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Abstract. This work deals with the enriched methods applied to vibration analysis of framed structures. These methods 
have as main feature the enrichment of the shape functions space of the classical FEM by adding other non polynomial 
functions. The variational problem of free vibration of bars and beams is formulated and the main aspects of some 
enriched methods are discussed. The Assumed Mode Method (AMM), the Composite Element Method (CEM), the p 
Fourier element and the Generalized Finite Element Method (GFEM) are presented. These approaches result in 
hierarchical refinements. The application of these enriched methods in vibration analysis of framed structures is 
investigated. The eigenvalues obtained by enriched methods are compared with those obtained by analytical solution 
and by h and p-versions of FEM. The numerical results show that GFEM is the enriched method that has the highest 
rates of convergence and the better results. 
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1. INTRODUCTION  
 

The Finite Element Method (FEM) is the numerical method commonly used in vibration analysis of structures. Its 
approximated solution can be improved using two refinement techniques: h and p-versions. The h-version consists of 
the refinement of element mesh; the p-version may be understood as the increase in the number of shape functions in 
the element domain without any change in the mesh. The conventional p-version of FEM consists of increasing the 
polynomial degree in the solution. The h-version of FEM gives good results for the lowest frequencies but demands 
great computational cost to work up the accuracy for the higher frequencies. The accuracy of the FEM can be improved 
applying the polynomial p refinement. 

Some enriched methods based on the FEM have been developed in last 20 years seeking to increase the accuracy of 
the solutions for the higher frequencies with lower computational cost. Engels (1992), Ganesan and Engels (1992) 
present the Assumed Mode Method (AMM) which is obtained adding to the FEM shape functions set, some interface 
restrained assumed modes. The Composite Element Method (CEM) (Zeng, 1998a, b and c) is obtained by enrichment of 
the conventional FEM local solution space with non-polynomial functions obtained from analytical solutions of simple 
vibration problems. A modified CEM applied to analysis of beams is proposed by Lu and Law (2007). The use of 
products between polynomials and Fourier series instead of polynomials alone in the element shape functions is 
recommended by Leung and Chan (1998). They develop the Fourier p-element applied to the vibration analysis of bars, 
beams and plates. A formulation of the Generalized Finite Element Method (GFEM), which was conceived on the basis 
of the Partition of Unity Method (Melenk and Babuska, 1996) allowing the inclusion of a priori knowledge about the 
fundamental solution of the governing differential equation, was developed by Arndt, Machado and Scremin (2007 and 
2009) for vibration analysis of bars and beams. These methods have the same characteristics and they will be called 
enriched methods in this work.  

This work discusses and compares the enriched methods in free vibration analysis of framed structures. 
 
2. STRUCTURAL FREE VIBRATION PROBLEM 
 

The structural free vibration problem is an eigenvalue problem with variational statement: find a pair ( )u,λ , with 
)(Ω∈Hu  and R∈λ , so that 

 
),(),( wuFwuB λ= , Hw∈∀                                                                                                                (1) 

 
where RaHHB ×:  and RaHHF ×:  are bilinear forms. 

In numerical methods, finite dimensional subspaces of approximation )(Ω⊂ HH h  are chosen and the variational 

statement becomes: find R∈hλ  and )(Ω∈ h
h Hu  so that 
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),(),( wuFwuB hhh λ= , hHw∈∀  (2) 

 
So the free vibration of a bar becomes an eigenvalue problem with variational statement: find a pair ( )u,λ , with 

),( LHu 01∈  and R∈λ , which satisfies Eq. (1) when H space is ),( LH 01 , 2ωλ = and L is the bar length. The 
bilinear forms B and F in Eq. (1) for Dirichlet and Neumann boundary conditions are: 

 

dx
dx
dw

dx
duEAwuB

L

∫=
0

),(  (3) 

 

wdxAuwuF
L

∫=
0

ρ),(  (4) 

 
where A is the cross section area, E is the Young modulus, ρ is the specific mass and u is the axial displacement.  

Otherwise the free vibration of a beam is an eigenvalue problem with variational statement: find a pair ( )v,λ , with 

),( LHv 02∈  and R∈λ , which satisfies Eq. (1) when H space is ),( LH 02 , vu = , 2ωλ = and L is the beam length. 
In this case the bilinear forms B and F in Eq. (1) for Dirichlet and Neumann boundary conditions are: 

 

( ) dx
dx

wd
dx

vdEIwvB
L

2

2

0
2

2

∫=,  (5) 

 

( ) wdxAvwvF
L

∫=
0

ρ,  (6) 

 
where I is the second moment of area, A is the cross section area, E is the Young modulus, ρ  is the specific mass and v 
is the beam lateral displacement. 

 
3. ENRICHED METHODS 
 

Several methods found in the literature have as main feature the enrichment of the shape functions space of the 
classical FEM by adding other non polynomial functions. In this work such methods will be called enriched methods. 
Actually the Assumed Mode Method (AMM) of Ganesan and Engels (1992), the Composite Element Method (CEM) of 
Zeng (1998a, b and c) and the Fourier p-element of Leung and Chan (1998) are enriched methods. The Generalized 
Finite Element Method (GFEM) of Arndt, Machado and Scremin (2007 and 2009), although based on the Partition of 
Unity Method, can be considered an enriched method. Their main characteristics are: (a) they use non polynomial shape 
functions; (b) the introduction of boundary conditions follows the standard finite element procedure; (c) hierarchical p 
refinements are easily implemented and (d) they present more accurate results than conventional h-version of FEM. 

The approximated solution of the enriched methods, in the element domain, is obtained by: 
 

e
ENRICHED

e
FEM

e
h uuu +=  (7) 

 
or in matrix form 

 
qØqN TTe

hu +=  (8) 
 

where e
FEMu  is the FEM displacement field based on nodal degrees of freedom, e

ENRICHEDu  is the enriched displacement 
field based on field degrees of freedom, q  is the conventional FEM degrees of freedom vector, the vector N contains 
the classical FEM shape functions and the vectors Ø  and q  contain the enrichment functions and the field degrees of 
freedom, respectively. The vectors Ø  and q  can be defined by: 

 
( ) [ ]nr FFFF KK21=Τ ξØ  (9) 
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[ ]n
T ccc L21=q  (10) 

 

eL
x

=ξ  (11) 

 
where rF  are the enrichment functions, rc  are the field degrees of freedom and eL  is the element length. Different sets 
of enrichment functions produce different enriched methods. The enrichment functions spaces of the main enriched 
methods are described as follows. 

 
3.1. Enriched C0 elements 
 

C0 elements are used in free vibration analysis of bars and shafts. In this section the enriched C0 elements are 
described. In all these enriched methods the FEM displacement field corresponds to the classical FEM with two node 
elements and linear Lagrangian shape functions. Only the enrichment functions are different. 

In the AMM proposed by Engels (1992) the enrichment functions are the normalized analytical solutions of the free 
vibration problem of a fixed-fixed bar in the form  

 
( )πξrCFr sin= ,    K,,21=r  (12) 

 
where C is the mass normalization constant given by 

 

eAL
C

ρ
2

= . (13) 

 
The CEM enrichment functions proposed by Zeng (1998b) are trigonometric functions in the form 

 
( )πξrFr sin= ,    K,,21=r  (14) 

 
They differ to those of AMM just by the normalization.  

The enrichment functions used by Leung and Chan (1998) in the bar Fourier p-element and by Zeng (1998b) in the 
CEM are the same. 

The GFEM enriched displacement field proposed by Arndt, Machado and Scremin (2007) is 
 

( ) ( ) ( )∑ ∑
= =

⎥
⎦

⎤
⎢
⎣

⎡
=

2

1 1i

n

j
ijji

e
ENRICHED

l

au ξγξηξ  (15) 

 
ξη −= 11  (16) 

 
ξη =2  (17) 

 
)(sin πξγ jj =  ,     lnj ,,2,1 K=  (18) 

 
where iη are partition of unity functions, jγ  are trigonometric functions, nl is the number of enrichment levels and aij 

are the field degrees of freedom related to the functions jγ . 
It is noteworthy that all the shape functions vanish at element nodes. This feature allows the introduction of 

boundary conditions following the standard finite element procedure. 
 
3.2. Enriched C1 elements 
 

C1 elements are used in free vibration analysis of Euler-Bernoulli beams. In this section the enriched C1 elements are 
described. The FEM displacement field in the enriched methods corresponds to the classical FEM with two node 
elements and cubic Hermitian shape functions. The enrichment functions are described below. 
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In the AMM four different enrichment functions are proposed. Engels (1992) used analytical free vibration normal 
modes of a clamped-clamped beam in the classical form  

 
( ) ( ) ( ) ( )[ ]{ }ξλξλαξλξλ rrrrrrr CF coscoshsinsinh −−−= ,    K,,21=r  (19) 

 

2

1

re

r
AL

C
αρ

=  (20) 

 
( ) ( )
( ) ( )rr

rr
r λλ

λλ
α

coscosh
sinsinh

−
−

=  (21) 

 
where Cr is the mass normalization constant for the rth mode and rλ  are the eigenvalues associated to the analytical 
solution obtained by the following characteristic equation 
 

( ) ( ) 01 =−rr λλ coshcos  (22) 
 

Alternatively, Ganesan and Engels (1992) propose enrichment functions based on the same analytical solution but in 
the form presented by Gartner and Olgac (1982) given by 
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where rλ  are the eigenvalues obtained by solving the equation 

 

( ) 0
1
2

2 =
+

− −

−

r

r

e
e

r λ

λ

λcos  (24) 

 
According to Ganesan and Engels (1992), neglecting re λ−  because 1<<− re λ , Eq. (23) can be approximated as 
 

( ) ( )
⎥
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⎤
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⎡
−−+⎟
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e
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and rλ  can be approximated by π)( 21+r  to within 0,01% error for  2≥i . 

Ganesan and Engels (1992) also propose trigonometric enrichment functions in the following form 
 

( )[ ] ( )[ ]πξπξ 11 +−−= rrFr coscos  (26) 
 
The Composite Element Method (CEM), proposed by Zeng (1998c), uses enrichment functions given by: 
 

( ) ( ) ( ) ( )[ ]ξλξλ
λλ
λλ

ξλξλ rr
rr

rr
rrrF coshcos

coshcos
sinhsinsinhsin −

−
−

−−=  (27) 

 
corresponding to the clamped-clamped beam free vibration solution where rλ  are the eigenvalues obtained by the 
solution of Eq. (22). 

Leung and Chan (1998) propose two types of enrichment functions based on the Fourier series: the cosine version 
 

( )πξrFr cos−= 1  (28) 
 

and the sine version  
 

( ) ( )πξξξ rFr sin−= 1  (29) 
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The cosine version is the simplest but is not recommended when modeling a free of shear forces structure with only one 
element. Leung and Chan (1998) also noted that the cosine version fails to predict the clamped-hinged and clamped-
clamped modes of beams. 

The GFEM enriched displacement field proposed by Arndt, Machado and Scremin (2009) is 
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where iη are the linear partition of unity functions defined in Eq. (16) and Eq. (17), nl is the number of enrichment 

levels, aij are the field degrees of freedom and jλ  are the eigenvalues obtained by the solution of Eq. (24). 
It is noteworthy that all these shape functions and their first derivatives vanish at element nodes. Again this feature 

allows the introduction of boundary conditions following the standard finite element procedure. 
 
4. APPLICATION 
 

Numerical solutions for a bar and a beam are given below to compare the different enriched methods. To check the 
efficiency of these methods the results were compared to those obtained by h and p-versions of FEM. 

The number of degrees of freedom (ndof) considered in each analysis is the total number of effective degrees of 
freedom after introduction of boundary conditions. 

 
4.1. Uniform fixed-free bar 
 

The free axial vibration of a fixed-free bar (Fig. 1) with length L, elasticity modulus E, mass density ρ and uniform 
cross section area A, has exact natural frequencies ( rω ) given by: 

 
( )

ρ
πω E

L
r

r 2
12 −

=      , K,,21=r  (32) 

 

 
 

Figure 1. Uniform fixed-free bar 
 

In order to compare the exact solution with the approximated ones, in this example a non-dimensional 
eigenvalue rχ  given by: 

 

E
L r

r

22ωρχ =       (33) 

 
will be used. 

To check the efficiency of the enriched methods the results were compared to those obtained by h-version of FEM 
and by p-version of FEM. In the analyses by p-version of FEM and by all the enriched methods, the bar was described 
geometrically by one element and the successive refinements were obtained increasing the number of shape functions. 
Figures 2 to 4 present the behavior of relative error for the six earliest eigenvalues in logarithmic scale. 
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Figure 2. Relative error (%) for the 1st and 2nd bar eigenvalues 
 

 
 

Figure 3. Relative error (%) for the 3rd and 4th bar eigenvalues 
 

 
 

Figure 4. Relative error (%) for the 5th and 6th bar eigenvalues 
 
Analyzing the results obtained for the fixed-free bar, one observes that the results obtained by CEM / Fourier and by 

AMM are identical and all enriched methods show convergence rates greater than the linear h refinement of the FEM. 
The cubic h-version of FEM shows better results than CEM / Fourier and AMM just for three earliest eigenvalues and it 
shows worst results than GFEM for all eigenvalues. The hierarchical p refinement of the FEM has greater accuracy than 
CEM / Fourier and AMM. Otherwise, the GFEM showed worst precision than the p version of the FEM just for the first 
eigenvalue. 
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4.2. Uniform clamped-free beam 
 

The free vibration of an uniform clamped-free beam in lateral motion (Fig. 5), with length L, second moment of area 
I, elasticity modulus E, mass density ρ  and cross section area A, is analyzed in order to compare the enriched methods.  

 

 
 

Figure 5. Uniform clamped-free beam 
 
The analytical natural frequencies ( rω ) of this beam are obtained by the solution of the equation: 

 
( ) ( ) 01 =+LL rr κκ coshcos      , K,,21=r  (34) 

 

4

2

EI
Ar

r
ρωκ =  (35) 

 
To check the efficiency of the enriched methods the results were compared to those obtained by h-version of FEM 

and by p-version of FEM. The eigenvalue Lrr .κχ =  is used to compare the analytical solution with the approximated 
ones. In the analyses by p-version of FEM and by all the enriched methods, the beam was described geometrically by 
one element and the successive refinements were obtained increasing the number of shape functions. Figures 6 to 9 
present the evolution of relative error for the eight earliest eigenvalues in logarithmic scale.  
 

 
 

Figure 6. Relative error (%) for the 1st and 2nd beam eigenvalues 
 

Analyzing the results obtained for the clamped-free beam, one observes that all enriched methods show more 
precise results than the h refinement of the FEM for all eigenvalues except the first. The hyperbolic AMM, the 
exponential AMM and the CEM present similar results. Their results are more precise than those obtained by sine and 
cosine versions of p Fourier element and by trigonometric AMM. The GFEM is the enriched method that presents the 
best results and the highest convergence rates. The GFEM presents more accurate results than the p version of FEM for 
eigenvalues of order higher than six.  
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Figure 7. Relative error (%) for the 3rd and 4th beam eigenvalues 
 

 
 

Figure 8. Relative error (%) for the 5th and 6th beam eigenvalues 
 

 
 

Figure 9. Relative error (%) for the 7th and 8th beam eigenvalues 
 

5. CONCLUSION 
 

This work presents the variational form to the free vibration problem of straight bars and Euler-Bernoulli beams 
with classical boundary conditions.  

 The numerical methods that have as main feature the enrichment of the shape functions space of the classical FEM 
by adding other non polynomial functions were here called enriched methods. Among these methods one can cite: 
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AMM, CEM, p Fourier element and GFEM. The C0 and C1 elements of these methods and their properties were 
discussed in this work.  

To compare these methods, some eigenvalues of free vibration of a fixed-free bar and a clamped-free beam were 
calculated. The enriched methods were compared to h and p refinements of FEM. The results have shown that the 
GFEM presents convergence rates greater than those obtained from h refinement of FEM and the other enriched 
methods for all eigenvalues obtained. Moreover the GFEM results for eigenvalues with order higher than one for the bar 
problem and higher than six for the beam problem were better than those obtained by the p refinement of FEM.  
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