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Abstract. The objective of this paper is to consider possible improvements that can benefit disabled swimmers (parathletes) to gain 
competitive advantage by studying the biomechanics involved in the sport and considering the help of simulations systems. 
Regarding the technological assistance, the relevance and aid computational models provide are asserted and a complete 
description of the choiced software tool to conduct the analysis of swimming techniques, SWUMSUIT, which was developed in 
Tokyo Technological Institute in Japan, is provided. On the other hand, the artificial neural network paradigm, which is a non-
linear black box model, seems to be a useful alternative for modeling the complex systems. Due to their simple topological structure 
and universal approximation ability, the radial basis neural networks (RBF-NNs) have been widely used in pattern recognition. In 
this context, this paper presents a RBF-NN approach is applied to modeling of a parathlete swimmer swims breastroke style using 
biomechanics data generated by the SWUMSUIT. 
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1. INTRODUCTION 
 

Kinesiology is the scholarly study of human movement, and biomechanics is one of the many academic 
subdisciplines of kinesiology. Biomechanics in kinesiology involves the precise description of human movement and 
the study of the causes of human movement (Knudson, 2007). Biomechanics is deeply rooted throughout scientific 
history and has been influenced by the research work of early mathematicians, engineers, physicists, biologists, and 
physicians. Not one of these disciplines can claim sole responsibility for maturing biomechanics to its current state; 
rather, it has been a conglomeration and integration of these disciplines, involving the application of mathematics, 
physical principles, and engineering methodologies, that has been responsible for its advancement (Peterson and 
Bronzino, 2008).  

Sports biomechanics is the application of physics and mechanics to the human body during sport. In such a technical 
sport such as swimming, it plays a very important part. The study of human swimming propulsion is one of the most 
complex areas of interest in sport biomechanics. Over the past decades research in swimming biomechanics has evolved 
from the observation subject’s kinematics to a basic flow dynamics approach.  

Human swimming performance is poor when compared to species whose habitat is aquatic. A maximum swimming 
speed of approximately 2 m/s represents only about 16% of the maximum unaided speed attained on land. One obvious 
reason for this speed difference is the higher resistance one encounters when moving through water (Toussaint et al., 
2004). The swimmers performance is determined by the ability to generate propulsive forces while reducing the 
resistance to forward motion. 

The analysis of swimming continues to be challenging compared to many other sport activities due to the fact that 
swimming is performed at the interface of two media. However, methods of kinematics and kinetics modeling, 
measurement of velocity and force, and analyzing motion have advanced greatly in recent years due to improvement in 
technology as well as application of scientific approaches. Examples are presented in papers such as Yanai et al. (1996), 
Tella et al. (2008), Zaïdi et al. (2008), Callaway et al. (2009), Zaïdi et al. (2010), Barbosa et al. (2010), among others. 

In recent years, artificial neural networks (ANNs) has been employed, quite frequently, as a promising tool in many 
areas, such as pattern recognition, function approximation, system identification, and time series forecasting for 
supporting the modeling of complex systems, which incorporate multiple parameters or variables. ANNs models are 
known as black-box models which are mainly identified using input-output data (Coelho et al., 2009). Recently, ANNs 
due to their strong learning capabilities have been proposed also for applications in swimming field. Examples are the 
approaches presented in Silva et al. (2007) and Rejman and Ochmann (2007). 

Among different kinds of ANNs, the radial basis function neural networks (RBF-NNs) are widely used in time 
series analysis and pattern classification problems. The RBF-NNs are capable of fast learning using few hidden units for 
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any input are also local approximators, i.e., construct local approximations to non-linear input-output mapping. RBF-
NNs, as a special class of single hidden-layer feedforward ANNs, have been proved to be universal approximators 
(Hartman et al., 1990). This means that provided that the RBF-NN structure is sufficiently large, any continuous 
function can be approximated within an arbitrary accuracy by carefully choosing the parameters of the network. 

In general terms, the contribution of this paper is to consider possible improvements that can benefit disabled 
swimmers (parathletes) to gain competitive advantage by studying the biomechanics involved in the swimming 
considering aspects related to stroke, kick, body positioning and breathing. At the end, it brings into account the 
influence of the athlete disabilities. Regarding the technological assistance, the computational modeling approach of 
swimming techniques proposed in this paper is based on a RBF-NN using data generated by the software tool called 
Swimming hUman Model with GUI (Graphical User Interface) as a free software “Swumsuit” (Nakashima et al., 2004; 
Nakashima et al., 2007; Nakashima, 2007) is provided. In the paper, the inputs and the outputs obtained by the 
SWUMSUIT are scrutinized and features explained. Furthermore, the modelling methodology to apply the RBF-NN is 
described and the results presented.  Finally, summing up the research, conclusions of the importance of computer aided 
systems helping the development of sports are considered and the limitations of this paper and future works 
perspectives are discussed. 

The remainder of the paper is organized as follows: section 2 presents the fundamentals of biomechanics and 
swimming biomechanics. Section 3 describes the RBF-NN approach. Sections 4 and 5 describe the case study using 
SWUMSUIT and modeling results, respectively. Finally, section 6 presents the conclusions. 
 
 
2. FUNDAMENTALS OF BIOMECHANICS AND SWIMMING BIOMECHANICS 

 
Biomechanics has been defined as the study of the movement of living things using the science of mechanics 

(Hatze, 1974). Mechanics is a branch of physics that is concerned with the description of motion and how forces create 
motion. Forces acting on living things can create motion, be a healthy stimulus for growth and development, or 
overload tissues, causing injury. Biomechanics provides conceptual and mathematical tools that are necessary for 
understanding how living things move and how kinesiology professionals might improve movement or make movement 
safer. 

The applications of biomechanics to human movement can be classified into two main areas: the improvement of 
performance and the reduction or treatment of injury. Human movement performance can be enhanced many ways. 
Effective movement involves anatomical factors, neuromuscular skills, physiological capacities, and 
psychological/cognitive abilities. Most kinesiology professionals prescribe technique changes and give instructions that 
allow a person to improve performance. Biomechanics is most useful in improving performance in sports or activities 
where technique is the dominant factor rather than physical structure or physiological capacity. Since biomechanics is 
essentially the science of movement technique, biomechanics is the main contributor to one of the most important skills 
of kinesiology professionals: the qualitative analysis of human movement (Knudson and Morrison, 2002). The 
quantitative analysis of data involves the measurement of biomechanical variables and usually requires a computer to 
do the numerical calculations performed. 

Sport science plays a very important part in the performance of a swimmer. In terms of application of biomechanics 
in swimming, with the availability of computerized equipment, video technologies, and automated diagnostics, better 
information from swimming science has become possible; today, sports science can provide critical information that 
can lead to improved performances. 

The goal of competitive swimming is to travel the event distance as fast as possible. The identification of the 
parameters that predict swimming performances is one of the main aims of the swimming “science” community. 
Indeed, it is consensual that biomechanical and energetic variables linked with effects of speed, active drag, energy cost 
and breathing are determinant for performance in the swimming in combination of skill acquisition and conditioning 
exercises in competitive swimming programs. 

Fast swimming in the pool requires maximizing the efficiencies with which the human body can move through a 
liquid medium. A multitude of factors can affect the ability to swim fast as well as the final outcome. Biomechanics are 
the present tools used by sports scientists to determine which factors are important to fast swimming and, subsequently, 
to determine how the swimmer may maximize these factors to improve performance. In general, by applying 
physics/biomechanics equations to different strokes we will be able to find the most efficient stroke techniques, thus, 
decreasing the swimmers’ times. 

On other hand, paralympic swimming is an adaptation of the sport of swimming for athletes with disabilities. 
Swimmers are classified according to the type and extent of their disability. The classification system allows swimmers 
to compete against others with a similar level of function. Swimmers with physical disabilities are allocated a category 
between 1 and 10, with 1 corresponding to the most severe types of disability. Physical disabilities of Paralympic 
swimmers include single or multiple limb loss (through birth defects and/or amputation), cerebral palsy, spinal cord 
injuries (leading to paralysis or disability in limb coordination), dwarfism, and disabilities which impair the use of 
joints. Blind and visually impaired swimmers compete within separate categories, being allocated to categories 11, 12 
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