Proceedings of COBEM 2011 21* Brazilian Congress of Mechanical Engineering
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil

ANALYSIS OF THE NAVIER-STOKES EQUATIONS IN TWO-DIME NSIONAL FLOW
WITH PRIMITIVE VARIABLES FORMULATION VIA GITT

Juanice Helena de Andradejuaniceandrade@yahoo.com.bt

Carlos Antonio Cabral dos Santoscarloscabralsantos@yahoo.com.Br
Antonio Wilton Aratjo Cavalcante, awilton _br2000@yahoo.com.bt
Marcio Andrade Rocha, rochandrademarcio@bol.com.br

'Graduate in Mechanical Engineering, LES — Technpl®enter, Federal University of Paraiba — UFPB, Jéssoa — Paraiba -
Brazil
2Instituto Federal da Bahia — Campus Simdes Filho -iaBaBrazil

Abstract. In this paper the Generalized Integral Transforacthnique is employed to produce hybrid solutiongte

velocity and pressure fields of a newtonian fluidwo dimensional flow. The problem is formulatgdubing primitive
variables and the necessary mathematical manimatiwere used to obtain the Poisson equation ferpitessure
field. The momentum equations in the axial directid flow and Poisson are transformed to removetthesversal
dependency. The resulting transformed fields aheeslowith the IMSL numerical subroutine, DBVPFDeTdbtained
results for the longitudinal velocity profile atetcenter of the channel are compared with the abdl data in the
open literature for validation and model fittingv&n so, studies are carried out about the convargeri the solution
for the velocity profile in the centerline as wadl testing different values of the scale factoaaél coordinate for the
choice of a factor which can fit perfectly for caamigon with available data. Interest practical datauch as: friction
factor and mean velocity are obtained along thetdoica entry condition into the parallel flow chiagl (v = 0).
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1. INTRODUCTION

The analysis of the flows is of fundamental impocgin our lives and in a lot of various areasrgfieeering, and
this refers on the knowledge of the exact scienmed nature, such as mathematics, physics and mnieahan
engineering, for the preparation of models to benstied to simulations and tests. The derivatiod arathematical
development enables the deployment, simplifiedteia and physical interpretations and conclusidise Navier-
Stokes equations has been widely used in matheshatmdeling for many phenomena in fluid mechanics.

Using the Navier-Stokes and Poisson we can undaetdtee physical phenomena and relate them to cenyday
life. Therefore, we propose in this study develogotution to the Navier-Stokes problem of hydrodyiws, a two-
dimensional laminar flow of a newtonian fluid imailar duct with a formulation in primitive varias, with profiles of
uniform velocity and pressure in the entrance.

Even with the large number of previous studies lowv fanalysis, the theme is still attracting intéré&sm
researchers primarily in the hydrodynamic entrareggon where viscous effects are more pronouncée. éntrance
region requires more complex analysis represeniedobust formulations with greater mathematicalficlifities
associated with obtaining the velocity fields amessure.

The knowledge of the pressure field along the flam help to monitor and control over the flow afidls. An
application example is the oil and gas, prevengind reducing environmental damage.

Over the years, we can observe the developmenitdfest involving laminar flows of fluids in the stilen of the
Navier — Stokes or Boundary Layer, the first nuesrimethods are: Wang and LongwellL (1964), Friedmanal
(1968) and McDonald et al (1972) and applying tlen&alized Integral Transform Technique (GITT) #mal stream
function formulation are: Paz et al (2007), Siltale(2009), Silva et al (2004), Pereira et al @98mong many others,
and with the formulation in primitive variables, ivh is the formulation under study is still smadl, there is little work
in this area, we can cite Lima (2002), Lima et24lq6), and Veronese (2008).

The Generalized Integral Transform Technique (Glafigse more than two decades standing out as arfubwe
tool that allows the solution of the complex prabs&ewith the work of Ozisik & Murray (1984) from tlideas of
Integral Transform Technique Classical, MikhailowCkisik (1974). The G.I.T.T. provides hybrid nuncatianalytical
solutions for problems of diffusion and convectidiffusion integral transformation which results systems of
ordinary differential equations coupled. Since tlkea application of G.I.T.T. has solved problemsrore general
classes, both linear and nonlinear. The most @etaihd comprehensive study on G.I.T.T. was don@dita (1993).

The main idea is to transform a system of partifiti@ntial equations in an original infinite systeof ordinary
differential equations by expanding in eigenfunesio which is truncated to a number of terms requifer
convergence. The solution is obtained analyticaltyproblems that can be transformed into decougiestems that can
be resolved simply, or numerically for more comppesblems.

This study aims to initially extend the applicatiohthe Generalized Integral Transform Techniquél G in the
solution in terms of primitive variables of the NeewwStokes equations for two-dimensional problenflaf in circular
ducts with a newtonian fluid inside, taking intacaant the velocity and pressure with the Poissamaton.



Proceedings of COBEM 2011 21* Brazilian Congress of Mechanical Engineering
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil

2. THE PROBLEM

The physical model mathematical is the developrmainthe use of a two-dimensional laminar flow of an
incompressible newtonian fluid in a circular dugttown in fig. 1 to solve the hydrodynamic problesmecessary to
consider the following hypothesis: the effects édcous dissipation are neglected, constant phygicaperties,
impermeability and no-slip walls of the duct aneesty, the longitudinal velocity (u) and transverskcity (v).

wixh) =vixhl =0

b i
% (0y) =u, - : : v

Figure 1. Defining the proposed problem.

3. MATHEMATICAL FORMULATION

The flow in a circular duct shown in fig. 1, is application of the solution of the Navier-Stokesi&tipn is a
nonlinear partial differential 2nd order and forateld in primitive variables, whose general equatigaverning this
problem are listed below:

Continuity Equation: ou(xy) , 1 oy.v(x,y) -0 (1)
0x y oy
Equation of Conservation of momentum in the x dicec
2
Loy LU, | QU0 L0p g 10 ( _oU(x,y)J+ 0 ”(Xz’ y) @)
0x oy pox plyoy 2% ox
Equation of Conservation of momentum in the y dicec
2
Y i) RO 57 B X - I ) ( 1 _d(y.v(x,y)]+ 0*v(x,y) @®)
ox oy poy ployly & ox?

The Poisson equation is determined from the mattieahananipulations in the equations of momentunthe
directions x and y. Bg is the dynamic viscosity newtonian apds the density. These equations appear in the/sisal
of problems in physics, in engineering and chemistr

Poisson Equation: o'p +li y@ =2 Qudv_ovou V' 4)
ox* yayl\~ ay oxay oxody y°

For the construction of the problem solution is legabthe Generalized Integral Transform Technig@€T{T) to
provide a hybrid solution, ie, an analytical-numalisolution of the equations of conservation ofimeatum in the x
and y directions of the Poisson equation, with kieolge of the velocity fields, pressure along tharctel examined.
And the soft computing will be appropriate if th@IRTRAN and in particular the DPVPFD subroutine dSL.

Initial and boundary conditions:

U Y) =ty V(6 Y) =0 P(x Y) =y » tO X =0 (5a<)
M:O’ V(X,y):O’M:O,tOyZO (5d'f)
ay ay
_ _ 0P y) [ 0u(y)] tox>0 (5 g-i)
U(xY) = Uo(y) v(xy) = 0,725 = ; ay{y 5 }
u(x,y) =0, V(x,y):oyap(x’w:ﬂa{la(y'v(x’y))},toy:b (5j-0)
oy oyly oy

The dimensionless groups used:
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X:7, Y:X, U:f, V:f, P:7p2, (Gae)
b b Uo Uo Ao

Being the Reynolds number defined based on theiglof the duct entrance.
Re= PP _Ub  peingy = # (7 a-b)
H v P

Application of dimensionless groups in the aboveatipns has been the system of dimensionless eqsaii the
domain0<y<1andx>0:

Continuity Equation: ~ 0Y , 1 9[YV] _ (8 a)
oxX Y oY

Equation of Conservation of momentum in the X dimt

2
oX oY 0X Re|YadY| aY | ox?2

Equation of Conservation of momentum in the Y dimt

2
U67V+V67V:_67P+i iia(YV) +av (8C)
oX oY oY Re|dYLY oY ax?

Poisson Equation:

2 2

aP+1a(YaP)=2 U vV _ovVou V-~ @8 d)
oxX? Yay\{ ay X aY oX oy Y?
The initial and boundary conditions become:
U(X,Y)=1; V(X,Y)=0; P(X,Y)=P, inX=0 (9 a-c)
Wy vy=0i V(X,Y)=0; PXY) g iny=0 @ d-
ay oY
u(x,Y)=u,(y); V(X,Y)=0; M:i 10 M , iInX - (9 g¥)

oX Re|Y aY aY
Uy =0 V(X,Y)=0; PXY)_ 1[0 [10(“/)} . iny=1 @ )
aY Re|dY|Y oY

To properly implement GITT and improve computatiomerformance, ie improving the convergence, it is
necessary to make a homogenization in the boundarglitions in the chosen direction by using filterisich means
the separation of potential as velocity, velocigld development , which is a function of X andand fully developed
velocity field, which is only a function of Y.

Filter for the velocity field:

U(X,Y)=U(X,Y)+U_(Y), where: (10 a)
U%(X,Y): is the filtered developing velocity profile to bealuated;

U (Y): is the fully developed velocity profile

u.(Y)=2@1-v?) (10 b)

Filter to the pressure field:

P(X,Y)=P(X,Y)+P.(X,Y), where: (10 c)
PY(X,Y): the potential pressure field development;

P.(X,Y): the filter that satisfies the equation of conséinn of momentum in the y direction in the ductipia when
y = 1 and has analytical solution given by:

o L 1T10(vV(X,Y) _p _ 1[ouf(X.Y) 10 d-
PF(X,Y)_P0+R6[Y o }or P.(X,Y)=P, Re{ X (10 d-e)
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Replacing the filters in the velocity and pressuarthe above equations is obtained:

O
Continuity Equation: U~ + 1 ayv] _ 0 (11 a)
oX Y oY

Equation of Conservation of momentum in the X dimt
0 0 o 0
vy +Vano sy +Uma—u L
aY aY oX oX oxX X

O 20
1Jj1o),0u" ) 10,0V,  0U (11 b)
Re|YoaYy| oY | YaY|[ aY | ox?2
Equation of Conservation of momentum in the Y dimt

[} 2
Val+uﬂal+uwal:_ai_ai+i 0 ii(y\/) +6 v (11 ¢)
oY X 0X dY dY Rel|dY|YaY X ?

Poisson Equation:

1 a[ ap}rl a[YaPF}aP LO°P _

Yay| aYy | vay| ay | oxz ox:?
, 0V AU _aU"dV U, dv _V® (11 d)
aY X oY oX  aY oX Y?

The initial conditions and boundary after filteribgcomes:

U(X,Y)=1-U_(Y); V(X,Y)=0; P%X,Y)=0, toX=0 (12 a-c)
Us(X.Y)=0; V(X,Y)=0; W’D(Wzl{la{w}}, X — o (12 df
oX Re|Y oY oY
VXY _o: V(X,Y)=0; PUXY)_o toy=0 (12 g-i)
oY oY
US(X,Y)=V(X,Y)=0; apugx’Y):o,toY:1 (12 j-))
Y

4 - APPLICATION OF GENERALIZED INTEGRAL TRANSFORM T ECHNIQUE (GITT)
Determination of the Eigenvalue Problems

4.1 - Auxiliary Problem for the Velocity Field:

1d dg (Y) 2 . 0
0y + 120 (Y)=0: <Y<1 (13 a)
v dY[ qy |TH a(Y)
Boundary conditions for the problem:

a@W=0  and dﬁio) =0 (13 b-c)
The auxiliary problem for the velocity field andessure is a problem of Sturm-Liouville and has wiwll solution
given by OZISIK, (1993).

Eigenfunctions:g,; (Y) = J,(4;,Y), 1=1,2,3, ... (13 d)
1

Normalization integraly; - J'Y(pz (Y)dY (13 ¢)
0

The eigenvaluesy/, 's, are the roots of transcendental equations:
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Jo(ts)=0; i=1,2,3, .. (231
Normalized eigenfunctionsg}; (Y) = M (13 9)

V Ni
The eigenfunctions¢, , have the following orthogonality property to veity:
( 0, sei#]
~ o~ , sei
[ace (Y)dvz{ ) (1B h
1 sei=]j
0

4.2 - Auxiliary Problem for the Field Pressure:

1d|,d¢ (M), ,2

Yy Dy B2 (Y)=0 0<Y<l1 (¥ a

Y dY[ dy A )

Boundary conditions for the problem:

dl/li (O) =0 and dl//| @ =0 (14 b-C)
dy dy

Eigencondition:J, () =0 (14 d)

Eigenfunctionsyy, (Y) = Jo(5,Y), i=1,2,3, ... (14 e)

The eigenvaluesf3, 's, are the roots of transcendental equations above:

1

Normalization integralM, :ijf (Y)dY (14 1)
0
Normalized eigenfunctiongy, (R) = lll\//'l(llz) (14 9)
The eigenfunctionsyy/; , have the following orthogonality property for theessure:
1
o 0, i #j
[yo.com W)dY={ sei” (14 1)
1 sei=]

0

4.3 - Determination of the Inverse-Transform Pairs

Field Velocity:
1 [ee]

Transform: U, (X) :ij&W)U*(X,Y)dY and Reverse:yTx v) :ZJ?(Y)Ui(X) (15 a-b)
0 i=1

Field Pressure:
1 o0

Transform: Ei(x):Idei (Y)P(X,Y)dY and Reverse:Pu(X’Y):Z“lpi (V)R (x) (16 a-b)
0 i=1

Calculation of average velocity and transverseaigto
1

U :ZZ”: FOU(X)+1 F 0= j Y (Y)dY (17 a-b)
i=1

0
1

V(X,Y) :ézfi (Y)dud‘—f(x) Fi(Y) :IY@ (Y)dy (17 c-d)
i=1

Y
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5 - INTEGRAL TRANSFORMATION SYSTEM OF EQUATIONS

The process of integral transformation of the gsystef partial differential equations formed by edoms of

momentum in x direction and Poisson in an ordirdifferential system is derived using the followiogerators.
1

First apply the operatoi"y& (Y)dY in Eg. (11 b), then applies the property of oritwagity Eq. (13 h), the

0
formulas of the inverse Eq. (15 b) and Eq. (16tlg, transverse velocity Eqg. (17 c¢) and the auxilignmoblem for the
field velocity Eq. (13 a), then:

0

i ;sz = Z[ZAEﬁ]k +A3km]duxk ZCinddI:;:(X)}_ D;’ +’ui2U2i(x) (18)

n=1
1
Continuing to apply to the operat Y@, (Y)dY in the Eq. (11 d), and replaces the orthogonalitperty Eq. (14

0
h), the inverse formulas of the Eq. (15 b) and #§.b), the transverse velocity Eq. (17 c) andateliary problem for
the pressure field Eq. (14 a), thus:

= 1% d2Pn(X — du

Zl%-zz ]< 00 L5 e U e
ZZ duk ZZ d Uk Zw d?U (X

2 Eljk -2 FukU ( ) -2 Fikoo dxz( )_

=1 k=1 j=1 k=1 k=1
ZZEik dU () du«(X) (19)
dX dX
d°P
The equation written in matrix form is: d>2£ X)_ =(P,..) [G T ZGImAnJ (20)

Where the coefficients of equations (18) and (26) a

ABy = J:é (Y) din(Y)Fk (Y)dY+LlY¢} (Y)g, (V)a (Y)Y (21 a)
. = [ 08, (av [V . v s
o = [ Vit )z (av @1
3 = :Yg"é(v)&il (Y)dy (21 d)
D, = Ll é(Y)(g({Y dUd"‘;((Y)}dY (21€)
Pmat= &, - qu - (21 )

duk _ o duk(X) |du(X)
6 0170~ L3 0 2|3 e, By, 00
_ JeF,, [4U(X) (219)
ZkZl: |:Z Fuk U F|koo] dx 2
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d?Uk(X) ) M dUm(X)

dUk (21 h)
An= Zl; amk Z ZABm Ui (X)+ABye, Vg Re dx
Q. = J.Y¢7i (Y)g (Y)dY (1)
0
Gpn = '1Yfﬁi () (Y)Y (21))
ol 1 ~
Ei :. Y3 [Fk ] dy (21 k)
e = Y005, P @
— L T= d&l (Y) 21
P = [ B (R =Y @1 m)
l —_—
Fuo = [3100F ) =y e
0 dy
Applying the integral transform in the initial abdundary conditions:
Velocity:
0= VU () )ay- iX =0 (22 a)
0
ui(x)=0, inX - oo (22 b)
Pressure:
Pi(x)=0, inX =0 (22 ¢)
dPi(x)_ 1 J‘w { dUm(Y)}dy, inX — oo (22 d)
dXx Re aYy dy

6. RESULTS AND DISCUSSION

The program developed for solving the system ofmany differential equations with the transformemtenmtial was
built in Fortran language and implemented on a enamputer with Pentium Dual-Core 1.87 GHz with B & RAM
and run on Windows Vista. The code is focused enuge of the IMSL Library subroutine through DBVER@lerance
used was 10-4, to determine the error in the autioneaaluation of velocity fields and pressure. Tables represent
the convergence of the longitudinal velocity at tieater of the channel (Y = 0) and average veldoitycircular ducts
with the same Reynolds number and different vatiféke contraction of scale.

Table 1 - Convergence of longitudinal velocity lae tenter of the channel U (X, 0) for Re = 20, entinditions and U
=1,V = 0. Shrinkage factor of scale: C = 1,2 ggd= 0,2.

N/Xx 0,1000 0,2500 0,3000 0,5000 0,7000 0,750( DOOP
10 0,9644 1,0065 1,0264 1,1136 1,2071 1,2343 1,4130
20 0,9710 1,0283 1,0535 1,1547 1,2594 1,2904 1,5035
30 0,9679 1,0281 1,0526 1,1431 1,2186 1,237¢ 1,35%3
32 0,9777 1,0479 1,0763 1,1868 1,2990 1,3321 1,5696
40 0,9819 1,0582 1,0881 1,2034 1,3205 1,3554% 1,6101
50 0,9865 1,0684 1,0996 1,2193 1,3402 1,3761 1,64%2
50/ Ex=0 1,0144 1,0858 1,1097 1,2092 1,3384 1,3811 1,7180

Tabela 2 — Convergence of longitudinal pressutaetenter of the channel U (X, 0) for Re = 20yenbnditions and

U =1,V =0. Shrinkage factor of scale: C = 1,2 g = 0,2.

N/x 0,1000 0,2500 0,3000 0,5000 0,7000 0,750( DO0P

10 0,1486 0,1495 0,1499 0,1499 0,1489 0,148( 0,1468
20 0,3682 0,3651 0,3606 0,3552 0,3344 0,3184 0,3015
30 0,5573 0,5459 0,5306 0,5126 0,4715 0,449¢ 0,4282
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32 0,5899 0,5876 0,5850 0,5822 0,5726 0,5653 0,55’ﬁ'4
40 0,7260 0,7143 0,7001 0,6841 0,6414 0,615] 0,581]32
50 0,8902 0,8735 0,8540 0,8323 0,7844 0,7527 0,7211)3
50/ Ex=0 0,8756 0,8580 0,8376 0,8150 0,7656 0,733( 0,691{)8

Table 3 - Convergence of the average velocity énddnter of of the channellJ,, for circular duct with Re = 20, entry
conditions and U = 1, V = 0. Shrinkage factor adlecC = 1,2 andgy = 0,2.

N/x 0,1000 0,2500 0,3000 0,5000 0,7000 0,750( DOOP
10 1,0004 1,0568 1,0818 1,1855 1,2892 1,318% 1,5035
20 1,0072 1,0785 1,1087 1,2264 1,3409 1,3734 1,5935
30 1,0034 1,0770 1,1064 1,2130 1,2980 1,3184 1,4408
32 1,0135 1,0977 1,1310 1,2580 1,3801 1,4144 1,6594
40 1,0175 1,1077 1,1064 1,2130 1,2980 1,3184 1,6999
50 1,0218 1,1175 1,1537 1,2899 1,4205 1,4581 1,7349
50/ Ex=0 1,0504 1,1355 1,1642 1,2793 1,4185 1,4631 1,8095

Table 4 - Convergence of longitudinal velocity la¢ tenter of the channel U (X, 0) for a newtoniaidfflowing in a
circular duct. Re = 20 and C = 1.2, entry condgiand U =1V = 0.

Re/x Referéncias .1000 .2500 .3000 .5000 .7000 .7500
20 Presente Trabalho 0,9819 1,0582 1,0881 1,2034 5,320 1,3552
40* SILVA et al.(2009) 1,0170 1,0570 1,0770 1,1800 1,3000 1,330(
40* FRIEDMANN (1968) 1,0080 1,0484 1,0740 1,1738 1,3100| 1,3263

* Re, = 2Re

Average Velocity - Um

0,970

0,965
0,960

§ o955
0,950
0,945

0,940 -

Figure 2 - Average Velocity of development along #xial position for Re = 20 and NU = NP =50

Tables 1 e 2 represent the convergence of velacitypressure longitudinal center of the channet (@), Tab. 3
represent the relationship between velocity andagee velocity in the center JW,, for circular ducts with the same
Reynolds number and different values of the cotibaof scale.

Table 4 shows that the results show good agreeamhtcompared with literature data provided by Séval
(2009a) and Friedman (1968a). The formulation wsesdun the cited references and the current funafahis work is
primitive variables for 40 terms.

Figure 2 shows the behavior of the average velatitglifferent axial positoins with reynolds numlegual to 20
and using 50 terms, watching a small fluctuatiod e results indicate that the calues are verseclo

7. CONCLUSIONS

The results obtained in solving the Navier-Stokepsations in terms of primitive variables, with gntonditions U
=1,V =0 and P =it appears that at the beginning of the chanaéles are lower than those of the reference but
then the results are very close in terms of strearation formulation of reference works.

In our study we used filters that were crucial fimth the velocity and pressure, as well as homagettie
boundary conditions also accelerates the conveegenc

We conclude that the Generalized Integral Transféaohnique (GITT) used for analysis in a circulactdof the
laminar flow of newtonian fluid was considered stctory with a good agreement with data availabléterature.
Using the formulation in primitive variables forethsolution of the Navier-Stokes and Poisson shoted the
mathematical model is very complicated which haspered its computational implementation. The sutimewof the
IMSL Library DBVPFD was used to solve the systeneqfiations and obtained results consistent withmefexences.
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