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Abstract. In this paper the Generalized Integral Transform Technique is employed to produce hybrid solutions for the 
velocity and pressure fields of a newtonian fluid in two dimensional flow. The problem is formulated by using primitive 
variables and the necessary mathematical manipulations were used to obtain the Poisson equation for the pressure 
field. The momentum equations in the axial direction of flow and Poisson are transformed to remove the transversal 
dependency. The resulting transformed fields are solved with the IMSL numerical subroutine, DBVPFD. The obtained 
results for the longitudinal velocity profile at the center of the channel are compared with the available data in the 
open literature for validation and model fitting. Even so, studies are carried out about the convergence of the solution 
for the velocity profile in the centerline as well as testing different values of the scale factor of axial coordinate for the 
choice of a factor which can fit perfectly for comparison with available data. Interest practical datas such as: friction 
factor and mean velocity are obtained along the duct for a entry condition into the parallel flow channel (v = 0). 
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1. INTRODUCTION  
 

The analysis of the flows is of fundamental importance in our lives and in a lot of various areas of engineering, and 
this refers on the knowledge of the exact sciences and nature, such as mathematics, physics and mechanical 
engineering, for the preparation of models to be submitted to simulations and tests. The derivation and mathematical 
development enables the deployment, simplified solutions and physical interpretations and conclusions. The Navier-
Stokes equations has been widely used in mathematical modeling for many phenomena in fluid mechanics. 

Using the Navier-Stokes and Poisson we can understand the physical phenomena and relate them to our everyday 
life. Therefore, we propose in this study develop a solution to the Navier-Stokes problem of hydrodynamics, a two-
dimensional laminar flow of a newtonian fluid in circular duct with a formulation in primitive variables, with profiles of 
uniform velocity and pressure in the entrance. 

Even with the large number of previous studies on flow analysis, the theme is still attracting interest from 
researchers primarily in the hydrodynamic entrance region where viscous effects are more pronounced. The entrance 
region requires more complex analysis represented by robust formulations with greater mathematical difficulties 
associated with obtaining the velocity fields and pressure. 

The knowledge of the pressure field along the flow can help to monitor and control over the flow of fluids. An 
application example is the oil and gas, preventing and reducing environmental damage. 

Over the years, we can observe the developmentof studies involving laminar flows of fluids in the solution of the 
Navier – Stokes or Boundary Layer, the first numerical methods are: Wang and LongwelL (1964), Friedmann et al 
(1968) and McDonald et al (1972) and applying the Generalized Integral Transform Technique (GITT) and the stream 
function formulation are: Paz et al (2007), Silva et al (2009), Silva et al (2004), Pereira et al (1998) among many others, 
and with the formulation in primitive variables, which is the formulation under study is still small, ie, there is little work 
in this area, we can cite Lima (2002), Lima et al (2006), and Veronese (2008). 

The Generalized Integral Transform Technique (GITT) arose more than two decades standing out as a powerful 
tool that allows the solution of the complex problems with the work of Özisik & Murray (1984) from the ideas of 
Integral Transform Technique Classical, Mikhailov & Özisik (1974). The G.I.T.T. provides hybrid numerical-analytical 
solutions for problems of diffusion and convection-diffusion integral transformation which results in systems of 
ordinary differential equations coupled. Since then the application of G.I.T.T. has solved problems in more general 
classes, both linear and nonlinear. The most detailed and comprehensive study on G.I.T.T. was done by Cotta (1993). 

The main idea is to transform a system of partial differential equations in an original infinite system of ordinary 
differential equations by expanding in eigenfunctions, which is truncated to a number of terms required for 
convergence. The solution is obtained analytically for problems that can be transformed into decoupled systems that can 
be resolved simply, or numerically for more complex problems. 

This study aims to initially extend the application of the Generalized Integral Transform Technique (GITT) in the 
solution in terms of primitive variables of the Navier-Stokes equations for two-dimensional problem of flow in circular 
ducts with a newtonian fluid inside, taking into account the velocity and pressure with the Poisson equation. 
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2. THE PROBLEM  
 

The physical model mathematical is the development of the use of a two-dimensional laminar flow of an 
incompressible newtonian fluid in a circular duct, shown in fig. 1 to solve the hydrodynamic problem is necessary to 
consider the following hypothesis: the effects of viscous dissipation are neglected, constant physical properties, 
impermeability and no-slip walls of the duct and steady, the longitudinal velocity (u) and transverse velocity (v). 

. 

 
Figure 1. Defining the proposed problem. 

 
3. MATHEMATICAL FORMULATION 
 

The flow in a circular duct shown in fig. 1, is an application of the solution of the Navier-Stokes equation is a 
nonlinear partial differential 2nd order and formulated in primitive variables, whose general equations governing this 
problem are listed below: 
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Equation of Conservation of momentum in the y direction: 
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The Poisson equation is determined from the mathematical manipulations in the equations of momentum in the 

directions x and y. Be µ is the dynamic viscosity newtonian and ρ is the density. These equations appear in the analysis 
of problems in physics, in engineering and chemistry. 
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For the construction of the problem solution is applied the Generalized Integral Transform Technique (GITT) to 

provide a hybrid solution, ie, an analytical-numerical solution of the equations of conservation of momentum in the x 
and y directions of the Poisson equation, with knowledge of the velocity fields, pressure along the channel examined. 
And the soft computing will be appropriate if the FORTRAN and in particular the DPVPFD subroutine of IMSL. 

 
Initial and boundary conditions:  
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The dimensionless groups used: 
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Being the Reynolds number defined based on the velocity of the duct entrance. 

νµ
ρ bubu 00Re == ,   being 

ρ
µν =   (7 a-b) 

 
Application of dimensionless groups in the above equations has been the system of dimensionless equations in the 
domain 0 < y < 1 and x > 0: 
 
Continuity Equation:         0
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Equation of Conservation of momentum in the X direction: 
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Equation of Conservation of momentum in the Y direction: 
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Poisson Equation: 
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The initial and boundary conditions become: 
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To properly implement GITT and improve computational performance, ie improving the convergence, it is 

necessary to make a homogenization in the boundary conditions in the chosen direction by using filters which means 
the separation of potential as velocity, velocity field development , which is a function of X and Y, and fully developed 
velocity field, which is only a function of Y. 
 
Filter for the velocity field: 
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∗ += ,, ,   where:                         (10 a) 

( )YXU ,∗ : is the filtered developing velocity profile to be evaluated; 
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Filter to the pressure field: 

( ) ( ) ( )YXPYXPYXP F ,,, += ∗ ,  where:                                                            (10 c) 

( )YXP ,∗ : the potential pressure field development; 

( )YXPF , :  the filter that satisfies the equation of conservation of momentum in the y direction in the duct wall, ie when 

y = 1 and has analytical solution given by: 
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Replacing the filters in the velocity and pressure in the above equations is obtained: 
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Equation of Conservation of momentum in the Y direction: 
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Poisson Equation: 
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The initial conditions and boundary after filtering becomes: 
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4 - APPLICATION OF GENERALIZED INTEGRAL TRANSFORM T ECHNIQUE (GITT) 

 
Determination of the Eigenvalue Problems 
 
4.1 - Auxiliary Problem for the Velocity Field:  
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Boundary conditions for the problem: 
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The auxiliary problem for the velocity field and pressure is a problem of Sturm-Liouville and has analytical solution 
given by OZISIK, (1993). 
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The eigenvalues, si 'µ , are the roots of transcendental equations: 
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4.2 - Auxiliary Problem for the Field Pressure: 
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The eigenvalues, si 'β , are the roots of transcendental equations above: 
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The eigenfunctions, iψ , have the following orthogonality property for the pressure: 
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4.3 - Determination of the Inverse-Transform Pairs 
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5 - INTEGRAL TRANSFORMATION SYSTEM OF EQUATIONS 
 

The process of integral transformation of the system of partial differential equations formed by equations of 
momentum in x direction and Poisson in an ordinary differential system is derived using the following operators. 

First apply the operator ∫
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dYYY iφ  in Eq. (11 b), then applies the property of orthogonality Eq. (13 h), the 

formulas of the inverse Eq. (15 b) and Eq. (16 b), the transverse velocity Eq. (17 c) and the auxiliary problem for the 
field velocity Eq. (13 a), then: 
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the pressure field Eq. (14 a), thus: 
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The equation written in matrix form is:     ( ) ( )













+= ∑

∞

=

−

1

1
2

2

2

1
.

m

mimimat
n

AGGP
dX

XPd        ( 2 0 )  

 
Where the coefficients of equations (18) and (20) are: 
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Applying the integral transform in the initial and boundary conditions: 
 
Velocity:  
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Pressure:  
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6. RESULTS AND DISCUSSION 
 

The program developed for solving the system of ordinary differential equations with the transformed potential was 
built in Fortran language and implemented on a micro computer with Pentium Dual-Core 1.87 GHz with 2 GB of RAM 
and run on Windows Vista. The code is focused on the use of the IMSL Library subroutine through DBVPFD, tolerance 
used was 10-4, to determine the error in the automatic evaluation of velocity fields and pressure. The tables represent 
the convergence of the longitudinal velocity at the center of the channel (Y = 0) and average velocity for circular ducts 
with the same Reynolds number and different values of the contraction of scale. 
 
Table 1 - Convergence of longitudinal velocity at the center of the channel U (X, 0) for Re = 20, entry conditions and U 
= 1, V = 0. Shrinkage factor of scale: C = 1,2 and y00 = 0,2. 

N/x 0,1000 0,2500 0,3000 0,5000 0,7000 0,7500 1,0000 
10 0,9644 1,0065 1,0264 1,1136 1,2071 1,2343 1,4130 
20 0,9710 1,0283 1,0535 1,1547 1,2594 1,2902 1,5035 
30 0,9679 1,0281 1,0526 1,1431 1,2186 1,2376 1,3553 
32 0,9777 1,0479 1,0763 1,1868 1,2990 1,3321 1,5696 
40 0,9819 1,0582 1,0881 1,2034 1,3205 1,3552 1,6101 
50 0,9865 1,0684 1,0996 1,2193 1,3402 1,3761 1,6452 

50/ Eik = 0 1,0144 1,0858 1,1097 1,2092 1,3384 1,3811 1,7180 
 
Tabela 2 – Convergence of longitudinal pressure at the center of the channel U (X, 0) for Re = 20, entry conditions and 
U = 1, V = 0. Shrinkage factor of scale: C = 1,2 and y00 = 0,2. 

N/x 0,1000 0,2500 0,3000 0,5000 0,7000 0,7500 1,0000 
10 0,1486 0,1495 0,1499 0,1499 0,1489 0,1480 0,1468 
20 0,3682 0,3651 0,3606 0,3552 0,3344 0,3183 0,3015 
30 0,5573 0,5459 0,5306 0,5126 0,4715 0,4499 0,4282 
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32 0,5899 0,5876 0,5850 0,5822 0,5726 0,5653 0,5574 
40 0,7260 0,7143 0,7001 0,6841 0,6414 0,6151 0,5882 
50 0,8902 0,8735 0,8540 0,8323 0,7844 0,7527 0,7203 

50/ Eik = 0 0,8756 0,8580 0,8376 0,8150 0,7656 0,7330 0,6998 
 
Table 3 - Convergence of the average velocity in the center of of the channel Uc/Um for circular duct with Re = 20, entry 
conditions and U = 1, V = 0. Shrinkage factor of scale: C = 1,2 and y00 = 0,2. 

N/x 0,1000 0,2500 0,3000 0,5000 0,7000 0,7500 1,0000 
10 1,0004 1,0568 1,0818 1,1855 1,2892 1,3182 1,5035 
20 1,0072 1,0785 1,1087 1,2264 1,3409 1,3734 1,5935 
30 1,0034 1,0770 1,1064 1,2130 1,2980 1,3184 1,4408 
32 1,0135 1,0977 1,1310 1,2580 1,3801 1,4149 1,6594 
40 1,0175 1,1077 1,1064 1,2130 1,2980 1,3184 1,6999 
50 1,0218 1,1175 1,1537 1,2899 1,4205 1,4581 1,7349 

50/ Eik = 0 1,0504 1,1355 1,1642 1,2793 1,4185 1,4631 1,8095 
 
Table 4 - Convergence of longitudinal velocity at the center of the channel U (X, 0) for a newtonian fluid flowing in a 
circular duct. Re = 20 and C = 1.2, entry conditions and U = 1 V = 0. 
Re/x Referências .1000 .2500 .3000 .5000 .7000 .7500 
20 Presente Trabalho 0,9819 1,0582 1,0881 1,2034 1,3205 1,3552 
40* SILVA et al. (2009) 1,0170 1,0570 1,0770 1,1800 1,3000 1,3300 
40* FRIEDMANN (1968) 1,0080 1,0484 1,0740 1,1738 1,3100 1,3263 
* Reh = 2Re 
 
 
 

Average Velocity - Um

0,940

0,945

0,950

0,955

0,960

0,965
0,970

0 0,2 0,4 0,6 0,8 1 1,2

X

U
m

 
 

Figure 2 - Average Velocity of development along the axial position for Re = 20 and NU = NP = 50 
 

Tables 1 e 2 represent the convergence of velocity and pressure longitudinal center of the channel (Y = 0), Tab. 3 
represent the relationship between velocity and average velocity in the center Uc/Um for circular ducts with the same 
Reynolds number and different values of the contraction of scale. 

Table 4 shows that the results show good agreement and compared with literature data provided by Silva et al 
(2009a) and Friedman (1968a). The formulation was used in the cited references and the current function of this work is 
primitive variables for 40 terms. 

Figure 2 shows the behavior of the average velocity at different axial positoins with reynolds number equal to 20 
and using 50 terms, watching a small fluctuation and the results indicate that the calues are very close. 

 
7. CONCLUSIONS 

 
The results obtained in solving the Navier-Stokes equations in terms of primitive variables, with entry conditions U 

= 1, V = 0 and P = P0, it appears that at the beginning of the channel values are lower than those of the reference but 
then the results are very close in terms of stream function formulation of reference works. 

In our study we used filters that were crucial for both the velocity and pressure, as well as homogenize the 
boundary conditions also accelerates the convergence. 

We conclude that the Generalized Integral Transform Technique (GITT) used for analysis in a circular duct of the 
laminar flow of newtonian fluid was considered satisfactory with a good agreement with data available in literature. 
Using the formulation in primitive variables for the solution of the Navier-Stokes and Poisson showed that the 
mathematical model is very complicated which has hampered its computational implementation. The subroutine of the 
IMSL Library DBVPFD was used to solve the system of equations and obtained results consistent with the references. 
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