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Abstract. This work presents an identification methodology for multi-degree-of-freedom (mdofs) flexible rotor-bearing 

systems. The algorithm identifies two common faults occurring at the same time: the unbalance and the residual shaft 

bow, which contains magnitude and phase information, using only the rotor responses due to the combination of 

dynamic effects caused by the cited faults. As a way to overcome the practical difficulty with regard to the number of 

the available responses that can be measured, the proposed procedure uses the definition of coordinate transformation 

that is utilized in Lyapunov matrix equation. The system was modeled by state space representation and lumped-mass 

matrix. Through the definition of correlations used in matrix equation, it is possible to create an algorithm that 

correlates the system faults, consisted by magnitude and phase, to the correlation matrices of the measured state 

variables in time domain without the knowledge of the input forces. Numerical examples have been used to illustrate 

the developed algorithm considering also the effect of different noise levels in the rotor responses. The algorithm 

showed to be feasible and robust to be applied to real machines. 
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1. INTRODUCTION  

 

The early detection of faults and malfunctions has been studied by many researchers due to its practical importance 

in industry which has machines with a high capital cost. So this is very important to avoid a more serious damage and 

huge financial losses. So the model-based diagnostic techniques are helpful tools to provide more significant fault 

information such as location and severity. 

Unbalance, which is caused by the eccentricity of the mass from the geometric center, is one of the most common 

faults in rotating machines and it should be kept in a minimum level. The vibrations caused by it affect critical parts of 

the system such as bearings, seals, gears, motor, couplings etc.  

One of typical reasons for an unbalance in a rotor is due to warping or static bending (permanent or temporary). 

These bowed rotors are encountered in practice for different reasons, e.g., letting a horizontal rotor rest for a long period 

of time or due to rubbing of a shaft on a seal (Rao, 2001). The bow and eccentricity are in general in different angular 

locations and bowed rotors behave somewhat different from purely unbalanced rotors (Rao, 2001 and Nicholas et al., 

1976). 

This way, many contributions have been given to identify the unbalance, shaft bow and other kinds of faults and 

malfunctions, as multiple faults are common in real machines (Edwards et al., 2000; Baschschmid et al., 2002; Vania 

and Pennacchi., 2004). In general, the models have the same goal but they are different in mathematical approach and 

inclusion/representation of parts of the complete system: bearings, foundations, seals, etc. A general overview of model-

based identification can be seen in Lees et al. (2009). 

The methodology proposed in this paper uses the Lyapunov matrix equation and correlation analysis without the 

measuring of the input signals. The interest parameters are estimated from the correlations among the measured degrees 

of freedom. In rotor dynamics field, this method was used with white noise excitation and lumped mass matrix 

(Pederiva, 1992), unbalance plus stochastic input forces and artificial neural network to identify the fault parameters 

(Eduardo, 2003), random input and finite elements modeling to identify the bearing parameters (Sanches and Pederiva, 

2009) and harmonic (unbalance) input in order to identify the fault parameters (Sanches and Pederiva, 2010). 

This work is an extension of Sanches and Pederiva (2010) to the simultaneous identification of the unbalance and 

shaft bow parameters considering different fault configurations (magnitude and phase) and using only the rotor 

responses. 

 

2. MATHEMATICAL MODELING 

 

Considering that the rotor-bearing system, which is excited by harmonic forces due to unbalance and residual bow, 

can be modeled by a linear and time invariant mechanical system with n degrees of freedom, then the differential matrix 

equation that describes the physical system is (Rao, 2001): 

 

[ ] ( ){ } [ ] ( ){ } [ ] ( ){ } [ ] ( ){ } [ ] ( ){ }tnBtnHtKtPtM 21 +=++ ξξξ &&&      (1) 
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where [M ] is the mass matrix, [P] is a matrix of speed proportional forces, [K] is a matrix of displacements proportional 

forces, { } { })(,)( tt ξξ & and { })( tξ&& are the vectors corresponding to displacements, velocities and accelerations in this 

order, [H] is the unbalance matrix, [B] is the bow matrix. 

 

The vectors {n1(t)} and {n2(t)} are the harmonic vectors referent to unbalance and shaft bow respectively. They are 

expressed as: 
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where Ω is the rotating frequency, β is the unbalance phase and α is the bow phase. 

 

The matrices [H] and [B] can be given by: 
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mu is the unbalance mass from the disks, d is the disk unbalance eccentricity with respect to the shaft geometric center 

and  {δr} is the residual bow vector. 

 

The rotor-bearing system described by Eq. (1) can also be expressed in state-space representation as: 

 

{ } [ ] ( ){ } [ ] ( ){ } [ ] ( ){ }tnEtnEtxAtx bu 21)( ++=&           (5) 

 

where the state vector is given by: 
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and 
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The system output equation is: 

 

{ } [ ] ( ){ }txCty =)(               (8) 



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

 

with [C] the output matrix. 

 

The expression for the correlation matrix is defined by: 

 

( )[ ] ( )[ ] ( ){ } ( ){ }{ }τεττ +==+ txtxRttR T

xxxx ,           (9) 

 

where τ is a time delay instant and ε means the expected value between two terms. 

 

Equations (2), (3) and (4) can be rewritten as (Lalanne and Ferraris, 1990): 
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and 
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with 

 

ββ sinandcos dmbdma uu ==          (12) 

αδαδ sinandcos ,, ss rjirji kdkc ==            (13) 

 

where ki,j are terms from the stiffness matrix and δrs represents the residual bow at some shaft position. 

 

Applying Eq. (9) to Eq. (5) and using Eqs. (10) to (13), it is possible to obtain an equation that correlates the system 

outputs with the rotor fault parameters and the physical system parameters (Pederiva, 1992 and Eduardo, 2003). This 

equation is called Generalized Lyapunov Matrix Equation for systems excited by harmonic forces:  

 

[ ] ( )[ ] ( )[ ][ ] [ ] ( )[ ] ( )[ ][ ] 0=+++
T

ixninx

T

ixxixx ERREARRA ττττ       (14) 

 

with 
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and 

 

[ ] [ ] [ ]GDP Ω+=             (17) 

 

where [D] is the damping matrix and [G] is the gyroscopic matrix. 
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Considering that the rotor system is excited only by harmonic forces, in this studied case caused by unbalance and 

shaft bow combined, the state vector assumes the following form: 

 

( ){ } ( ) ( )tztztx Ω+Ω= cossin 21           (18) 

 

where z1 and z2 are general numbers. 

 

2.1. Reduction of the system measured outputs 

 

All the assumptions considered previously took into consideration that the entire state vector is measured. In 

practice this does not occur because some degrees of freedom are not available by reasons that include safety and 

difficulties to access some measuring points on the machine. This way, an output measurement reduction should be 

considered in order to work with a more realistic situation that enables this methodology to be applied in real rotating 

machines. 

It is known that velocity and displacement measurements are redundant considering the system observability and 

this represents a natural output reduction. So, with only the displacements it is possible to observe completely the 

system (Pederiva, 1992).  The goal is not only to exclude the velocities but also to provide an addition reduction with 

respect to the number of displacements acquired by transducers. 

Considering that the entire state vector is not available, Eq. (14) cannot be applied and additional correlations should 

be used to replace the missing ones.  

In order to replace the missing state variables and to generate additional data to be used in the identification process, 

Pederiva (1992) proposes the utilization of a filter system. Figure 1 shows how the filter acts in the mechanical system. 

 

 
Figure 1. Schematic representation of the dynamic system + filter  

 

The filter system is represented by the state-space equation: 
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with: 
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η1 to ηq are the filter outputs. 

 

The filter matrix is: 
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and the input filter matrix: 
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The filter system has order q and it is stable and controllable. The parameters n1 to nq are filter parameters, p1 to pm 

are the input filter parameters and the index m is the number of available measured outputs. 

When a reduction of the measured state variables is performed, the system must continue to be observable by the 

available variables that are possible to be acquired. Dynamic systems described as showed by Eqs. (5) and (8) can be 

represented in many different ways which are known as normal forms of state equation and these new forms have other 

coordinate systems, so the input/output system description changes as well as the input/output system matrices. 

Through a specific coordinate base, it is possible to obtain transformed matrices [A
*
], [B

*
] and [C

*
] that contain 

simple internal structures which can be easily used in a parameter estimation algorithm. These special structures are 

obtained by the choice of specific coordinate transformation basis. 

This way, changing the coordinate basis:  

 

( ){ } [ ] ( ){ }txTtx =*
            (23) 

 

where [T] is the coordinate transformation matrix. 

 

Performing a coordinate transformation in the studied system: 

 

{ } [ ] ( ){ } [ ] ( ){ }tnEtxAx
**** +=&           (24) 

 

Considering the original rotating system completely observable, it is desirable that this condition be still valid with a 

reduction of the output measurements. In other words, the transformation matrix should be conveniently chosen. To 

guarantee the system observability in the case of having some parts of the state vector, the transformation matrix used to 

rewrite the rotating system will be the observability matrix. 

Applying this kind of coordinate transformation to the rotor system, the matrices [A
*
] and [C

*
] have special 

structures (Pederiva, 1992) that are very useful to have an identification algorithm. 

As mentioned previously a filter system is used to generate additional data to replace the missing correlations. This 

way the complete system is formed by the rotating system plus the filter and this expanded system is described by: 
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and 
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The Lyapunov matrix equation described by Eq. (14) can be represented in a general form to the expanded system 

as: 
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2. ROTOR SIMULATIONS 

 

The system to be considered is composed by a flexible shaft supported on two identical rolling bearings with two 

independent unbalanced disks and the shaft bow is presented at the disks position.  A general view of the rotating 

system is showed by the Fig.2.  

 

 
Figure 2. Representation of the rotating system 

 

The system described by Fig. 2 was modeled by lumped mass matrix and this kind of modeling applied to rotors is 

described by Gasch and Knothe (1987). In this modeling, all the rotor mass comes from the disks which are heavier 

than the shaft. This approach is simpler than modeling by finite elements and provides a good first identification of the 

fault parameters. 

Details of the coordinate system used to model the rotor as well as the mass and gyroscopic matrix can be seen in 

Lalanne and Ferraris (1990). The damping matrix is diagonal and the system has 8 degrees of freedom, 4 linear 

coordinates and 4 angular ones. 

Considering that the angular displacements are difficult to be acquired by transducers, the simulations take in 

consideration only the linear measurements at disks position (1/4 of the state vector) which is closer to a real situation. 

Taking into account these assumptions, the transformations matrix for this studied case is given by: 
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To identify the system, it is proposed a filter of order 6 (Sanches and Pederiva, 2009) that will be used in Eq. (29) 

which will generate the identification algorithms through its matrices [A
’
] and [R

’
]. Details of these two matrices can be 

seen in Sanches and Pederiva (2010). The matrix [Q
’
] contains the fault parameters and it has the following structure:  
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where Q1, Q2, Q3 and Q4 are sub matrices of [Q
’
].  

 

Equation (31) comes from Eq.(14) for the expanded system and it is given by: 
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The unbalance parameters for each disk as well as a general view of the shaft bow are showed by Fig. 3: 

 

Disk 1 Disk 2 
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Figure 3. Representation of unbalance and shaft bow 

 

To simulate the system, the bow was considered at the disks position. This way the shaft bow parameters are: 
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where the subscripts 1 and 2 are referent to the shaft bow present at disks 1 and 2 position, respectively. The variable δ 

represents the residual bending presented by the shaft due to, for example, its weight, bad mounting or inaccuracies on 

the machining process.    

 

The sub matrices Q1, Q2, Q3 and Q4 from Eq. (31) are given in function of the unbalance parameters (a and b), the 

shaft bow parameters (c and d), and the coefficients z given by Eq. (18) whose calculations are given in details by 

Sanches and Pederiva (2010). Sub matrix Q3 is the only one that will be used in the identification algorithm and it 

comes from the correlations between the filter outputs {f(t)} and the harmonic vector {n(t)}. 

Working with specific rows and columns in the matrices given by Eq. (29), it is possible to obtain the estimation 

equation that involves the fault parameters and the correlation matrices between the filter outputs and the measured state 

variables (Sanches and Pederiva, 2010): 
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The terms S are corresponding parts of the sub matrix Q3 showed by Eq. (31), *
mi x

r
η

 is the correlation between the i
th

 

filter output and the measured displacements, and: 
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2.1. Numerical results 

 

The filter parameters in Eqs. (21) and (22) were chosen based on the system stability and these values were 

described in details in Sanches and Pederiva (2009).  

The rotor damping matrix was chosen in such a way that the damping factor is 4.3% to simulate a more realistic 

situation. This way, the first two natural frequencies of the rotating system are 31 Hz and 88 Hz and the first filter 

frequency is 228 Hz, so none rotor response will be smoothed until the second critical frequency (Sanches and Pederiva, 

2010). These frequencies are showed by Fig. (4).   

 

 

δ 

SHAFT 
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Figure 4. System and filter FRFs 

 

To estimate the fault parameters, it was used in Eq. (35) three time delays τi and three different rotating speeds. 

Simulations were performed considering four different situations for two theoretical fault configurations given by Tab. 

1.  In order to have more tests on the robustness of this method, configuration 2 was simulated with random noise of 2% 

and 4% in the system outputs. To estimate all the fault parameters, it was used the least square method applied to Eq. 

(35). 

 

Table 1. Two simulated fault configurations 
Configuration 1 Configuration 2 

mu1d1 = 1,5.10-4 Kg.m, mu2d2 = 3,16.10-4 Kg.m mu1d1 = 3.10-4 Kg.m, mu2d2 = 1,58.10-4 Kg.m 

β1 = 2000, β2 = 3200 β1 = 700, β2 = 1300 

δr1 = 20.10-6 m, δr2 = 12.10-6 m δr1 = 10.10-6 m, δr2 = 25.10-6 m 

α1 = 1900, α2 = 3500 α1 = 1600, α2 = 2500 

 

The following tables show the simulation results for the unbalance and shaft bow parameters identification 

considering various situations described in the further cases. In these simulations it was not considered the noise effect 

on the system outputs.   

 

Case 1: Simulations considering three rotating frequencies below the first critical speed: 20, 25 and 30Hz. The 

results are showed by Tab. 2: 

 

Tab 2. Simulation results under the first critical speed 
Config.1 Error Config.1 Error Config.2 Error Config.2 Error 

mu1d1 = 1,5116.10-4  0,77% δr1 = 19,96.10-6 0,20% mu1d1 = 2,99.10-4 0,03% δr1 = 9,89.10-6 1,10% 

β1 = 200,450 0,23% α1 = 189,850 0,08% β1 = 70,7330 1,05% α1 = 159,570 0,27% 

mu2d2 = 3,15.10-4 0,32% δr2 = 12.10-6 0,00% mu2d2 = 1,594.10-4 0,89% δr2 = 24,99.10-6 0,04% 

β2 = 319,810 0,06% α2 = 350,010 0,01% β2 = 130,570 0,44% α2 = 250,020 0,01% 

 

Case 2: Simulations considering three rotating frequencies above the first critical speed: 45, 60 and 75Hz. The 

results are showed by Tab. 3: 

 

Tab 3. Simulation results above the first critical speed 
Config.1 Error Config.1 Error Config.2 Error Config.2 Error 

mu1d1 = 1,51.10-4  0,67% δr1 = 19,78.10-6 1,10% mu1d1 = 3,00.10-4 0,00% δr1 = 10,17.10-6 1,70% 

β1 = 198,780 0,61% α1 = 191,050 0,55% β1 = 69,670 0,47% α1 = 158,780 0,76% 

mu2d2 = 3,224.10-4 2,03% δr2 = 11,86.10-6 1,17% mu2d2 = 1,573.10-4 0,44% δr2 = 25.10-6 0,00% 

β2 = 320,24 0,08% α2 = 350,270 0,08% β2 = 132,380 1,83% α2 = 250,150 0,06% 

 

The simulation results from cases 1 and 2 are considered good especially when the estimation is performed using 

rotating speeds under the first critical speed. In case 2, the estimations are still good and the algorithm seems to be 

robust considering different rotating frequencies. 

In the following two cases, simulations will be performed mixing frequencies under and above the first critical 

speed. The goal here is to investigate if the phase inversion that occurs after passing through the first critical speed will 

disturb the estimation results.  

 

Case 3: Simulations considering two rotating frequencies under the first critical speed (25 and 30Hz) and one 

frequency above it: 45Hz. The results are showed by Tab. 4 and noise was not considered. 
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Tab 4. Simulation results considering a mix of rotating frequencies 
Config.1 Error Config.1 Error Config.2 Error Config.2 Error 

mu1d1 = 1,4978.10-4  0,15% δr1 = 20,03.10-6 0,15% mu1d1 = 3,001.10-4 0,03% δr1 = 10,04.10-6 0,40% 

β1 = 199,310 0,35% α1 = 190,490 0,26% β1 = 70,2530 0,36% α1 = 160,430 0,27% 

mu2d2 = 3,1625.10-4 0,08% δr2 = 11,99.10-6 0,08% mu2d2 = 1,585.10-4 0,32% δr2 = 24,87.10-6 0,52% 

β2 = 320,14 0,04% α2 = 349,950 0,01% β2 = 130,330 0,25% α2 = 249,990 0,01% 

 

Case 4: Simulations considering two rotating frequencies above the first critical speed (45 and 60Hz) and one 

frequency under it: 30Hz. The results are showed by Tab. 5 and noise was not considered. 

 

Tab 5. Simulation results considering a mix of rotating frequencies 
Config.1 Error Config.1 Error Config.2 Error Config.2 Error 

mu1d1 = 1,4978.10-4  0,15% δr1 = 20,03.10-6 0,15% mu1d1 = 3,008.10-4 0,27% δr1 = 10,26.10-6 2,60% 

β1 = 199,230 0,39% α1 = 190,570 0,30% β1 = 69,6540 0,49% α1 = 160,870 0,54% 

mu2d2 = 3,172.10-4 0,38% δr2 = 11,98.10-6 0,17% mu2d2 = 1,571.10-4 0,57% δr2 = 25.10-6 0,00% 

β2 = 320,17 0,05% α2 = 349,960 0,01% β2 = 130,470 0,36% α2 = 249,970 0,01% 

 

The tables from the two previous cases show that mixing frequencies below and after the first critical one, the 

estimations continue to be precise and there is no influence of the phase inversion on the obtained results.  

In the next simulated cases, configuration 2 will be tested in the presence of random noise on the rotor outputs. It is 

known that noise is very common in experimental test rigs and they cause some distortions on the estimations and it is 

very important to test the robustness of the applied methodology in the presence of this kind of problem since the 

system outputs are the filter ones and the uncontrolled filter outputs are subjected to the input noise.  

 

Case 5: Simulations with random noise of 2% and 4% considering three rotating frequencies below the first critical 

speed: 20, 25 and 30Hz. The results are showed by Tab. 6: 

 

Tab 6. Simulation results under the first critical speed considering noise 
Noise: 2% Error Noise: 2% Error Noise: 4% Error Noise: 4% Error 

mu1d1 = 2,985.10-4 0,77% δr1 = 9,57.10-6 4,30% mu1d1 = 3,062.10-4 2,07% δr1 = 9,09.10-6 9,10% 

β1 = 72,8660 4,09% α1 = 160,360 0,22% β1 = 76,5770 9,40% α1 = 164,580 2,86% 

mu2d2 = 1,613.10-4 2,09% δr2 = 24,99.10-6 0,00% mu2d2 = 1,709.10-4 8,16% δr2 = 25.10-6 0,00% 

β2 = 130,520 0,40% α2 = 250,030 0,01% β2 = 130,830 0,64% α2 = 250,090 0,04% 

 

Case 6: Simulations considering random noise and three rotating frequencies above the first critical speed: 45, 60 

and 75Hz. The results are showed by Tab. 7: 

 

Tab 7. Simulation results above the first critical speed considering noise 
Noise: 2% Error Noise: 2% Error Noise: 4% Error Noise: 4% Error 

mu1d1 = 3,007.10-4 0,23% δr1 = 10,15.10-6 1,50% mu1d1 = 3,019.10-4 0,63% δr1 = 9,93.10-6 0,70% 

β1 = 69,7260 0,39% α1 = 161,410 0,88% β1 = 69,9390 0,09% α1 = 165,870 3,67% 

mu2d2 = 1,579.10-4 0,06% δr2 = 24,86.10-6 0,56% mu2d2 = 1,596.10-4 1,01% δr2 = 24,86.10-6 0,56% 

β2 = 132,060 1,58% α2 = 250,200 0,08% β2 = 131,550 1,19% α2 = 250,310 0,12% 

 

Case 7: Simulations considering random noise, two rotating frequencies under the first critical speed (25 and 30Hz) 

and one frequency above it: 45Hz. The results are showed by Tab. 8. 

 

Tab 8. Simulation results considering a mix of rotating frequencies and input noise 
Noise: 2% Error Noise: 2% Error Noise: 4% Error Noise: 4% Error 

mu1d1 = 3,003.10-4 0,10% δr1 = 10,05.10-6 0,50% mu1d1 = 3,035.10-4 1,17% δr1 = 10,29.10-6 2,90% 

β1 = 71,2750 1,82% α1 = 161,570 0,98% β1 = 72,6910 3,84% α1 = 163,020 1,89% 

mu2d2 = 1,588.10-4 0,51% δr2 = 25,01.10-6 0,04% mu2d2 = 1,617.10-4 2,34% δr2 = 25,04.10-6 0,16% 

β2 = 129,720 0,22% α2 = 249,960 0,02% β2 = 129,020 0,75% α2 = 249,870 0,05% 

 

Case 8: Simulations considering random noise, two rotating frequencies above the first critical speed (45 and 60Hz) 

and one frequency under it: 30Hz. The results are showed by Tab. 9. 

 

Tab 9. Simulation results considering a mix of rotating frequencies and input noise 
Noise: 2% Error Noise: 2% Error Noise: 4% Error Noise: 4% Error 

mu1d1 = 3,01.10-4 0,33% δr1 = 10,81.10-6 8,10% mu1d1 = 3,00.10-4 0,00% δr1 = 11,96.10-6 19,6% 

β1 = 69,220 1,11% α1 = 161,880 1,18% β1 = 68,2790 2,46% α1 = 160,290 0,18% 

mu2d2 = 1,574.10-4 0,38% δr2 = 25,03.10-6 0,12% mu2d2 = 1,561.10-4 1,20% δr2 = 25,06.10-6 0,24% 

β2 = 129,890 0,08% α2 = 249,930 0,03% β2 = 1290 0,77% α2 = 249,740 0,11% 
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The simulated cases considering the noise effect presented satisfactory results and some fault parameters were 

identified with the same accuracy of the cases in which noise was not considered. Probably one way to improve the 

identification processes is using more rotating frequencies in order to take in account more dynamic effects of the 

rotating system.  

 

3. CONCLUSIONS 

 

An identification method for unbalance and shaft bow parameters estimation was presented for mdof rotor-bearing 

system. This simpler modeling (Gasch and Knothe, 1987), in which the bearing parameters are not considered, provides 

an easier fault parameters identification and provides a good first approach to model rotating systems. This proposed 

method is based on Lyapunov matrix equation and the correlation matrices involving the measured outputs and the filter 

ones. 

One way to improve this methodology is to reduce the number of delay instants and to improve the number of 

rotating frequencies after and below the first critical speed, this way more dynamic effects will be taken in account in 

the identification process. 

Special attention should be given to filter system in such a way that any important information does not be smoothed 

in the range of interest and additional information be generated to become possible the faults identification. 

The estimation results are considered satisfactory and the estimator identifies the fault parameters with accuracy and 

robustness even in the presence of noise and considering the combined unbalance and shaft effects. The next step of this 

work is to validate the described algorithm using experimental data from a test rig, which is presented in the Laboratory 

of Vibrations and Control located in Unicamp.  
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