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Abstract. The development of a mathematical model for a mechanical system is a common task on computational me-
chanics. Through mathematical description and numerical integration, it is possible to make a better understanding of a
system’s behavior.
However, in some cases these models may lead to a system of equations which is not solvable for a wide range of reasons.
One of the most common reasons why this system cannot be solved is because its inertia matrix is singular. One of the
causes of this singularity is the presence of degrees of freedom without inertia, also known as half degrees of freedom.
In this case, many authors have developed works on perturbation theory, or have developed formulations which are used
only on the problem under investigation.
The main disadvantage of the use of the perturbation theory is that, once this problem is unsolvable in the form it is
still presented, the solution brought by this method is a close solution for the problem, but it is not an exact solution.
Furthermore, the eigenproblem for this system is also not exact.
On the other hand, developing a formulation for a specific problem does not allow a widely useful computational imple-
mentation of this method because if the system is slightly modified, this formulation has to be developed all over again.
Considering a system with a considerably large amount of degrees of freedom, the use of this technique is not encouraged.
For this reason, this work brings an outstanding solution for this problem. It shows a powerful formulation, which makes
possible to turn a general singular system, with half degrees of freedom, into a smaller system, represented by fewer state
variables, but this time exactly solvable, without any loss of generality. Besides, even though a system with half degrees
of freedom has improper eigenvalues, the new system brought by this method has exactly the same eigenvalues of the
previous one, except the improper ones.
This method is developed based on the fact that, the equation of motion of a degree of freedom without inertia is actually
a constraint equation, which can be holonomic, in case it is purely algebraic, or nonholonomic otherwise. Both of those
constraints eliminate some state variables from the mathematical description of the mechanical system, what makes of the
transformation shown in this work also a reduction.
One of the advantages of this method is the fact that its formulation is valid for any system, since it has half degrees of
freedom, and this fact makes it possible to be implemented in an easy computer routine.
Furthermore, regarding of FEM software, it is now possible to leave some degrees of freedom, or even nodes, with null
values of inertia, because, after the assembly of the global matrices, if the mass matrix has a null column, it means that
there is a half degree of freedom in the system and the method described in this work can be applied directly to the global
matrices. This means that this technique can be implemented on any commercial software by simply adding a new step
after the assembly of the global matrices. Changes on the other parts of this software are completely needless.
After that, an application of this method on a model a hydroelastic mount of an engine suspension is shown in this work,
in which the model of the polymer in contact with oil leads to the presence of half degrees of freedom. Its eigenproblem is
solved before and after the application of this method, showing that the proper eigenvalues of the system are not affected
by this formulation.
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1. INTRODUCTION

The study of linearized systems is very important as a first step to the investigation of the dynamic behavior of several
mechanical systems. Linear analysis procedures are widely used and generally based on the eigenproblem analysis or
numerical integration. Both of these demand that the system is represented in a state space form.

The most common state space form is shown in Eq. (2), and it requires a nonsingular inertia matrix. There are many
systems which can be represented with inertia matrices with null columns, which is the case of mechanical systems with
half degrees of freedom (i.e. degrees of freedom without inertia). Hence, those systems cannot be represented in the usual
state space form, because the first derivative of the array of state variables with respect to time cannot be isolated.

Although there are numerical integration routines that perform integration on second order systems, and also do
not demand the inversion of the inertia matrix, those routines are not implemented on many platforms, and using the
formulation shown in this work, it is possible to perform the same analyses using first order numerical integrators.
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Furthermore, there are also routines for the solution of the generalized eigenproblem. These demand that the system
is represented in such a state space form that does not require the inversion of the mass matrix. The consequence is that, if
the mass matrix is singular, this routine will return the regular eigenvalues of the system, and also undefined eigenvalues,
represented by the entities NaN (not a number) or ± Inf (positive or negative infinity). The formulation presented in this
work performs such a reduction on the system that those undefined eigenvalues disappear, and the regular ones are not
influenced.

There are other reduction methods, such as the one presented by Guyan (1964), which is widely used on finite elements
dynamic simulations. Nevertheless, the focus of his method is to remove the degrees of freedom at which no forces are
applied. As a consequence, it is shown that the eigenvalues of the system are not preserved.

As an extension of the work described above, Bhat and Bernstein (1996) shew that there is always an orthogonal
transformation matrix that reduces the system with singular mass matrix, although in their work no general method for
system reduction is proposed.

The objective of this work is to present a general formulation for the reduction of systems with null columns in the
inertia matrix, the new state space form in which this system can be represented, and also apply this methodology on
related problems.

2. FORMULATION

A dynamic LTI (Linear time-invariant) system, can be generally represented by inertia, stiffness and damping matrices,
as it is shown in the following equation:

[M ]{ẍ}+ [C]{ẋ}+ [K]{x} = {F (t)} (1)

In this case, the inertia, damping and stiffness matrices are represented by [M ], [C] and [K], respectively. This is a
system of second order differential equations. In many cases, it is necessary to represent it in a state space form. One of
the possible representations for this system, if the mass matrix is not singular, is the standard:{

{ẏ} = [A]{y}+ [B]{u}
{z} = [C]{y}+ [D]{u} (2)

Where:

[A] =

[
[0n×n] [In×n]

−[M ]−1[K] −[M ]−1[C]

]
[B] =

[
[0n×n]
[M ]−1

]
[C] = [I2n×2n]

[D] = [02n×n]

From the theory of linear systems analysis, [A] is called the system matrix, [B] is the input matrix, [C] is the output
matrix and [D] is the feed through matrix. The last two are arbitrary.

However, in some cases, it is possible that the system in study is not only represented by second order differential
equations, but also by first order and sometimes by algebraic equations. If there are only first and second order differential
equations, the mass matrix [M ] is singular. On the other hand, when there are algebraic equations, the matrix [C] is also
singular. This can be verified by the fact that, if there is a first order equation, one of the columns of the matrix [M ] is
null. For algebraic equations, the same is valid for the matrix [C].

Hence it is impossible to represent the system using the state space form proposed above because the mass matrix
is singular. Furthermore, a single state variable is necessary to describe the physical variables which are differentiated
only once. Besides, the algebraic equations show that one of the variables of the system can be calculated from the other
state variables (which means it is a constraint equation), so it needs no state variable to be represented. Consequently, the
presence of differential equations with order lower than two leads to a reduction of the system, when it is written in state
space form.

It is possible to define Ni as the number of second order differential equations, Nc as the number of first order
differential equations, and Nk as the number of algebraic equations. For this reason, the number of equations of this
system is given by N = Ni + Nc + Nk. Consequently, the number of equation of the system in state space form is
Ns = 2Ni +Nc.

Before proposing the methods for the reduction of the system, some definitions must be made in order to simplify the
understanding of further steps.



Proceedings of COBEM 2011
Copyright c© 2011 by ABCM

21st International Congress of Mechanical Engineering
October 24-28, 2011, Natal, RN, Brazil

[I] ≡ Identity matrix.
[Ic] ≡ Diagonal matrix with ones only in the positions where there is a first order differential equation in the system

of equations of motion .The other terms are null.
[Ik] ≡ Diagonal matrix with ones only in the positions where there is an algebraic equation in the system of equations

of motion. The other terms are null.
[Ji] ≡ Rectangular matrix N ×Ni with the non-null columns of the matrix [I]− [Ic]− [Ik].
[Jc] ≡ Rectangular matrix N ×Nc with the non-null columns of the matrix [Ic].
[Jk] ≡ Rectangular matrix N ×Nk with the non-null columns of the matrix [Ik].
{x} ≡ Physical coordinates array.
{Ix} ≡ Array containing only the physical coordinates which were differentiated twice with respect to time.
{Cx} ≡ Array containing only the physical coordinates which were differentiated once with respect to time.
{Kx} ≡ Array containing only the physical coordinates which were not differentiated with respect to time.

With the definitions above, it is now possible to propose the system reduction for the new state space representation.
However, the reduction will be derived for three cases: systems with only first and second order differential equations,
systems with only algebraic and second order differential equations and finally systems with both of the three kinds of
equations.

2.1 Systems with 1st and 2nd order differential equations

In this case, a system with first and second order differential equations will be considered. For this reason, it is
expected that one or more of the columns of the mass matrix is null, because some of the physical variables that were
differentiated twice will never be used in this set of equations. Furthermore, if there are first order differential equations
in this system, it is expected that one or more columns of the mass matrix are also null. Those facts make of the matrix
[M ] a singular matrix.

Making use of the transformation matrices Ji and Jc, and the matrix Ic, it is possible to write the following equalities:

([I]− [Ic]){x} = [Ji]{Ix} (3)
[Ic]{x} = [Jc]{Cx} (4)

The array of physical coordinates {x} is composed by the arrays {Ix} and {Cx} as it can be seen in Eqs. (3) and (4):

{x} = ([I]− [Ic]){x}+ [Ic]{x} = [Ji]{Ix}+ [Jc]{Cx} (5)

Concerning the null columns of the mass matrix, the following equality is held:

[M ]{ẍ} = [M ]([I]− [Ic]){ẍ} = [M ][Ji]{I ẍ} (6)

The array {Ix} contains all the physical coordinates that were differentiated twice with respect to time, so {I ẍ} exists.
It is known that, in this system, all the physical variables are differentiated at least once. Hence, the array {ẋ} can be

written by simply differentiating the Eq. (5) with respect to time, as it follows:

{ẋ} = [Ji]{I ẋ}+ [Jc]{C ẋ} (7)

Replacing Eqs. (5), (6) and (7) on Eq. (2.) leads to:

[M ][Ji]{I ẍ}+ [C][Ji]{I ẋ}+ [C][Jc]{C ẋ}+ [K][Ji]{Ix}+ [K][Jc]{Cx} = {F (t)} (8)

It is important to notice that left multiplying the Eq. (8) by [Ji]
T means selecting all the second order differential

equations, while left multiplying the Eq. (8) by [Jc]
T means selecting all the first order differential equations. The array

{C ẋ} cannot be considered part of the new array of state variables, because differentiating this array would lead to an
array that would contain {C ẍ}, which does not exist.

Left multiplying the Eq. (8) by [Jc]
T , makes possible to isolate the term {C ẋ} as:

{C ẋ} =
(
[Jc]

T [C][Jc]
)−1

[Jc]
T
(
{F (t)} − [C][Ji]{I ẋ} − [K][Ji]{Ix} − [K][Jc]{Cx} − [M ][Ji]{I ẍ}

)
(9)

Now, left multiplying the Eq. (8) by [Ji]
T (i.e. selecting all the second order differential equations) makes possible to

derive an expression for {I ẍ}:

{I ẍ} =
(
[Ji]

T [M ][Ji]
)−1

[Ji]
T
(
{F (t)} − [C][Ji]{I ẋ} − [C][Jc]{C ẋ} − [K][Ji]{Ix} − [K][Jc]{Cx}

)
(10)
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Notice that {I ẍ} still depends on {C ẋ} and vice versa. Making use of the Eqs. (9) and (10) the following expressions
are derived:

{I ẍ} = [γ]({F (t)} − [C][Ji]{I ẋ} − [K][Ji]{Ix} − [K][Jc]{Cx}) (11)
{C ẋ} = [α]({F (t)} − [C][Ji]{I ẋ} − [K][Ji]{Ix} − [K][Jc]{Cx}) (12)

where:

[γ] =
(
[Ji]

T
(
[I]− [C][Jc]

(
[Jc]

T [C][Jc]
)−1

[Jc]
T
)
[M ][Ji]

)−1

[Ji]
T
(
[I]− [C][Jc]

(
[Jc]

T [C][Jc]
)−1

[Jc]
T
)

[α] =
(
[Jc]

T [C][Jc]
)−1

[Jc]
T ([I]− [M ][Ji][γ])

Finally, using the Eqs. (11) and (12), and the equality {I ẋ} = {I ẋ} this system can be represented in the form shown
in Eq. (2), where the matrices [A] and [B] are given by:

[A]Ns×Ns =

 [0]Ni×Ni [0]Ni×Nc [I]Ni×Ni

−[α][K][Ji] −[α][K][Jc] −[α][C][Ji]
−[γ][K][Ji] −[γ][K][Jc] −[γ][C][Ji]


[B]Ns×N =

 [0]Ni×N

[α]
[γ]


since the array of state variables is given by:

{y} =

 {Ix}
{Cx}
{I ẋ}


2.2 Systems with algebraic and 2nd order differential equations

In this situation a system with algebraic and second order differential equations will be considered. Notice that the
following formulation also stands for conservative systems with singular mass matrices.

Concerning this system, the number of first order differential equations is zero. This means that the matrices [Ic] and
[Jc] are empty. Consequently, the array of physical coordinates {x} is only composed by {Ix} and {Kx}. For this reason,
the following equality holds for this case:

{x} = ([I]− [Ik]){x}+ [Ik]{x} = [Ji]{Ix}+ [Jk]{Kx} (13)

Now, concerning the null columns of the mass and damping matrices, the following relations are also held:

[M ]{ẍ} = [M ]([I]− [Ik]){ẍ} = [M ][Ji]{I ẍ} (14)
[C]{ẋ} = [C]([I]− [Ik]){ẋ} = [C][Ji]{I ẋ} (15)

Replacing the terms from Eqs. (13), (14) and (15) in Eq. (2.), it follows that:

[M ][Ji]{I ẍ}+ [C][Ji]{I ẋ}+ [K][Ji]{Ix}+ [K][Jk]{Kx} = {F (t)} (16)

In this case it is known that the physical variables in {Kx} are represented by a linear combination of other state
variables which already represent the physical variables in {Ix}. In this case, it is necessary to derive an expression for
{Kx}, and this is made by simply selecting the algebraic equations from the system (i.e. left multiplying the equation
(16) by [Jk]

T ). Then, it follows that:

{Kx} =
(
[Jk]

T [K][Jk]
)−1

[Jk]
T ({F (t)} − [C][Ji]{I ẋ} − [K][Ji]{Ix} − [M ][Ji]{I ẍ}) (17)

And also, it is necessary to derive the expression for {I ẍ}, which is made by left multiplying the Eq. (16) by [Ji]
T .

Then:
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{I ẍ} =
(
[Ji]

T [M ][Ji]
)−1

[Ji]
T ({F (t)} − [C][Ji]{I ẋ} − [K][Ji]{Ix} − [K][Jk]{Kx}) (18)

Notice that {I ẍ} still depends on {Kx}. Replacing the array {Kx} in the Eq. (18) by the expression given by the Eq.
(17), the expression for {I ẍ} becomes:

{I ẍ} = [γ]({F (t)} − [C][Ji]{I ẋ} − [K][Ji]{Ix}) (19)

where:

[γ] =
(
[Ji]

T
(
[I]− [K][Jk]

(
[Jk]

T [K][Jk]
)−1

[Jk]
T
)
[M ][Ji]

)−1

[Ji]
T
(
[I]− [K][Jk]

(
[Jk]

T [K][Jk]
)−1

[Jk]
T
)

(20)

Finally, making use of the Eq. (20) and the equality {I ẋ} = {I ẋ} it is possible to represent this system in the form
shown in Eq. (2), where the matrices A and B are given by:

[A]Ns×Ns =

[
[0]Ni×Ni

[I]Ni×Ni

−[γ][K][Ji] −[γ][C][Ji]

]
[B]Ns×N =

[
[0]Ni×Ni

[γ]

]
2.3 Systems with algebraic, 1st order and 2nd order differential equations

In this case, a general system of equations will be considered, in which there are, from second order differential
equations to algebraic equations. Hence, both of the matrices [Ic], [Ik], [Ji], [Jc] and [Jk] exist, and it is possible to define
that:

[Ji]{Ix} = ([I]− [Ic]− [Ik]){x} (21)
[Jc]{Cx} = [Ic]{x} (22)
[Jk]{Kx} = [Ik]{x} (23)

Adding the three equations above, it follows that:

{x} = ([I]− [Ic]− [Ik]){x}+ [Ic]{x}+ [Ik]{x}
= [Ji]{Ix}+ [Jc]{Cx}+ [Jk]{Kx} (24)

Concerning the null columns in the mass matrix it is possible to write that:

[M ]{ẍ} = [M ]([I]− [Ic]− [Ik]){ẍ} = [M ][Ji]{I ẍ} (25)

Now, concerning the null columns in the damping matrix, the following equality is written:

[C]{ẋ} = [C]([I]− [Ik]){ẋ}
= [C]([I]− [Ic]− [Ik]){ẋ}+ [Ic]{ẋ}
= [C][Ji]{I ẋ}+ [C][Jc]{C ẋ} (26)

Then, replacing the Eqs. (24), (25) and (26) in Eq. (2.) it is possible to find that:

[M ][Ji]{I ẍ}+ [C][Ji]{I ẋ}+ [C][Jc]{C ẋ}+ [K][Ji]{Ix}+ [K][Jc]{Cx}+ [K][Jk]{Kx} = {F (t)} (27)

First, it is necessary to find an expression for {Kx}, because these variables are calculated as a linear combination of
the states used to represent the response of the variables in {Ix}, {Cx} and {I ẋ}. This can be done by left multiplying
the Eq. (27) by [Jk]

T . In this case, the expression for {Kx} is:

{Kx} =
(
[Jk]

T [K][Jk]
)−1

[Jk]
T ({F (t)}−[K][Ji]{Ix}−[K][Jc]{Cx}−[C][Ji]{I ẋ}−[C][Jc]{C ẋ}−[M ][Ji]{I ẍ})(28)
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In this case, the array of state space variables is given by:

{y} =

 {Ix}
{Cx}
{I ẋ}


As the system must be represented in the state space form shown in Eq. (2), and the equality {I ẋ} = {I ẋ} still holds

for this case, {Kx} should be eliminated from the equations. It is now necessary to find expressions to calculate {C ẋ}
and {I ẍ}. The expression for {C ẋ} can be derived by left multiplying the Eq. (27) by [Jc]

T . Performing this step, and
replacing the term {Kx} by the term given by Eq. (28) it is possible to write:

{C ẋ} = [δ]({F (t)} − [M ][Ji]{I ẍ} − [C][Ji]{I ẋ} − [K][Ji]{Ix} − [K][Jc]{Cx}) (29)

where:

[δ] =
(
[Jc]

T
(
[I]− [K][Jk]

(
[Jk]

T [K][Jk]
)−1

[Jk]
T
)
[C][Jc]

)−1

[Jc]
T
(
[I]− [K][Jk]

(
[Jk]

T [K][Jk]
)−1

[Jk]
T
)

Now, replacing Eq. (29) on Eq. (28) it follows that:

{K ẋ} = [β]({F (t)} − [M ][Ji]{I ẍ} − [C][Ji]{I ẋ} − [K][Ji]{Ix} − [K][Jc]{Cx}) (30)

where:

[β] =
(
[Jk]

T [K][Jk]
)−1

[Jk]
T ([I]− [C][Jc][δ])

Notice that {C ẋ} still depends on {I ẍ}. The expression for this term can be derived. by simply left multiplying the
Eq. (27) by [Ji]

T and replacing the terms found on Eqs. (29) and (30) as it is shown below:

{I ẍ} = [γ]({F (t)} − [C][Ji]{I ẋ} − [K][Ji]{Ix} − [K][Jc]{Cx}) (31)

where:

[γ] =
(
[Ji]

T ([I]− [C][Jc][δ]− [K][Jk][β])[M ][Ji]
)−1

[Ji]
T ([I]− [C][Jc][δ]− [K][Jk][β])

Finally, replacing the term {I ẍ} in Eq. (29) by the term found in Eq. (31), it is written that:

{C ẋ} = [α]({F (t)} − [C][Ji]{I ẋ} − [K][Ji]{Ix} − [K][Jc]{Cx}) (32)

where:

[α] = [δ]([I]− [M ][Ji][γ])

Consequently, using the Eqs. (31) and (32) and the equality {I ẋ} = {I ẋ} it is possible to represent this system in the
form shown in Eq. (2), where the matrices [A] and [B] are given by:

[A]Ns×Ns
=

 [0]Ni×Ni
[0]Ni×Nc

[I]Ni×Ni

−[α][K][Ji] −[α][K][Jc] −[α][C][Ji]
−[γ][K][Ji] −[γ][K][Jc] −[γ][C][Ji]


[B]Ns×N =

 [0]Ni×N

[α]
[γ]


and the array of state variables is given by:

{y} =

 {Ix}
{Cx}
{I ẋ}


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3. APPLICATION

This procedure can be applied to any mathematical model with half degrees of freedom. A model of a hydroelastic
mount of an engine suspension is shown in the book of Morello et al. (2011). A cross section of this mount is shown on
Fig. 1. In this illustration, (a) is the primary rubber, (b) is the set of holes through which the fluid laminates from the
first to the second chamber, (c) is the secondary rubber, which pulls the oil back to the first chamber, and (d) is the lower
chamber, which is filled with air. This air can escape through the large holes of the lower steel case.

Figure 1. Cross section of the hydroelastic engine mount.

This mount can be idealized as the model shown in Fig. 2. In this case, Kr represents the stiffness of the primary
rubber, while Crs and Krs represent its viscoelastic behavior in a simplified approach. The stiffness Kv represents the
volumetric stiffness of the oil, Ch is the damping coefficient due to the lamination of the oil passing through the holes and
Ks is the stiffness of the secondary rubber. The variables y, y1 and y2 represent respectively the vertical displacements of
the upper part of the cushion, the node between the damper Crs and the spring Krs, and the node between the spring Kv

and the parallel spring damping mount represented by Ch and Ks.

Figure 2. Simplified model of the hydroelastic engine mount.

In order to test the formulation presented in this work a mass m is added to the top of this cushion, and this model is
studied. The equations of motion for this problem are shown in matricial form: m 0 0

0 0 0
0 0 0

 ÿ
ÿ1
ÿ2

+

 Crs −Crs 0
−Crs Crs 0
0 0 Ch

 ẏ
ẏ1
ẏ2

+

 Kr +Kv 0 −Kv

0 Krs 0
−Kv 0 Kv +Ks

 y
y1
y2

 =

 0
0
0

(33)

Through these matrices, it is possible to see that there are only first and second order differential equations, and for
this reason the formulations derived in section 2.1. The following data were used for this simulation:

m = 20kg
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Kr = 5000N/m
Krs = 1000N/m
Kv = 500N/m
Ks = 500N/m
Crs = 100N.s/m
Ch = 300N.s/m

The matrices [M ], [C] and [K] are respectively:

[M ] =

 20 0 0
0 0 0
0 0 0

 ; [C] =

 100 −100 0
−100 100 0
0 0 300

 ; [K] =

 5500 0 −500
0 1000 0
−500 0 1000

 ;

Using the formulation, the matrices [Ji], [Jc], [α] and [γ] become:

[Ji] =

 1
0
0

 ; [Jc] =

 0 0
1 0
0 1

 ; [α] =

[
0 1

100 0
0 0 1

300

]
; [γ] =

[
1
20

1
20 0

]
And then the matrices [A] and [B] are calculated:

[A] =


0 0 0 1
0 −10 0 1
5
3 0 −1

300 0
−275 −50 25 0

 ; [B] =


0 0 0
0 1

100 0
0 0 1

300
1
20

1
20 0


Using the matrices [M ], [C] and [K], the eigenvalues of the original system are obtained using the generalized eigen-

problem formulation, through the routine eig() in Matlab 7.1r environment,the results were −0.6897 ± 17.7059,
−8.7797, −3.1742 and two NaN.

Now, using the matrix [A], which was obtained through the formulation presented in this work, it is possible to obtain
the eigenvalues of this system by simply calculating the eigenvalues of [A]. Using the function eig() from Matlab 7.1r,
the results are −0.6897± 17.7059,−8.7797 and −3.1742.

Notice that the eigenvalues NaN disappeared, while the other ones remained constant. The difference between the
eigenvalues calculated in both ways is smaller than 10−13, so, they are considered to be equal. This proves that, although
the system is represented in a mathematically different way, its physical behavior is not warped through the use of this
formulation.

4. CONCLUSION

The technique presented in this work can be applied in systems with algebraic, first order and/or second order differ-
ential equations without changing its physical behavior. Besides, this method can be easily adapted for nonlinear systems.
The only changes will be on the criteria for the assembly of the matrices [Ic] and [Ik]. It was applied successfully to the
model of the hydroelastic cushion, and made it possible to find the system’s eigenvalues without NaNs and also to inte-
grate it numerically using first order integrators such as Runge-Kutta’s. Moreover, it can be implemented on any software
without changing its current routines for the assembly of the global matrices, once it is applied after this process.

5. ACKNOWLEDGEMENTS

The authors thank ZF Sachs do Brasil for the financial support.

6. REFERENCES

Bhat, S.P. and Bernstein, D.S., 1996. “Second-order systems with singular mass matrix and an extension of guyan
reduction”. SIAM J. – Matrix Analysis and Applications, Vol. 17, No. 3, pp. 649–657.

Guyan, R.J., 1964. “Reduction of stiffness and mass matrices”. AIAA Journal, Vol. 3, No. 2, p. 380.
Morello, L., Rossini, L.R., Pia, G. and Tonoli, A., 2011. The Automotive Body. Volume II: System Design. Ed. Springer,

New York, United States of America.

7. Responsibility notice

The authors are the only responsible for the printed material included in this paper.


