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Abstract. Structural dynamic analyses have a wide application in industries such as automotive and aeronautical. The 

use of advanced tools warranties the optimization of the products. Currently, it is possible to model non-linear flexible 

multi-body systems with arbitrary topologies using these tools. This article studies fundamental dynamic analyses of 

flexible beam using the finite elements method. These dynamic analyses are executed using DYMORE multi-body 

elements software. Results obtained are compared with MSC/NASTRAN results. DYMORE uses the direct integration 

method to obtain the analysis responses. In this article, MSC/NASTRAN uses the mode superposition method to solve 

the equations of the structure. The focus of this article is to obtain the responses for the two methods and discuss the 

results. DYMORE has particular characteristics that improve the accuracy of responses for structural dynamic 

problems. These result’s accuracy is fundamental to have DYMORE used on evaluating complex structural topologies. 
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1. INTRODUCTION  

 

 This article aims to analyze fundamental problems of structural dynamics. Two programs are used to evaluate the 

results. The first software used in this article is DYMORE. This software was developed to analyze complex models of 

mechanisms such as non linear multi-body systems. In other words, the DYMORE can be used to simulate multi-body 

systems considering the flexibility of each body. The analysis elaborated in DYMORE uses the direct integration 

method to obtain the system responses. In this case, all vibration modes are considered in problem solution. The 

integration of the motion equations causes problems as undesirable high frequency oscillations of a purely numerical 

origin (BAUCHAU et al, 1994). DYMORE uses the finite element method and an internal algorithm called Energy 

Decaying Scheme. This algorithm eliminates the problems of numerical instability generated by high order frequencies. 

For this to occur, the algorithm maintains the system’s energy constant, i.e., the energy does not increase (BAUCHAU 

et al, 1994). The demonstration of the energy preserving schemes that prove the solution methods stability is presented 

in (BAUCHAU, THERON, 1996). 

The second software used in this article is MSC/NASTRAN. This software is a commercial program used in 

aeronautical and automotive industries. MSC/NASTRAN analysis was executed using the mode superposition in order 

to solve the motion differential equations. The main advantage of the mode superposition method utilization is the 

vibration modes number reduction that will be considered in the responses calculation. This artifice permits that the 

numerical stability problems generated by the high order modes can be eliminated. I.e. the method is based on the 

transformation of the matrices of mass, stiffness and damping of the system. This transformation produces the 

generalized matrices of mass, stiffness and damping of the system. Such system generalized matrices have lower 

bandwidth than the original system matrices. This process warranties that the equations become uncoupled. Then, it is 

possible to define how many vibration modes that will be considered in the analysis.  

The mode superposition utilization presents advantages such as the vibration modes reduction that will be included 

in the responses calculation. However, the reduction process modifies the mode representation of the applied load, 

affecting the quality of the responses calculated. The complete demonstration of the mode superposition method is 

presented in (BATHE, 1976). MSC/NASTRAN analysis was made using mode superposition method purposely, in 

order to obtain the differences between the direct integration and mode superposition methods. 

Three analyzes were performed and the results obtained are discussed herein. The beam models analyzed by both 

programs have the same properties, meshing, material, loading, and boundary conditions for each analysis.   

                    

  

2. STRUCTURAL DYNAMICS 

 

2.1. Direct Integration (BATHE, 1976) 

 

Considering a structural system with n degrees of freedom, subjected to forced vibration, the following matrix 

differential equation can be used to model the motion: 

,RKUUCUM =++ &&&  (1) 
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where M, C and K are matrices of mass, stiffness and damping of the system. R is the vector of the external forces, and 

U&& , U& , U are the vectors of acceleration, velocity and displacement of the system. The equation (1) can be written the 

following manner: 

),()()()( tRtFtFtF EDI =++  (2) 

where: FI(t) are the inertial forces, FD(t) are the damping forces and FE(t) are the elastic forces of the system. FI(t), FD(t) 

and FE(t) are dependent of the time. First of all, the dynamic analysis is assumed that the static equilibrium at the time t, 

which includes that the inertial force is dependent of the acceleration. And the damping force is dependent of the 

velocity. On the other hand, on the static analysis, the inertial and damping effects are neglected. The choice of static or 

dynamic analysis (i.e. the inclusion or not the inertial and damping forces) is decided by the engineering examination. 

The objective of this examination is to reduce the necessary analysis effort. The equation (1) represents a second order 

differential equations linear system which solution can be obtained by the normal process of differential equation 

solution by constants coefficients. However, this solution can be very expensive, if the orders of matrices are very high, 

unless some special characteristics of the K, C and M matrices are utilized.     

In the direct integration, the equation (1) is integrated by a numerical procedure step by step. The term “direct” 

means that no transformation is executed in the equations before the numerical integration. In essence, it is based on 

two ideas: The first idea is that, instead of satisfying the equation (1) at each time t, the solution is obtained at discrete 

time intervals ∆t, separately. It means that the static equilibrium is calculated, including the inertial and damping forces 

effects, at discrete points of time within the solution interval. In this case, it is assumed that all the techniques applied in 

static analysis could be used in direct integration. 

The second idea is that it is assumed a variation of the displacements, velocities and accelerations in each ∆t time 

interval. The way in which this variation is assumed, determines the accuracy, the stability and the computational cost 

of solution. The direct integration can be divided into explicit and implicit methods.  

In explicit methods, the motion equation solution is obtained at time t+∆t, considering the equilibrium conditions at 

time t. These integration schemes do not require the stiffness matrix inversion in the solution step by step. For this 

reason, the method does not require the matrices storage if the mass matrix (concentrated or generalized) is utilized.  

The explicit methods are conditionally stables and require the utilization of small steps of time to ensure the stability. 

For example, it can cite the method of central differences and the Runge-Kutta method (WIJKER, 2004).  

In implicit methods, the displacement equations in this time step involve the velocities and accelerations at their own 

step t+∆t. Then, the determination of displacements at t+∆t involves the structural stiffness matrix inversion in this time 

step. However, many implicit methods are unconditionally stable for linear analysis and the step size of integration only 

affects the accuracy of results. Among the most popular methods are: Houlbolt, Wilson-Θ, e Newmark (WIJKER, 

2004).   

  

2.1. Mode Superposition (BATHE, 1976)  

 

The number of operations needed in the direct integration is directly proportional to the number of time steps used 

in the analysis. Therefore, in general, the use of direct integration can be effective when the desired response is 

relatively short (a few time steps, for example). However, if integration is performed for many time steps, can be more 

effective to transform the equations of equilibrium in a way that the solution step by step is less expensive. 

In order to transform the equations of equilibrium (1) in a more efficient way of direct integration, the following 

transformation of the displacements U can be used. 

),()(),( tqxtxU Φ=              (3) 

where Φ is a transformation matrix (square) to be determined, q(t) is the dependent vector of time of order n. The 

components of q are known as generalized displacements. 

The transformation above can be used in equation (1), and then, the following expression can be written: 

 

,RqKqCqM =Φ+Φ+Φ &&&              (4) 

and pre-multiplying the expression for 
TΦ , it has: 

,RqKqCqM TTTT Φ=ΦΦ+ΦΦ+ΦΦ &&&            (5) 

that results in: 

,)(
~
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~
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~

RtqKtqCtqM =Φ+Φ+Φ &&&             (6) 
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where: 

,
~

ΦΦ= MM T
 

,
~

ΦΦ= CC T
 

,
~

ΦΦ= KK T
 

,
~

ΦΦ= RR T
 (7) 

In essence, a transformation of the finite element displacement was made to generalized displacement. The 

objective of this transformation is the obtainment of a new system of stiffness, mass and damping matrix. These 

matrices have a lower bandwidth than the matrices of original system. The matrix [Φ] must be chosen properly.  

In theory, there may be different transformation matrices [Φ], however, a transformation matrix is established using 

the solution of displacements of equilibrium equations of free vibration, i.e., without damping, resulting in equation (8):  

,0=+ KUUM &&  (8) 

which solution can be considered as: 

)],([ 0ttsenU −= ωφ  (9) 

where φ is a vector  of n order, t is the time variable, t0 is the time constant and ω is a constant that represents the 

vibration frequency in (rad/s) associated with the vectorφ. Substituting the equation (9) in (8), it has a problem of 

generalized eigenvalues which φ and ω must be determined, i.e.: 

,2 φωφ MK =             (10) 

this problem generates the n solutions: ),,)...(,(),,( 2
2

2
21
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1 nn φωφωφω where the eigenvalues are normalized by the 

matrix of mass M, i.e.: 
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The vector φi is called by modal vector of order i, and ωi is the corresponding natural frequency. The equation (8) is 

satisfied using any one of the n displacement solutions.  

.,..2,1,0)],([ 0 nittsenU ii =−= ωφ           (13) 

When the matrix Φ is defined, the columns are the eigenvectors φ. And a diagonal matrix Ω2
 that contains the 

eigenvalues ωi
2
 in the diagonal, as expressed below: 

[ ]nφφφ ,...,, 21=Φ              (14) 
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it is possible to write the n solutions for the equation (10), as the following expression: 

.2 ΦΩ=Φ MK             (16) 

 
The eigenvectors suffer an orthonormalization process by the matrix of mass M, then:  

.,2 IMK TT =ΦΦΩ=ΦΦ             (17) 

In this case, the matrix [Φ] could be the appropriate transformation matrix in equation (3). The equations of 

equilibrium that correspond to the generalized mode displacements can be obtained using the equation (3): 

),()()(2)( 2 tRtqtqtq TΦ=Ω+ΞΩΦ+ &&&            (18) 

where Ξ is the diagonal matrix of the parameters of modal damping ξi. 

The initial conditions of q(t) are obtained using the equation (18) at the time equal 0: 

,, 0000 UMqMUq TT && Φ=Φ=            (19) 
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3. NUMERICAL EXAMPLES  

 

3.1. Modal analysis of a cantilever beam – Analysis 1 

 

The first numerical example presented in this article is a modal analysis. The numerical examples presented in this 

article are fundamental problems of the structural dynamics. The objective of this topic is to obtain the results of these 

analyzes using the DYMORE multi-body elements software. These results are compared with the ones obtained using 

MSC/NASTRAN.  

With the preliminary results of modal analysis, it is possible to adjust the input data cards in order to execute the 

analysis 2 and analysis 3.   

Figure 2 presents the sketch of the model analyzed in this item. The model shows a beam with two tips: one tip is 

clamped and the other is free. This structure is called cantilever beam. No load is applied in the structure. The modal 

analyzes considers only the stiffness and mass of the structure. The modal analysis can be elaborated solving the 

equation (8). 

In accordance with the notation utilized in DYMORE, the axis that coincides with the neutral line is denoted axis 1. 

The vertical axis is denoted axis 3 and the third, axis 2 (BAUCHAU, 2007). All units of the model are on the 

international system of units. The beam has length of L = 1 m. 

 

 
Figure 1. Cantilever beam sketch for modal analysis. 

 

The beam cross section considered to the modal analysis has a rectangular cross section with 0.05 m of width and 

0.1 m of height. The material of the beam defined has the following properties: Elastic Modulus: E = 70 GPa, Poisson 

Ratio: ν = 0.3, and Density: ρ = 2780 kg/m
3
. 

For the DYMORE analysis, the beam properties are calculated using the material and cross section data defined 

previously. The values of the beam properties are calculated in accordance with DYMORE User’s Manual 

(BAUCHAU, 2007):  

 

Table 1. Beam property definition to DYMORE analysis. 

  

SECTIONAL STIFFNESS PROPERTIES 

AXIAL STIFFNESS [N]
 

3.50E+08 

BENDING STIFFNESS [N.m
2
]

 
2.9167E+05,  7.2917E+04   ,  0.0000E+00 

TORSIONAL STIFFNESS [N.m
2
] 7.7027E+04 

SHEARING STIFFNESS [N] 1.3462E+08,  1.3462E+08   ,  0.0000E+00 

SECTIONAL MASS PROPERTIES 

MASS PER UNIT SPAN [kg/m] 13.9 

MASS MOMENTS OF INERTIA [kg.m
2
/m] 1.4479E-02,  1.1583E-02   ,  2.8960E-03 

 

The modal analysis results are obtained using Table 1 input data. Figure 3 presents the four vibration modes with 

their natural frequencies. Table 2 presents all vibration frequencies of the 10 modes for both programs: DYMORE and 

MSC/NASTRAN. The objective of this analysis is to compare results for both DYMORE and MSC/NASTRAN 

software. 
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ωn1 =254.2 rad/s
ωn2 =505.8 rad/s

ωn3 =1576.9 rad/s
ωn4 =3047.8 rad/s

 
Figure 2. Modal analysis results of the cantilever beam using DYMORE. 

 

Figure 4 presents the finite element model considered in MSC/NASTRAN analysis. For both DYMORE and 

MSC/NASTRAN models, were considered 45 beam elements. The beam root is clamped. The beam element considered 

at MSC/NASTRAN was CBEAM. This element uses the Timoshenko Theory formulation. It’s important to emphasize 

that the MSC/NASTRAN analysis was elaborated by mode superposition method. I.e., the frequency range of interest 

(final and initial) is defined as analysis input data (MSC.SOFTWARE CORPORATION, 2002). The value of the initial 

frequency is defined by 0 Hz and the final frequency is defined as 3000 Hz. Considering this frequency range input data, 

the 10 first modes of vibration are calculated. This artifice is utilized because the MSC/NASTRAN does not have a 

preserving energy algorithm. I.e., in this article, MSC/NASTRAN utilizes a mode superposition in order to avoid the 

numerical instabilities problems. All commands utilized to elaborate the MSC/NASTRAN card are defined in the Quick 

Reference Guide (MSC.NASTRAN, 2004).  

 

 
Figure 3. Finite element model of the cantilever beam elaborated in MSC/NASTRAN (model with 45 CBEAM 

elements). 
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Table 2. Modal analysis results of the cantilever beam using DYMORE and MSC/NASTRAN. 

  

NATURAL FREQUENCIES OF THE CANTILEVER BEAM 

EIGENVALUES 
DYMORE MSC/NASTRAN 

Difference (%) 
f (Hz) f (Hz) 

1 40.460 40.460 0.000 

2 80.502 80.556 -0.067 

3 250.970 251.167 -0.079 

4 485.068 487.439 -0.489 

5 576.623 576.558 0.011 

6 691.571 693.100 -0.221 

7 1254.488 1254.425 0.005 

8 1284.431 1296.452 -0.936 

9 1325.379 1330.710 -0.402 

10 1729.871 1728.970 0.052 

 

 

The results presented in Table 2 certify that both of models (DYMORE and MSC/NASTRAN) are adjusted to 

elaborate the analysis 2 and analysis 3. 

The differences between the two software (DYMORE and MSC/NASTRAN) are expected because the differences 

between the solution methods.     

 

3.2. Dynamic analysis of the cantilever beam – Analysis 2 

 

The beam dynamic analysis 2 considers the same DYMORE input data utilized in modal analysis, except for the 

loading applied. The dynamic loading utilized in analysis 2 is a time function such as showed in Figure 4. In this 

analysis, the load P has the same direction of the beam axis 2, i.e. is an example of horizontal bending of the beam. The 

force varies linearly since 0 until 1 second. And the value of the load varies linearly from 0 to 100 N. After the time 

reaches 1 second, the load keeps constant in 100 N. Figure 4 shows that the time function is varying from 0 to 1. During 

the analysis solving, the time function is multiplied by 100N. 

The finite element model elaborated in MSC/NASTRAN for this analysis also has 45 beam elements. It is utilized 

the solution 112 for this analysis (Linear Transient Response Analysis, Modal Formulation). Figure 5 presents the 

DYMORE and MSC/NASTRAN analysis results.  

 

 
 

Figure 4. Loading time function of the dynamic analysis 2 (DYMORE). 

 

The dynamic response of the displacement u2 in meters of DYMORE and T3 in meters of MSC/NASTRAN for the 

cantilever beam considering a type of loading presented in Figure 4 is showed in Figure 5: 
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Figure 5. Comparison between DYMORE and MSC/NASTRAN responses. 

 

These results demonstrated that the responses obtained from the both of software DYMORE and MSC/NASTRAN 

are very close. Table 3 presents the numerical results. The differences can be explained by the solution methods 

utilized.   

 

Table 3. Results of analysis 2 of the cantilever beam using DYMORE and MSC/NASTRAN. 

 

TIME DYMORE MSC/NASTRAN Difference 

(s) U2 (mm) T3 (mm) % 

2.990 0.4575 0.4581 -0.146% 

2.991 0.4583 0.4573 0.231% 

2.992 0.4592 0.4564 0.589% 

2.993 0.4599 0.4557 0.914% 

2.994 0.4606 0.4551 1.191% 

2.995 0.4612 0.4547 1.409% 

2.996 0.4618 0.4546 1.558% 

2.997 0.4622 0.4546 1.637% 

2.998 0.4624 0.4549 1.637% 

2.999 0.4625 0.4553 1.555% 

3.000 0.4625 0.4560 1.403% 

 

 

 

3.3. Cantilever beam dynamic analysis – Analysis 3 

 

The dynamic analysis 3 considers the same DYMORE input data of the modal analysis, except for the loading and 

the boundary conditions. In this case, the rotation around the axes 1, 2 and 3 are released. The dynamic loading is a time 

function as the equation (20).  

 





>

≤≤
==

sec2.0,0

.sec2.00,.5
)(:)(.100)(

tfor

tfort
tyWheretytF .           (20) 

 

The time of simulation for this analysis is defined in 3 seconds. Figure 6 presents the time function (20) graphically: 
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Figure 6. Loading time function of the dynamic analysis 3. 

 

This analysis was performed considering both programs: DYMORE and MSC/NASTRAN. The dynamic responses 

of the angular velocity ω3 in rad/sec and R2 rad/sec obtained using DYMORE and MSC/NASTRAN respectively, are 

showed in Figure 7:  

 

 
 

Figure 7. Angular velocity dynamic response ω3 (DYMORE) and R2 (MSC/NASTRAN) for the cantilever beam. 

 

Figure 7 shows that the beam keeps a uniform circular motion around axis 3 after the loading finished. The 

difference obtained is 8.697%. The differences can be explained by the solution methods utilized. The DYMORE 

analysis uses the direct integration method and the MSC/NASTRAN uses the mode superposition.  

Considering the cantilever beam as a rigid body, it is possible to obtain the exact response of the angular velocity 

using the following expression: 
 

).(3 tMJm =θ&&                      (21) 

Where Jm is mass moment of inertia of the beam, θ&& is the angular acceleration of the beam and M3(t) is a time function 

for the moment applied in the tip. The Jm mass moment of inertia can be written according to expression (22): 

.
3

3
mL

Jm =                     (22) 

The angular velocity can be obtained making a time integration of the equation (10) for t = 0 sec to t = 0.2 sec. 

Considering that the moment M3(t) = F(t).L, resulting:   

.)(

2.0

0

dttF
J

L

m
∫=θ&                   (23) 

Substituting the values, the angular velocity obtained for the time of 0.2 sec is 2.158 rad/sec. Table 4 below presents 

the results of both programs and the exact solution for the rigid body. 
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Table 4. Dynamic structural analysis results of the cantilever beam. 

  

TIME 
DYMORE Exact solution Difference MSC/NASTRAN Exact solution Difference 

ω3 (rad/s) ω (rad/s) % R2 (rad/s) ω (rad/s) % 

2.990 2.136 2.158 1.022 2.343 2.158 8.557 

2.991 2.136 2.158 1.048 2.341 2.158 8.464 

2.992 2.135 2.158 1.055 2.342 2.158 8.528 

2.993 2.136 2.158 1.035 2.341 2.158 8.487 

2.994 2.136 2.158 1.011 2.340 2.158 8.399 

2.995 2.137 2.158 1.008 2.342 2.158 8.531 

2.996 2.136 2.158 1.031 2.340 2.158 8.420 

2.997 2.136 2.158 1.053 2.344 2.158 8.596 

2.998 2.136 2.158 1.051 2.340 2.158 8.431 

2.999 2.136 2.158 1.026 2.341 2.158 8.472 

3.000 2.137 2.158 1.006 2.340 2.158 8.423 

 

 

4. CONCLUSIONS 

 

The analysis 1 results showed a difference between DYMORE and MSC/NASTRAN responses. The difference 

calculated was smaller than 1%, according to data presented in table 2.  

The results of analysis 2 also showed a small difference between DYMORE and MSC/NASTRAN. In the moment 

of time of 2.997s, the difference calculated reached 1.6%. MSC/NASTRAN was adjusted to obtain the responses using 

the mode superposition method. This artifice was defined purposively. On the other hand, DYMORE uses the direct 

integration method in order to obtain the responses. I.e., DYMORE considers all modes of vibration to calculate the 

dynamic responses. As expected, the results were different, but very close.  

The analysis 3 results showed the highest differences between DYMORE and MSC/NASTRAN. As mentioned 

before, MSC/NASTRAN used the mode superposition method to obtain the dynamic responses. In this analysis, the 

difference calculated was 9.499%. I.e., in case that the structure has velocity and acceleration, the inertial and damping 

forces have more influence in the results. So, the differences between direct integration and mode superposition 

methods also are big in analysis 3. This fact is expected because MSC/NASTRAN was adjusted to consider 10 modes 

of vibration in the responses calculation. DYMORE considered all modes of vibration to calculate the dynamic 

responses, i.e., 135 modes of vibration. The analysis of the beam as a rigid body also was elaborated in section 3.3 of 

this article, i.e., without effects of damping and elastic forces. As expected, the highest differences were obtained when 

the comparison between rigid body beam and MSC/NASTRAN analysis was made. This fact confirms that: If the 

influence of damping and elastic forces is big, the difference between results of different solution methods also is high.  

The main cause of the differences of the responses calculated is the difference between two methods of solution: 

mode superposition and direct integration. The mode superposition method utilization presents advantages as the 

reduction of the number of vibration modes to be included in the responses calculation. However, the reduction process 

modifies the modal representation of the applied load, affecting the quality of the results calculated. The direct 

integration method is more precise because uses all modes of vibration to obtain the responses. But, instability problems 

of purely numerical origin can occur. Then, DYMORE is more accurate to solve structural dynamic problems. I.e., 

DYMORE uses the direct integration method to solve the differential equations of the system. Besides, DYMORE 

intern algorithm of the energy preserving maintains the energy level constant, i.e., the energy level does not increase. 

This fact eliminates the problems of numerical instabilities generated by high order modes. 
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