat problems consist of the use of
the Laplace transform and its inverse (Rizzo and Shippy, 1970). In these approaches to recover the real TD solution, the
result obtained in the Laplace domain is inverted by means ofthe inverse Laplace transform. However, special methods
for numerical Laplace inversion scheme are required and themost commonly used is the Stehfest algorithm (Stehfest,
1970; Kassab and Divo, 2006).

In the present work, a CQM-based BEM is used for the TD solution of two-dimensional wave propagation and transient
heat conduction problems. It is also presented how the CQM-based BEM can be implemented using fast Fourier transform
(FFT) technique to reduce the computational cost of the numerical calculation of the matrices. In the following sections,
the CQM-based BEM formulation is reviewed, the governing equations and their integral representations are introduced
for each kind of problem. Numerical examples that show the effectiveness of the proposed formulation are presented.
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2. THE CONVOLUTION QUADRATURE METHOD (CQM)

Consider first the following equation:

y(t) =

∫ t

0

f(t− τ)g(τ)dτ (1)

Equation (1) represents a convolution. In the work (Lubich,1988a,b) has been showed that functiony can be approx-
imated at pointsn∆t as the following quadrature:

y(n∆t) ≈
n
∑

k=0

ωn−k(∆t)g(k∆t) , with n = 0, 1, . . . , N (2)

whereN is the total number of time sampling and the weightsωn are:

ωn(∆t) =
1

2πi

∫

CR

f̂

(

γ(z)

∆t

)

z−n−1dz ≈ R−n

L

L−1
∑

ℓ=0

f̂

(

γ(Reiℓ
2π
L )

∆t

)

e−inℓ 2π
L (3)

The functionf̂ is the Laplace transform off andCR = {z ∈ C; |z| = R} is the contour employed to perform the

integration whereR is the radius of a circle in the domain of analyticity off̂
(

γ(z)
∆t

)

. In Eq. (3) a polar coordinate system

was adopted and the integral was approximated by the trapezoidal rule withL steps equal to2π/L. The functionγ is
the quotient of the characteristic polynomial generated bya linear multi-step method. Using a backward differentiation
formula of order2, the expression ofγ is given by:

γ(z) = 3/2− 2z + (1/2)z2 (4)

SettingL = N andRN =
√
ε in Eq. (3), the quadrature weights are computed within an error of orderO(ε), whereε

is the precision with whicĥf is calculated.

3. GOVERNING EQUATIONS AND INTEGRAL REPRESENTATIONS

In this section are introduced the governing equations of the problems analyzed. These equations are the scalar wave
equation that governs problems such as acoustic propagation, and the equation that governs energy transport processes
such as heat conduction problems. In subsections are also introduced the integral representation of each differential
equations.

3.1 Wave propagation problems

The scalar wave equation for a homogeneous and isotropic body Ω in the absence of body forces is given by (Morse
and Feshbach, 1953):

c2 ∇2u(X, t)− ∂2u(X, t)

∂t2
= 0 (5)

wheret ∈ R andX ∈ R
2 represent the time and space coordinates, respectively,c is the wave propagation velocity and

the functionu represents the potential. The initial conditions at timet0 and the boundary conditions fort > t0 are:

u(X, t0) = u0(X) and
∂u

∂t
(X, t0) = v0(X) in Ω (6)

u(X, t) = ū(X, t) onΓu and p(X, t) =
∂u

∂n
(X, t) = p̄(X, t) onΓp (7)

Note that, in above equationsΓu ∪ Γp = Γ, whereΓ represents the boundary of the bodyΩ. p is the flux andn
is the outward unit normal toΓ. The wave propagation problem consists to solve Eq. (5) for the unknown potentialu
when the material properties (incorporated inc), the initial conditions and boundary conditions are known. The time-
dependent integral equation corresponding to problems governed by the 2D scalar wave equation with homogeneous
initial conditions for any point sourceξ is (Brebbiaet al., 1984; Mansur, 1983; Dominguez, 1993):

c(ξ)u(ξ, t) =

∫

Γ

∫ t+

t0

u∗(r, t− τ)p(X, τ) dτdΓ−
∫

Γ

∫ t+

t0

p∗(r, t− τ)u(X, τ) dτdΓ (8)

wherer = ξ −X, andX represents the field point. The functionu∗ is the TD fundamental solution andp∗(r, t − τ) =
∂u∗

∂n (r, t− τ).
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3.2 Heat conduction problems

The heat equation that describes the evolution of the temperatureT within a homogeneous and isotropic material of
constant thermal conductivityK, specific heatce, mass densityρ and in the absence of sources of heat is given by (Özişik,
1993; Carslaw and Jaeger, 1988; Crank, 1975):

∂T (X, t)

∂t
− κ∇2T (X, t) = 0 (9)

wheret ∈ R, X ∈ R
2 andκ is the thermal diffusivity given byκ = K/(ρce). Note that, in this model the material

propertiesK, ce andρ do not depend on the time. The initial condition at timet0 and the boundary conditions fort > t0
are:

T (X, t0) = T0(X) in Ω (10)

T (X, t) = T̄ (X, t) onΓT and q(X, t) = q̄(X, t) onΓq (11)

whereq(X, t) = −k ∂T
∂n (X, t) andΓT ∪ Γq = Γ. The heat conduction problem consists to solve Eq. (9) for the unknown

variableT when the material properties, the initial condition and boundary conditions are known. The time-dependent
integral equation corresponding to problems governed by the 2D heat equation with homogeneous initial condition for
any point sourceξ is (Wrobel, 2002):

c(ξ)T (ξ, t) =

∫

Γ

∫ tf

t0

T ∗(r, t− τ)q(X, τ) dτdΓ−
∫

Γ

∫ tf

t0

q∗(r, t− τ)T (X, τ) dτdΓ (12)

The functionT ∗ is the TD fundamental solution andq∗(r, t − τ) = −κ∂T∗

∂n (r, t − τ). In Eqs. (8) and (12) the
coefficientsc(ξ) = 1 at any interior pointξ. If ξ ∈ Γ, these coefficients depend on the local geometry ofΓ at ξ, see
(Brebbiaet al., 1984; Wrobel, 2002; Dominguez, 1993).

4. THE CQM-BASED BEM FORMULATION

To solve the boundary integral equations given by Eqs. (8) and (12) it is required both space and time discretizations.
The BEM representsΓ and the boundary values ofu andp for acoustics problems,T andq for heat conduction problems,
by using piece-wise polynomial functions. For this purposethe boundary is divided intoJ elementsΓj (j = 1, ...J). In
this work lineal elements were used for the spatial discretization. The time discretization consists in dividing the time
interval of analysis intoN time steps of equal size∆t. A discrete version of Eqs. (8) and (12) using the CQM introduced
in Section 2 for a point sourceξ and at timetn = t0 + n∆t (n = 0, . . . , N ) are given, respectively, by:

c(ξi)u(ξi, tn) =
J
∑

j=1

n
∑

m=0

ga(ξi,∆t)jn−mpj
m −

J
∑

j=1

n
∑

m=0

ha(ξi,∆t)jn−muj
m (13)

c(ξi)T (ξi, tn) =

J
∑

j=1

n
∑

m=0

gT (ξi,∆t)jn−mqj
m −

J
∑

j=1

n
∑

m=0

hT (ξi,∆t)jn−mT j
m (14)

Note that, a notation that aims to distinguish through the subscripts of acoustic problems "a" from the heat problems
"T " was introduced. The CQM quadrature weights of Eq. (13) and Eq. (14) are:

ga(ξi,∆t)jn =
R−n

L

L−1
∑

ℓ=0

∫

Γj

û∗(r, sℓ)N
j(X)dΓ e−

2πi
L

nℓ (15)

ha(ξi,∆t)jn =
R−n

L

L−1
∑

ℓ=0

∫

Γj

p̂∗(r, sℓ)N
j(X)dΓ e−

2πi
L

nℓ (16)

gT (ξi,∆t)jn =
R−n

L

L−1
∑

ℓ=0

∫

Γj

T̂ ∗(r, sℓ)N
j(X)dΓ e−

2πi
L

nℓ (17)
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hT (ξi,∆t)jn =
R−n

L

L−1
∑

ℓ=0

∫

Γj

q̂∗(r, sℓ)N
j(X)dΓ e−

2πi
L

nℓ (18)

In the previous expressions,N j(X) represents the matrix of interpolation functions used in the spatial discretization.
The parameters of the Laplace transform is numerically evaluated assℓ = γ(Re2πi/Lℓ)/∆t, andγ was introduced in
Eq. (4). The termŝu∗(r, ·) andp̂∗(r, ·) are the Laplace transform ofu∗(r, ·) andp∗(r, ·). Moreover,T̂ ∗(r, ·) andq̂∗(r, ·)
are the Laplace transform ofT ∗(r, ·) andq∗(r, ·). The expressions of these fundamental solutions in the transformed
domain are given by (Brebbiaet al., 1984; Wrobel, 2002):

û∗(r, s) = 2K0(s r) and p̂∗(r, s) = −2sK1(s r)
∂r

∂n
(19)

T̂ ∗(r, s) =
1

2πκ
K0

(
√

s

κ
r

)

and q̂∗(r, s) = − 1

2π

√

s

κ
K1

(
√

s

κ
r

)

∂r

∂n
(20)

whereKν is the modified Bessel function of the second kind and orderν.
The vectorsuj

m andpj
m of Eq. (13) represent, respectively, the prescribed or unknown nodal values of potentialu and

flux p defined at each elementj of the boundary and at the time stepm (m = 0, 1, . . . , N ), i.e.:

uj
m = uj(tm) = uj(t0 +m∆t) (21)

pj
m = pj(tm) = pj(t0 +m∆t) (22)

The vectorsT j
m andqj

m of Eq. (14) which represent, respectively, the prescribed or unknown nodal values of temper-
atureT and heat fluxq defined at each elementj of the boundary and at the time stepm are given by:

T j
m = T j(tm) = T j(t0 +m∆t) (23)

qj
m = qj(tm) = qj(t0 +m∆t) (24)

Equations (13) and (14) can be rewritten in matrix form as follows:

cun =
n
∑

m=0

Gn−m
a

pm −
n
∑

m=0

Hn−m
a

um (25)

cT n =

n
∑

m=0

Gn−m
T

qm −
n
∑

m=0

Hn−m
T

Tm (26)

The responses on the boundary and at interior points are calculated from Eq. (25), whereGa andHa are the BEM
influence matrices for acoustic problems. For heat conduction problems, the responses are calculated from Eq. (26) and
GT andHT are the corresponding BEM influence matrices. In Eqs. (25) and (26)c is the diagonal matrix containing
the coefficientsc(ξ). The indicesn andm correspond to the discrete timestn = t0 + n∆t and tm = t0 + m∆t,
respectively. To compute the responses on the boundary, theboundary conditions have to be imposed into Eqs. (25) and
(26). Afterwards, the following general expressions are obtained:

A0
a
yn = fn +

n−1
∑

m=0

(

Gn−m
a

pm −Hn−m
a

um
)

(27)

A0
T
yn = fn +

n−1
∑

m=0

(

Gn−m
T

qm −Hn−m
T

Tm
)

(28)

For acoustic problems, i.e in Eqs. (27),A0
a

stores the columns of (c+H0
a
) corresponding to the unknown values ofu

and the columns ofGa corresponding to the unknowns values ofp. The unknown and known values ofu andp at time
tn are stored, respectively, in the vectorsyn andfn. The components of the system given by in Eqs. (28) have the same
meaning for heat conduction problems.
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It is important to notice that the quadrature weights must beobtained efficiently using the FFT algorithm (Brigham,
1988) if the quadrature weights from Eq. (15) to Eq. (18) wererewritten as:

û
∗j
ℓ =

∫

Γj

û∗(r, sℓ)N
j(X)dΓ and p̂

∗j
ℓ =

∫

Γj

p̂∗(r, sℓ)N
j(X)dΓ (29)

T̂
∗j
ℓ =

∫

Γj

T̂ ∗(r, sℓ)N
j(X)dΓ and q̂

∗j
ℓ =

∫

Γj

q̂∗(r, sℓ)N
j(X)dΓ (30)

Thus, for example, to obtain(ga)n and(ha)n it is enough to calculate the FFT transform ofû∗

ℓ andp̂∗

ℓ and multiply
the results by the factorR−n/L. Using the FFT algorithms one quadrature weight can be obtained with a number of
operations the orderN log(N), keeping in mind thatN = L. In addition, the element integrals should be performed
before the FFT in order to reduce the number of times that the FFT routine is called. Same approach can be followed to
obtain the other quadrature weights.

5. NUMERICAL EXAMPLES

Next, to validate the formulation presented in this work twonumerical examples are shown. The numerical responses
of wave propagation and heat conduction problems for two geometrical configurations were compared to the analytical
responses (Morse and Feshbach, 1953; Graff, 1975; Carslaw and Jaeger, 1988). In the treatment of wave propagation
problem will be made reference to the dimensionless parameterβ = c∆t/l that gives a measure of the time-step length
to be adopted to perform the numerical analysis (l is the smaller boundary element length). In all the numerical examples
was takenL = N andε = 10−4. The acoustic and heat sources are not present (homogeneousequations). Zero initial
conditions were fixed att0 = 0.0, i.e.,u0(X) = 0.0, v0(X) = 0.0 andT0(X) = 0.0. For the CQM procedure it was
takenε = 10−4 and the expresion of the functionγ(z) is given by Eq. (4).

5.1 Wave propagation example

This first example consists of a one-dimensional rod of longitudinal elasticity modulusE under a Heaviside-type
forcing function applied att = 0 asp̄ = p

EH(t− 0), whereH is the Heaviside function. This boundary condition is kept
constant from timet = 0 onwards according to Fig. 1. A boundary element mesh ofJ = 24 linear elements was used. A
time interval fromt0 = 0.0 to tf = 4.15 was analyzed. The time discretization consists of 128 time-steps of∆t = 0.032,
therefore, the parameterβ = 0.3.

Figure 1. One-dimensional rod analysis: geometry definitions and boundary conditions.

Figure 2 presents the results of potential time-histories at boundary node (0, L/4) and at interior points (L/4, L/4),
(L/2, L/4) and (3L/4, L/4) carried out withβ = 0.3. Flux time-history is depicted in Fig. 3 at boundary node (L,L/4)
for the same value ofβ.
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Figure 2. Potential at boundary nodes and interior points for the one-dimensional rod analysis. Circles: numerical results.
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Figure 3. Flux at boundary node (L,L/4) for the one-dimensional rod analysis. Circles: numericalresults.

From the calculated responses one can observe that Fig. 2 and3 show that all the numerical responses are accurate
when compared with the exact solution. Moreover, it is important to point out that Fig. 3 displays typical numerical
oscillations for boundary flux around the discontinuities for the CQM-based BEM numerical results. In general, this
oscillatory tendency concentrates around the response discontinuity.

5.2 Heat conduction example

In this example is considered the transient heat conductionanalysis in a circular region of radiusR = 10.0. The
geometry of this region is depicted in Fig. 4.
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Figure 4. Circular region: geometry and boundary condition.

The thermal diffusivity isκ = 4.0 and a boundary mesh ofJ = 48 linear elements was used. A time interval from
t0 = 0.0 to tf = 20.0 was analyzed. The time discretization consists of 2048 time-steps of∆t = 0.00977. Dirichlet
harmonic boundary condition was prescribed. The expression of this boundary condition is given by:

T (r, t)|r=10 = T̄ (t) = 10
[

1− cos(
π

2
t)
]

(31)

Figure 5 shows the evolution of the temperature at two interior points of coordinates (0.0, 0.0) and (8.0, 0.0). Figure 6
shows the temperature at timet = 10.0 on the horizontal diameter of the circular region with the Dirichlet harmonic
boundary condition prescribed.
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Figure 5. Evolution of the temperature at two interior points of the circular region.
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Figure 6. Temperature at timet = 10.0 on the horizontal diameter of the circular region. Circles:numerical results.

Usually, in what concerns numerical accuracy∆t can be as small as the machine accuracy allows. However, the
authors experience demonstrated that excessively reducedof ∆t for the wave propagation problems may not be accurate
if the backward difference formula of second order (see Eq. (4)) is employed. In this case, a backward difference formula
of first order should be employed.

For a fixed boundary mesh the behavior of the numerical responses for heat conduction problems are accurate when
both backward difference formula of second and first order are employed independent of the reduction of∆t.

6. CONCLUSION

In this work a CQM-based BEM formulation was presented to thecomputation of numerical responses of two-
dimensional problems governed by the scalar wave equation and the heat equation. The CQM-based BEM is an attractive
method for the time discretization of convolution integrals of the BEM in the time-domain. Despite this formulation is a
time-stepping procedure, the fundamental solutions are evaluated in the Laplace domain instead in the time-domain, and
requires only to knowa priori the time-step size∆t . This represents an interesting advantage regarding the techniques
that need an adequate selection of several parameters to perform the numerical Laplace inversion to obtain accurate re-
sults. Furthermore, when the fundamental solutions BEM either are not available in the time-domain or have difficult
expressions to evaluate in numerical terms, the CQM-based BEM formulation overcomes this difficulty as alternative
method of time procedure.

Regarding to the computation cost of the numerical implementation, an important conclusion is achieved: when
computing the influent matrices of the BEM the FFT algorithm can be used to reduce the number of operations. However,
the cost of the convolution to solve the boundary problem andalso the cost of storage is still high due to the FFT cannot
be used and a complete storage of the influent matrices is required.

The examples analyzed shown that the proposed formulation is accurate and exhibits a stable behavior with respect to
the parameter∆t, thus the CQM-based BEM is in general well suited for solvingtransient problems of wave propagation
and heat conduction problems.
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