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Abstract. In this paper addresses the determination of stress intensity factor KI using photoelastic experimental  

analysis and numerical technique by finite element method. A compact type (CT) specimen made by polycarbonate 

PSM-1 was submitted to pure tension and a simulation for testing Fracture Mechanics was also performed using 

Ansys® software. Results of both techniques are in agreement of about 3% on average. Methodology for obtaining 

stress intensity factor presented in this work allows application in developing prototypes for mechanical parts. 
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1. INTRODUCTION  

 

Analysis of structural components were increasedly applied with the rise of studies in areas of Fatigue, Fracture 

Mechanics, Structural Reliability and numerical methods. When structures or components have discontinuities such as 

cracks, stress fields existing at the tip of these cracks have singularities. Thus, in these cases, theory of elasticity is not 

sufficient to predict structural behavior of materials under the action of efforts, from the standpoint of determining the 

structure moment of collapse.  A difficulty in making such prediction is due especially to geometry of the crack tip, 

which has a radius of curvature close to zero, generating local stresses that attempt to infinity. With these unique local 

stresses, both yield stress and failure stress of the material may be exceeded, even for small applied loads.  

Fracture Mechanics models takes into account natural state of stress in crack tip (Irwin and De Wit, 1983), 

proposing the use of some parameters, including stress intensity factor K, which considers the loads applied to structure 

and geometry of the crack. Based on these factors, it is possible to take decisions about safety of the structure, 

comparing value of K with value of fracture toughness Kc of the material (Soares,1997). 

Photoelasticity, technique discovered in the early twentieth century, has been used for stress analysis on 

components. It stands for the speed in obtaining results and didactic view of the distributions of stresses throughout the 

component, described by the fringe pattern (Dally and Riley, 2005). In particular, plays an important role in determining 

the stress intensity factors for specific configurations of geometry and loading (Soares,1997). 

 

2. THEORETICAL ASPECTS 

 

Dally and Riley (2005) present Method of Irwin, Method of Various Parameters for determination of KI and Method 

of Overdeterministic. A data set, selected from the region near the crack tip, is used to calculate stress intensity factor 

using photoelastic technique.  

 

2.1. Method of Irwin 

 

Irwin proposed a relationship between stress intensity factor in opening loads, and characteristics of isochromatic 

fringes near the crack tip (Fig. 1). 

Based on experimental observations, Irwin suggested a modification in the equations of Westergaard (Soares,1997) 

introducing of a constant stress σ0x. Thus the stress field near the crack tip would be expressed by equations: 
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where:        
     

 ,  and     
   is remote stress applied in the direction of axis y .   

  is remote stress applied in the 

direction of axis x. 

 

 
 

Figure 1. Geometrical characteristics of the isochromatic crack tip (Dally and Riley, 2005). 

 

Maximum shear stress τm can be expressed as a function of stress components, as given by equation: 
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Therefore:  
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where r is the distance from a given point of isochromatic fringe to the origin of the coordinate system centerd at the 

notch tip and θ is the angle formed by the coordinate axes x and the straight line that connects a given point of the 

isochromatic and origin, in accordance with Fig. 1.  

Observing the geometry of the isochromatic fringes, note that 
   

  
   at the extreme position on the fringe, where 

     and     . Differentiating Eq. (5) with respect to θ and using  
   

  
   , one obtains: 
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Combining Eq. (5) with Eq. (6), results an expression for σox , 

 

    
         

                            
 (7) 

 

Substitution of Eq. (7) into Eq. (5) leads to an expression for stress intensity factor, KI: 
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The term τm in Eq. (8) is determined by taking as basis data provided by isochromatic fringes since the maximum 

shear stress is given by: 

 

   
  

  
 (9) 

 

2.2. Methods of Various parameters for KI determination 

 

Using two methods of parameters, such as Irwin, it is necessary that the used data should be very close to the crack 

tip, in the limited region, for            , in which Eq. (6) is valid. There are two difficulties associated with this 

restriction. The first is that the region          is under three-dimensional stress state and plane state assumptions 
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used in Eq. (6) and Eq. (8) are not valid. To avoid errors arising from this situation, inequality                

must be satisfied. The concept of valid region for methods of two parameters is shown schematically in Fig. 2. 

 

Three-dimensional state

of stress.

Plane stress with accurate

two-parameter representation

Two-parameter equations are

not valid this far from the

crack tip.
 

 

Figure 2. Concept of the three regions near the crack tip (Dally and Riley, 2005). 

 

The second difficulty relates to the measurement position coordinates, ri and θi, for each point on isochromatic 

fringes. Since the width of the fringe has imprecise definition, it is a source of significant errors. To overcome these 

difficulties, it was used a higher order representation and Eq. (6) was replaced by the following equation: 
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The coefficients A0, A1, A2, B0, B1 and B2 are unnamed and must be determined. Stress intensity factor, KI, can then 

be obtained based on values A0 and σx, which in turn are obtained through B0. 
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Other coefficients are included only for increasing the accuracy of KI. Substituting Eq. (10) and Eq. (11) in Eq. (4), 

results: 
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where: 
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2.3. Overdeterministic Method 

 

Equation (12) is not linear and matrix methods associated with linear algebra cannot be applied. To solve it, iterative 

methods must be used to seek solution of the problem. One of these methods is the overdeterministic method proposed 

by Dally (Dally and Riley, 2005). The use of a large number of data (greater than the number of unknowns) leads to a 

set of relationships with overdeterministic in the form of Eq. (12). A solution based on the method of least squares is an 

alternative to solve this problem. The solution is obtained by defining a function   , based on Eq. (12): 
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where the subscript k indicates that   value is evaluated at point (rk, θk) in isochromatic order Nk, located on zone  II  in 

Fig. 2. Since both Dk and Tk  depend on An and Bm, when correct values of these constants are used in Eq. (15), value of 

   will be equal zero for all values of K. Iterative processes assign initial values to the coefficients. As these values are 

not correct,    will be nonzero. The correction process is done interactively expanding    in Taylor series, according to 

Eq. (16):  
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Since      (Eq. 15): 

 

   
  

   
 

   
    

   
 

   
      

   
 

   
    

   
 

   
                                                                                                                (17) 

 

In matrix form: 
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where, 
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L is the total number of sample points; M and N are the upper truncation of the series. It is usually enough to make N 

= M = 2 to obtain a series with six terms with L = 5 (N + M +2) sampled points.  Partial derivatives are obtained based 

on Eq. (20): 
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The system shown in Eq. (18) is solved by method of least squares, multiplying both sides of equation by transposed 

matrix [c], resulting in Eq. (21). 

 
                                                                                                                                                                                        (21) 

  

Setting             : 
 
                                                                                                                                                                                        (22) 

 

Iterative process was used to obtain An and Bm  coefficients, as follows:  

  

1) Select points on isochromatic fringe patterns in zone II,  with “L” significant points for representation of these 

fringes. Join for each L points, data set (rk, θk, Nk). 

2) Assume initial values for coefficients A0, A1, ..., AN, ..., B0, B1, ..., BM. The algorithm is not sensitive to initially 

adopted values.   

3) Calculate elements of the matrices [c] and [g].  

4) Solve Eq. (22) and correct estimates for the unknown constants, using Eq. (23): 
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5) Repeat steps 3 and 4 until all increments ΔA0, ..., ΔBM become  sufficiently  small. Convergence is  rapid  and  

usually  reach  good results with less than 10 iterations.   

6) KI is determined using Eq. (11). 
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3. EXPERIMENTAL ANALYSIS  

 

In photoelasticity, the determination of more accurate results depends on several factors, including choice of 

material. For this reason, it was chosen to build a specimen polycarbonate material made of PSM-1 material, certified, 

seeking thereby to improve reliability of the test in order to determine stress intensity factor. Size and specimen used in 

trials can be seen in Figures 3 and 4. 

The specimen was tested in a circular polariscope manufactured by Measurements Group
®
. It was applied a load of 

300N and 50N to 50N stages of the images were captured (Figures 5-11). 

                    
Figure 3. Measurements of                            Figure 4. Photoelastic Specimen.      Figure 5. Applied load of 0N. 

                specimen in mm.                                  . 

 

                     
 Figure 6. Applied load of 50N.               Figure 7. Applied load of 100N.           Figure 8. Applied load of 150N. 

 

      
  Figure 9. Applied load of 200N.            Figure 10. Applied load of 250N.        Figure 11. Applied load of 300N. 
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Images captured by the system, were processed using two software developed by (Soares, 1997): FOTOFRAN and 

FOTOVISTA. The first allows to treat images (modify contrast, brightness, apply filters, etc..) skeletonized, refining, 

labeling isochromatic fringes and preparing the data for calculation of the Stress Intensity Factor, which is performed by 

the second software. It is shown in Fig. 12 the steps developed by software FOTOFRAN.  

The method of calculating stress intensity factor used was the Overdeterministic Method proposed by Dally (Soares, 

1997; Dally and Riley, 2005). These calculations were performed in several load steps, starting at P = 50N, and from 

which isochromatic became clear enough to be processed by load P = 300N, corresponding to the end of the test. 

To illustrate this process, consider fringe pattern of Fig. 10, corresponding to load P = 250N. This image, after 

filters applications to improve their quality was skeletonized by software FOTOFRAN. From this point, this software 

generates a file FOTOFRAN to calculate stress intensity factor value, KI, in FOTOVISTA. Figure 13 shows functions 

processed using FOTOVISTA. 

Scan Image

- Camera

- Software to convert extension JPG in

PCX

Digital Preprocessing

- Photo Retouching

- Operations on Geometric Image

- Analysis of Light Intensity

- Analysis of Histograms

- Application of Filters
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Figure 12. Steps undertaken in the                              Figure 13. Steps undertaken in the software FOTOVER.  

   software FOTOFRAN.  

 

4. NUMERICAL ANALYSIS  

 

To perform numerical analysis in order to determine stress intensity factor, numerical models were similar to those 

adopted in the experimental photoelastic analysis. It was adopted the same parameters of the photoelastic test. 

All numerical simulation analysis were performed using finite element ANSYS
®
 Software. It was built on a model 

element PLANE82 as in Fig. 3. Importantly, this element has a mobile intermediate node, which is a necessary feature 

for calculating stress intensity factor. 

The following physical properties PSM-1 were used: 

 Modulus of elasticity (E): E = 2,39 GPa for temperatures between -20 ºC and 43 ºC; 

 Poisson's ratio (υ): υ = 0,383 

 Density (ρ): ρ = 1170Kg/m³ 

After being defined all basic assumptions, as element type to be used and descriptions of physical properties of the 

material, a study was conducted to validate numerical analysis from Dowling (1999) quotations, which presents 

numerical solution for point loading given by Eq. (24): 

 

    
 

   
                                                                                                                                                                                      (24) 

 

where P = load in the elastic; b = width; t = thickness and   = constant tabulated that comes from a/b. 

The Ansys
®

 software is used widely for Calculating Stress intensity factor. Some works performed by Miranda et al. 

(2003), Patrama et al. (2005), Phan (2006) and several other authors, used this tool for determining stress intensity 
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factor. Its use had good accuracy for the study conducted here, as in test case (Phan, 2006). Values obtained for this 

study showed a difference of 3.3% compared between numerical analysis and experimental results. 

KSCON use the command to generate mesh at the crack tip, and this command was used with the following 

parameters:  

 Radius of the first layer of elements = 1x10
-4

m; 

 Ratio between the length of the second and the first layer of elements = 0,25; 

 Number of elements around the crack tip = 11; 

 Location of central nodes of singular elements: distance to the crack tip a quarter of length of the 

edge. 

Calculation of stress intensity factor KI was carried out by the command KCAL. It was adopted physical properties 

PSM-1, and the boundary conditions of the test, as loadings and restrictions. The method used by Ansys
®
 software to 

determine the stress intensity factor was direct displacement extrapolation. 

 

5. RESULTS  

 

5.1. Experimental Analysis 

 

It was calculated stress intensity factor KI for various applied loads, starting at P = 0N to P = 300N, an increment of 

50N. For each applied load, this procedure was performed six times, resulting in six values of KI. Table 1 shows the 

results of this calculation and Fig. 14, a graph of values of KI to the loading adopted.  

 

Table 1. Results of experimental analysis of photoelastic 

  

Load 

[N] 

Measure 1 

[MPa.m1/2] 

Measure 2 

[MPa.m1/2] 

Measure 3 

[MPa.m1/2] 

Measure 4 

[MPa.m1/2] 

Measure 5 

[MPa.m1/2] 

Measure 6 

[MPa.m1/2] 

Average 

[MPa.m1/2] 

Standard 

Deviation 

[MPa.m1/2] 

0 0 0 0 0 0 0 0 0 

50 0.212329 0.326203 0.462402 0.470455 0.18932 0.187793 0.308035 0.1213 

100 0.465936 0.515887 0.594135 0.552481 0.579205 0.546453 0.542349 0.0422 

150 0.855659 0.912981 0.862186 0.750758 0.901856 0.748429 0.838644 0.0661 

200 1.179855 0.914606 1.152252 1.166865 1.151114 0.801970 1.061110 0.1474 

250 1.382246 1.360083 1.392829 1.406468 1.340452 1.405839 1.381319 0.0241 

300 1.543460 1.947239 1.933417 1.779004 1.326192 1.471922 1.666872 0.2351 

 

 
 

Figure 14. Graph of test results with experimental photoelastic technique: Load x KI. 

 

5.2. Numerical Analysis 

 

Numerical analysis by finite element method obtained values of Stress intensity factor KI, for the same loads that 

were made in photoelastic analysis. Figures 15 to 20 show the distribution of difference between principal stresses (σ1-

σ2). For these stress differences, there is a need to make a calibration range of results. 

Table 2 shows results of calculation of KI and Fig. 21, a graph of values of KI in relation to loads used. 
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Figure 15. Principal stress difference (σ1-σ2) in Ansys

®
,      Figure 16. Principal stress difference (σ1-σ2) in Ansys

®
,  

                  for P=50N.                                    for P=100N. 

       
Figure 17. Principal stress difference (σ1-σ2) in Ansys

®
,        Figure 18. Principal stress difference (σ1-σ2) in Ansys

®
,  

                  for P=150N.                       for P=200N. 

        
Figure 19. Principal stress difference (σ1-σ2) in Ansys

®
,        Figure 20. Principal stress difference (σ1-σ2) in Ansys

®
,  

                  for P=250N.                       for P=300N. 

 

Table 2. Results of numerical analysis by finite element method 

 
Load 

[N] 

Measure 

[MPa.m1/2] 

0 0 

50 0.27179 

100 0.54358 

150 0.81538 

200 1.08720 

250 1.35900 

300 1.63080 
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Figure 21. Graph of numerical analysis results by finite element method: Load x KI. 

 

5.3. Comparison of Results  

 

Table 3 shows the comparison of results for values of stress intensity factor KI and yet difference in results. 

 

Table 3. Comparison of results for the values of stress intensity factor  KI  

 

Load 

[N] 

Measure - FOTOVER 

[MPa.m
1/2

] 

Measure - ANSYS
®

 

[MPa.m
1/2

] 

Difference [%] 

FOTOVER / ANSYS
®

 

0 0 0 0.000 % 

50 0.308035 0.27179 11.767 % 

100 0.542349 0.54358 -0.227 % 

150 0.838644 0.81538 2.774 % 

200 1.061110 1.08720 -2.459 % 

250 1.381319 1.35900 1.616 % 

300 1.666872 1.63080 2.164 % 

  

An important consideration to be made is that, since the studies by using photoelasticity models are developed, it is 

necessary that results could be extrapolated to prototype. Relationship between model and prototype was established 

using model theory and dimensional analysis, as described by Carneiro (1996). 

Compared results obtained by experimental analysis and numerical analysis, are shown in Fig. 22. 

 

 
 

Figure 22. Graph comparing experimental and numerical analysis results: Load x KI. 
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6. CONCLUSIONS  

 

The methodology used in this analysis presented an alternative photoelastic experimental method valid and reliable 

for determining stress intensity factor KI caused by static loading. Preparation of specimens used in the test were 

relatively simple but requires some care in specimen preparation, so as not to cause stress concentrations in machining, 

as this could cause interference in the results. The greater difference experimental and numerical analysis results was 

found to be of 11.70%, and obtained an average difference of at most ± 3%, where these values  are within satisfactory 

limits. It is emphasized that one should take care with a very low load values, because sampling of fringes are very 

small, as seen in the results as obtained for the loading of 50N, which explains one of the possibilities for the large 

difference obtained in this loading. For applied load of 300N, one must be very careful for avoiding a possible lateral 

buckling, although it was not perceived in this test. 
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