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Abstract. In this work, the Boundary Element Method based on the Catieol Quadrature Method for the numerical
solution of integral formulations in the time domain is désed. In the present approach the basic integral equation
of the BEM is numerically approximated by a quadrature foamwhose weights are calculated using the Laplace
transform of the fundamental solution. An important feataf this method is its applicability to problems where the
fundamental solution in time-domain does not exist, or whisrcomputational implementation is very difficult. Innber

of the numerical implementation, the proposed formulatiaty requires to define the size of the time-step, and this
feature is one of the advantages of the actual formulatich véispect to other numerical methods that operate directly
in the Laplace transformed domain. When very fine meshesegugred, the computation of the influent matrices is
very time-consuming. This work shows how the matrices sfititégral representation can be computed using the fast
Fourier transform to reduce significantly the computatiboamplexity of this task. Some numerical examples of typica
problems of wave propagation and transient heat condudienpresented to demonstrate the versatility and religbili

of the method.
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1. INTRODUCTION

This work presents a formulation of a time-domain Boundagnient Method (TD-BEM) for the analysis of scalar
wave propagation and heat transfer problems. TD-BEM agpexapresent convolution integrals with respect to the time
variable. One of the recognized disadvantages of the clEsED-BEM approaches lie in the high computational cost
concerning the calculation of the matrices, and also thiiatian of the time-dependent integrals due to the coniaiut
performed from the initial time to the current time. In thissk the TD-BEM employs the Convolution Quadrature Method
(CQM) firstly described by Lubich (1988a,b) and Lubich andSxder (1992). In the CQM, fundamental solutions in
the Laplace transformed-domain are considered and a ncathegproximation of the basic integral equations of the TD-
BEM is worked out by a quadrature formula based on a lineati+tstdp method. The main advantage of the CQM-based
BEM is that provides a direct procedure to obtain a stableBEM approach, and that it can be applied to problems
where the TD fundamental solution is not available or hasra d#ficult expression.

In the works (Gaul and Schanz, 1999; Schanz, 2001; Satizelz 2005) can be found implementations of the CQM-
based BEM to elastodynamics, viscoelasticity and portielgsproblems. The works (Abreat al, 2003, 2006, 2009)
applied the CQM-based BEM to scalar wave propagation pnakl@nd applications for potential theory can be found in
the paper (Vera-Tudelet al,, 2006). Furthermore, with the aim to accelerate and imptbgecomputational efficiency,
it was combined with the multipole method to formulate a CQ&sed BEM for diffraction of waves problems (Saitoh
et al,, 2004, 2007). All approaches shown that CQM-based BEM ig rasust and suitable to such kind of problems.

The BEM has been already also used to solve transient hedtiction problems. In the literature, different BEM
approaches have been used to address this topic. One apjsdacusing convolution schemes, where the TD funda-
mental solution is introduced to state a transient bounofaegral equation model (Wrobel, 2002). Other approach is to
define a time-stepping procedure: this approach requiregnhointegration which, in their turn, can be addressedgusin
the dual reciprocity technique, triple reciprocity teajuee or similar ones (Tanaka and Chen, 2001; Kassab and Divo,
2006; Ochiaiet al, 2006). Other common alternative approaches to addressidrda heat problems consist of the use of
the Laplace transform and its inverse (Rizzo and ShippyQ)L9n these approaches to recover the real TD solution, the
result obtained in the Laplace domain is inverted by mearkeinverse Laplace transform. However, special methods
for numerical Laplace inversion scheme are required andnib& commonly used is the Stehfest algorithm (Stehfest,
1970; Kassab and Divo, 2006).

In the present work, a CQM-based BEM is used for the TD sahuifdwo-dimensional wave propagation and transient
heat conduction problems. Itis also presented how the C@&&tBEM can be implemented using fast Fourier transform
(FFT) technique to reduce the computational cost of the migadecalculation of the matrices. In the following sectipn
the CQM-based BEM formulation is reviewed, the governingagigpns and their integral representations are introduced
for each kind of problem. Numerical examples that show tfecéfeness of the proposed formulation are presented.
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2. THE CONVOLUTION QUADRATURE METHOD (CQM)

Consider first the following equation:

:/0 ft—7)g(r)dr 1)

Equation (1) represents a convolution. In the work (Lubit®88a,b) has been showed that functiocen be approx-
imated at points: At as the following quadrature:

y(nAt) ~ Y w,_k(At)g(kAL), with n=0,1,...,N 2
k=0

whereN is the total number of time sampling and the weightsare:

snld =g [ (7) Zf< Relﬁ))ei"ﬂf ®)

The functionf is the Laplace transform of andCp = {z € C; |z| = R} is the contour employed to perform the
integration whereR is the radius of a circle in the domain of analynonyp(”(z)) In Eq. (3) a polar coordinate system

was adopted and the integral was approximated by the trajs@zale with L steps equal t@r/L. The functiony is
the quotient of the characteristic polynomial generated timear multi-step method. Using a backward differertiati
formula of order2, the expression of is given by:

v(z) = 3/2 — 2z + (1/2)2? 4)

SettingL = N andR"™ = /¢ in Eq. (3), the quadrature weights are computed within aor@frorderO(¢), wheree
is the precision with whiclf is calculated.

3. GOVERNING EQUATIONSAND INTEGRAL REPRESENTATIONS

In this section are introduced the governing equations@ptioblems analyzed. These equations are the scalar wave
equation that governs problems such as acoustic propagatial the equation that governs energy transport processes
such as heat conduction problems. In subsections are dlsaliiced the integral representation of each differential
equations.

3.1 Wave propagation problems

The scalar wave equation for a homogeneous and isotropic 9dd the absence of body forces is given by (Morse
and Feshbach, 1953):
Pu(X,t)

o

wheret € R andX € R? represent the time and space coordinates, respectivislyhe wave propagation velocity and
the functionu represents the potential. The initial conditions at tignand the boundary conditions for> ¢, are:

A Viu(X,t) — =0 (5)

u(X,to) = uo(X) and gif(x to) = vo(X) inQ (6)
u(X,t) =ua(X,t) onT, and p(X,t):g—Z(X,t):p(X,t) onT, @)

Note that, in above equatioi§, UT', = I, whereI represents the boundary of the bady p is the flux andn
is the outward unit normal to. The wave propagation problem consists to solve Eq. (5)Herunknown potentiak
when the material properties (incorporatedc)nthe initial conditions and boundary conditions are knowine time-
dependent integral equation corresponding to problemsrged by the 2D scalar wave equation with homogeneous
initial conditions for any point sourcgis (Brebbiaet al., 1984; Mansur, 1983; Dominguez, 1993):

u(é,t) = /1“/: u (ryt —7)p(X,7)drdl — /1“ /ft p(r,t — 7)u(X,7)drdl (8)

wherer = ¢ — X, and X represents the field point. The functiah is the TD fundamental solution and(r,t — 7) =
3—“*(1" t—1)
on ’ )
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3.2 Heat conduction problems

The heat equation that describes the evolution of the temtyre” within a homogeneous and isotropic material of
constant thermal conductiviti(, specific heat., mass density and in the absence of sources of heat is given by (Ozisik,
1993; Carslaw and Jaeger, 1988; Crank, 1975):

OT(X, 1)

ot — HVQT(X, t)=0 9)

wheret € R, X € R? andx is the thermal diffusivity given by = K/(pc.). Note that, in this model the material
propertiesk’, ¢, andp do not depend on the time. The initial condition at titgeand the boundary conditions for> ¢,
are:

T(X,t)=T(X,t) onT'r and ¢(X,t)=q(X,t) onT, (11)

whereq(X,t) = —k:g—z(X, t)andI'y UT, = I'. The heat conduction problem consists to solve Eq. (9) ®uttknown
variableT” when the material properties, the initial condition andxary conditions are known. The time-dependent
integral equation corresponding to problems governed by2ih heat equation with homogeneous initial condition for
any point sourcé is (Wrobel, 2002):

ty ty
T(&,t) = / / T*(r,t —1)g(X,7)drdll — / / ¢ (r,t—7)T(X,7)drdl’ (12)
" Jto " Jtg
The functionT™ is the TD fundamental solution angd (r,t — 7) = —mag; (r,t — 7). In Egs. (8) and (12) the

coefficientse(¢) = 1 at any interior poing. If ¢ € T, these coefficients depend on the local geometr¥ af &, see
(Brebbiaet al,, 1984; Wrobel, 2002; Dominguez, 1993).

4. THE CQM-BASED BEM FORMULATION

To solve the boundary integral equations given by Egs. (8)(48) it is required both space and time discretizations.
The BEM representk and the boundary values efandp for acoustics problemg; andq for heat conduction problems,
by using piece-wise polynomial functions. For this purptsseboundary is divided intd elementd’; (j = 1,....J). In
this work lineal elements were used for the spatial diszagitin. The time discretization consists in dividing thasi
interval of analysis intdVv time steps of equal sizat. A discrete version of Egs. (8) and (12) using the CQM intizatl
in Section 2 for a point sourcgand at timef,, = to + nAt (n =0, ..., N) are given, respectively, by:

J n
w(itn) =Y Y gal&i, ALY, _,.pl, — ZZh (&, At ul, (13)
j=1m=0 j=1m=0
J n
c(E)T (&irtn) =D Y gr(&i, AL, . q), — ZZhT &, Aty T, (14)
j=1m=0 j=1m=0

Note that, a notation that aims to distinguish through thesstipts of acoustic problems™from the heat problems
"T" was introduced. The CQM quadrature weights of Eq. (13) anqnd ®4) are:

. R—™ . 2mi
ga(6, MDY, = —— ; /F @ (r, 50) N (X)dT e~ 4 (15)
ha (&, At)) _ R Z/ (r,s¢) N7 (X)dl e~ (16)

gr (&, At _ Z / T*(r, s¢)N? (X)dT e~ F 17)
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he(6 A0, =2 3 [ 47 (rs) NI (0D e e (18)
=0Ty

In the previous expressiond’ (X ) represents the matrix of interpolation functions used egpatial discretization.
The parametes of the Laplace transform is numerically evaluatedsas= (Re>™/ %) /At, and~ was introduced in
Eq. (4). The term&* (v, -) andp* (r, -) are the Laplace transform af (r, -) andp*(r, -). Moreover,T™*(r, -) andg*(r, -)
are the Laplace transform @f*(r,-) andq¢*(r,-). The expressions of these fundamental solutions in thefsemed
domain are given by (Brebbkit al, 1984; Wrobel, 2002):

or

on

P g) = s i s) = — L ]2 E
T(r,s)—mK()(\/;r) and §"(r,s) = 5 /{Kl <\/;r> o (20)

wherekK, is the modified Bessel function of the second kind and order

The vectorsu/, andp?, of Eq. (13) represent, respectively, the prescribed or awkmodal values of potential and

flux p defined at each elemepof the boundary and at the time step(m = 0,1,..., N), i.e..

w*(r,s) =2Ko(sr) and  p*(r,s) = —2sK;(sr) (29)

ul = ul(t,) = u’(tog + mAt) (21)

pl, =P (tm) = p’(to + mAL) (22)

The vectorsI’/, andg/, of Eq. (14) which represent, respectively, the prescribashénown nodal values of temper-
atureT and heat fluxy defined at each elemepof the boundary and at the time stepare given by:

TI =TI (t,,) = T9 (to + mAt) 23
an = qj (tm) = qj (to + mAt) (24)

Equations (13) and (14) can be rewritten in matrix form akofes:

n n

cu” = Z Ggfmpm. _ Z Hgfmum. (25)
m=0 m=0

T — En: GG — En: H—mp™ (26)
m=0 m=0

The responses on the boundary and at interior points aralatdd from Eq. (25), wheré&', and H, are the BEM
influence matrices for acoustic problems. For heat condugroblems, the responses are calculated from Eg. (26) and
G and Hr are the corresponding BEM influence matrices. In Egs. (28) &6) c is the diagonal matrix containing
the coefficients:(¢). The indicesn andm correspond to the discrete times = ¢y + nAt andt,, = to + mAt,
respectively. To compute the responses on the boundarpptiredary conditions have to be imposed into Egs. (25) and
(26). Afterwards, the following general expressions ar@ioied:

n—1
Aby" =f"+ > (Gamp™ — H M u™) 27)

m=0

n—1

m=0

For acoustic problems, i.e in Egs. (2B stores the columns ot(- H?) corresponding to the unknown valueswof
and the columns of, corresponding to the unknowns valuegpofThe unknown and known values afandp at time

t,, are stored, respectively, in the vectgfsand f"*. The components of the system given by in Egs. (28) have the sa
meaning for heat conduction problems.
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It is important to notice that the quadrature weights musblttained efficiently using the FFT algorithm (Brigham,
1988) if the quadrature weights from Eq. (15) to Eq. (18) wereritten as:

a;‘j:/F @*(r, )N’ (X)dl'  and ﬁ;ﬁjz/r p*(r, s¢) N7 (X)dD (29)

J J

1,7 = /F ‘TA*(T,Sg)Nj(X)dF and ¢’ = /F G (r, s)) N7 (X)dr (30)

J J

Thus, for example, to obtaify, ), and(he)» it is enough to calculate the FFT transformdgf andp; and multiply
the results by the factaR~" /L. Using the FFT algorithms one quadrature weight can be médawith a number of
operations the ordelN log(N), keeping in mind thaftv = L. In addition, the element integrals should be performed
before the FFT in order to reduce the number of times that Elerbutine is called. Same approach can be followed to
obtain the other quadrature weights.

5. NUMERICAL EXAMPLES

Next, to validate the formulation presented in this work twanerical examples are shown. The numerical responses
of wave propagation and heat conduction problems for twarggidcal configurations were compared to the analytical
responses (Morse and Feshbach, 1953; Graff, 1975; Carsldwaeger, 1988). In the treatment of wave propagation
problem will be made reference to the dimensionless paemiet ¢ At/l that gives a measure of the time-step length
to be adopted to perform the numerical analysis the smaller boundary element length). In all the numédgamples
was takenL = N ande = 10~%. The acoustic and heat sources are not present (homogeagoaisons). Zero initial
conditions were fixed afy = 0.0, i.e.,uo(X) = 0.0, vo(X) = 0.0 andTp(X) = 0.0. For the CQM procedure it was
takene = 10~* and the expresion of the functior{z) is given by Eq. (4).

5.1 Wave propagation example

This first example consists of a one-dimensional rod of lamtjinal elasticity modulugy under a Heaviside-type
forcing function applied at = 0 asp = £ H(t — 0), whereH is the Heaviside function. This boundary condition is kept
constant from time = 0 onwards according to Fig. 1. A boundary element mesk ef 24 linear elements was used. A
time interval fromty = 0.0to ¢y = 4.15 was analyzed. The time discretization consists of 128 stees ofAt = 0.032,
therefore, the parametgr= 0.3.

Yy
p=p/EH(t-0) p=0
] -
Q ™ — -
q u=0
] -
p=0 X

L
Figure 1. One-dimensional rod analysis: geometry defimitiand boundary conditions.
Figure 2 presents the results of potential time-histortdsoandary node((;, L/4) and at interior pointsi/4, L/4),

(L/2,L/4) and BL/4, L/4) carried out with3 = 0.3. Flux time-history is depicted in Fig. 3 at boundary node{/4)
for the same value of.
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Figure 2. Potential at boundary nodes and interior pointgi® one-dimensional rod analysis. Circles: numericalltes
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Figure 3. Flux at boundary nodé (L /4) for the one-dimensional rod analysis. Circles: numernieallts.

From the calculated responses one can observe that Fig. 3ahow that all the numerical responses are accurate
when compared with the exact solution. Moreover, it is int@olr to point out that Fig. 3 displays typical numerical
oscillations for boundary flux around the discontinuities the CQM-based BEM numerical results. In general, this
oscillatory tendency concentrates around the responserdiauity.

5.2 Heat conduction example

In this example is considered the transient heat conduetiatysis in a circular region of radius = 10.0. The
geometry of this region is depicted in Fig. 4.
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7(1)

R
Figure 4. Circular region: geometry and boundary condition

The thermal diffusivity iss = 4.0 and a boundary mesh of = 48 linear elements was used. A time interval from
to = 0.0 to ty = 20.0 was analyzed. The time discretization consists of 2048-8taps ofAt = 0.00977. Dirichlet
harmonic boundary condition was prescribed. The expragdithis boundary condition is given by:

T(r,t)|r—10 = T(t) = 10 [1 - Cos(g t)] (31)
Figure 5 shows the evolution of the temperature at two iotgroints of coordinate$)(0, 0.0) and .0, 0.0). Figure 6

shows the temperature at time= 10.0 on the horizontal diameter of the circular region with thei€bilet harmonic
boundary condition prescribed.

16.0 . ; . ; . ; . ; . ;

Temperature
o0
(=}
T

4.0 -

Analytical
——(0,0), —=—8,0)

0.0 bt . .
0.0 4.0 8.0 12.0 16.0 20.0

t

Figure 5. Evolution of the temperature at two interior psiot the circular region.
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Figure 6. Temperature at tinte= 10.0 on the horizontal diameter of the circular region. Circlesmerical results.

Usually, in what concerns numerical accuraky can be as small as the machine accuracy allows. However, the
authors experience demonstrated that excessively readicetifor the wave propagation problems may not be accurate
if the backward difference formula of second order (see &)).i$¢ employed. In this case, a backward difference formula
of first order should be employed.

For a fixed boundary mesh the behavior of the numerical regsofor heat conduction problems are accurate when
both backward difference formula of second and first ordereanployed independent of the reductiomaf

6. CONCLUSION

In this work a CQM-based BEM formulation was presented to dbmputation of numerical responses of two-
dimensional problems governed by the scalar wave equatidhe heat equation. The CQM-based BEM is an attractive
method for the time discretization of convolution integraf the BEM in the time-domain. Despite this formulation is a
time-stepping procedure, the fundamental solutions aakiated in the Laplace domain instead in the time-domaid, an
requires only to knova priori the time-step sizé\t . This represents an interesting advantage regarding ¢haitpies
that need an adequate selection of several parametersftorpédhe numerical Laplace inversion to obtain accurate re-
sults. Furthermore, when the fundamental solutions BEMeeiare not available in the time-domain or have difficult
expressions to evaluate in numerical terms, the CQM-baged Brmulation overcomes this difficulty as alternative
method of time procedure.

Regarding to the computation cost of the numerical implaaten, an important conclusion is achieved: when
computing the influent matrices of the BEM the FFT algoritham be used to reduce the number of operations. However,
the cost of the convolution to solve the boundary problemalsd the cost of storage is still high due to the FFT cannot
be used and a complete storage of the influent matrices igeequ

The examples analyzed shown that the proposed formulatiaccurate and exhibits a stable behavior with respect to
the parametet, thus the CQM-based BEM is in general well suited for soltiagsient problems of wave propagation
and heat conduction problems.
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