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Abstract. Literature presents numerous constitutive models that describe the phenomenological features of the 

thermomechanical behavior of shape memory alloys (SMAs). The present paper introduces a novel three-dimensional 

constitutive model that describes the martensitic phase transformations within the scope of standard generalized 

materials. The model considers four macroscopic phases associated with austenitic phase and three variants of 

martensite. The use of these phases are motivated by one-dimensional models and each one of them can be induced 

either by volumetric or by deviatoric strains. Besides, plasticity and transformation induced plasticity (TRIP) are also 

of concern. Numerical simulations show that the proposed model is able to capture the general thermomechanical 

behavior of SMAs.  
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1. INTRODUCTION  

 
Shape memory alloys (SMAs) have unique characteristics that make possible their application in different areas of 

human knowledge. The thermomechanical behavior of these materials presents complex responses related to distinct 
phenomena. The constitutive modeling of SMAs is related to the macroscopic phenomenological features being based 
on mechanics of continua and thermodynamics (Popov & Lagoudas, 2007; Paiva & Savi, 2006). Savi & Paiva (2005) 
and Lagoudas (2008) presented an overview of the SMA modeling with emphasis on phenomenological constitutive 
models. The intent of this article is to present a three-dimensional constitutive model to describe thermomechanical 
behvarior of SMAs including plasticity and transformation induced plasticity (TRIP).  

Regarding the plastic behavior of SMAs Baêta-Neves et al. (2004) and  Paiva et al. (2005)  presented one-
dimensional models that couple phase transformation and plasticity. Recently, Hartl et al. (2010) exploited the idea of 
plastic behavior of SMAs investigating the interaction between phase transformations and yield surface. The classical 
plasticity is a different phenomenon from the so-called transformation induced plasticity (TRIP). While the classical 
plasticity results from an applied stress or a temperature change, TRIP is caused by the variation of phase proportions, 
even for low-stress levels. Therefore, it is possible to observe plastic strains due to TRIP even inside the yield surface 
(Leblond et al., 1989, Gautier et al. 1989; Gautier, 1998, Fischer et al. 2000, 1996, Sato & Tanaka, 1988). Concerning 
the TRIP effect, this is characterized by the growth of a nonlinear irreversible deformation, while the phase 
transformations is occurring in the solid state and results of internal tensions arising either by volume change 
(Greenwood & Johnson, 1965) or change in shape (Magee, 1966, Marketz & Fischer, 1994).  

This paper proposes a three-dimensional constitutive model developed in the framework of continuum mechanics 
and generalized standard materials that is inspired on the one-dimensional model that is able to describe TRIP and 
plasticity behavior of SMAs in a flexible way (Paiva et al., 2005). This one-dimensional model is built upon the 
Fremenod’s model (Fremond, 1996). The numerical simulations are performed for uniaxial and multiaxial tests 
considering a single point response that shows the capability of the proposed model to capture the general 
thermomechanical behavior of SMAs. 
 

2. CONSTITUTIVE EQUATIONS 

 
The constitutive modeling of SMAs can be done within the framework of generalized standard materials under the 

assumption that the thermodynamic state of the material can be completely defined by a finite number of state variables, 
see Lemaitre & Chaboche (1990). Under this assumption, the thermomechanical behavior can be described by the 
Helmholtz free energy density, �, and the pseudo-potential of dissipation, �. 

Experimental studies have revealed key aspects of the thermomechanical behavior of SMAs. Basically there are two 
possible phases: austenite and martensite. In the martensitic phase, different orientations of crystallographic 
deformation of the plates constitute what is known as martensitic variants. In the case of three-dimensional 
environment, there are 24 possible martensitic variants that are organized into six groups of four plate variants by group 
card. As the crystal structure of martensite is less symmetrical than the austenite, only one variant is created on the 
reverse transformation (Zhang et al., 1991; Schroeder & Wayman, 1977). 



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

The three-dimensional description of the thermomechanical behavior of SMAs is usually inspired on one-
dimensional models using a limited number of martensitic variants. Motivated by the one-dimensional models, the 
proposed model considers four macroscopic phases: austenite ���, the twinned martensite ���, which is stable in the 
absence of a stress field, and two other martensitic phases (�	and �
). The definition of the Helmholtz free energy 
density proposes different expressions for each of the macroscopic phases, assuming that they are functions of strain, 
and temperature �. 

 �	: 
������� , �, �, ���� = �� �������� �� + 2������ ���� � −  ! − "� − #����� − �$����� + � � %��� + ��&' ������  �
: 
������� , �, �, ���� = �� �������� �� + 2������ ���� � +  ! − "� − #����� − �$����� + �� %��� + ��&' ������  �: 
�(����� , �, �, ���� = �� ��)����� �� + 2�)���� ���� � − ") − #��)  �� − �$����� + �� %)�� + ��&* ������  . �: 
�,����� , �, �, ���� = �� �������� �� + 2������ ���� � + "� − #����� − �$����� + �� %��� + ��&' ������    

  
   

                  (1) 

 
Here the indices � and � are related to the martensitic and austenitic phases, respectively; � and � are the Lamé 

coefficients,   is a parameter related to the hysteresis loop, and "� and ")are temperature functions that define the 
stress level of phase transformation; #��  is a tensor related to the thermal expansion coefficients, �$is a reference 
temperature that indicates stress-free state; % is the plastic modulus, - is the kinematic hardening coefficient; the 
internal variable � is related to isotropic hardening and ��� is kinematic hardening tensor; finally, 
 is the material 
density. Moreover, it is defined an equivalent strain field as, 

 ! = �( ���� + �( ./31��.sign����� �                                                                                                                                     (2) 

 
that is dependent of: 
 1�� = �6 7����� − ���� �� + ����� − �((� �� + ��((� − ���� �� + 6������ �� + ���(� �� + ���(� ���9                   

                               
(3) 

 ���� = ���� + ���� + �((�                (4) 
 where  sign����� � = >+1,          if  ���� ≥ 0−1,          if  ���� < 0D                                            

 
The equivalent strain field, !, contributes to the phase transformations taking into account that phase 

transformations can be induced either by volume expansion (represented by the first term), or by deviatoric effect 
(represented by the second term). This hypothesis is based on experimental observations showing that both effects 
induce the phase transformation. Torsion tests indicate that the experimental stress-strain curves are qualitatively similar 
to those obtained in tensile tests (Jackson et al., 1972; Manach & Favier, 1997; Aguiar et al., 2010). Under this 
assumption, the equivalent field ! can be interpreted as an inductor of phase transformations, which defines what kind 
of martensitic variant is induced. Note that if ! ≥ 0  the �	

 variant is induced. On the other hand, the �
variant is 
induced when ! < 0. Furthermore, it should be noted that, since the sign of shear stress does not appear in this inductor, 
it has a neutral influence, tending to follow the influence of volume expansion.   

At this point, it is necessary to define the free energy density of the mixture, setting the volume fraction of 
martensite variants E� and E�, associated with de twinned martensite (�	and �
, respectively) and  E(, for the 
austenite ���. The fourth phase is associated with twinned martensite ��� and its volume fraction. 

 
������ , �, �, ��� , E�, E�, E(, E,� = 
 ∑ EG,GH� �G����� , �, �, ���� + IJ �E�, E�, E(, E,�                                                     (5) 
 

whereIJ �E�, E�, E(, E,� is  the indicator function associated with the convex set Θ  (Rockafellar, 1970) establishing the 
conditions for coexistence of phases: 
 Θ = LEG ∈  ℜ O0 ≤ EG ≤ 1�Q = 1,2,3,4�;  E� + E� + E( + E, = 1 E� = E� = 0   if   T�� = 0   and   E�W = E�W = 0  DX                                                                         (6) 

 
The restrictions 0 ≤ EG ≤ 1�Q = 1,2,3,4� and E� + E� + E( + E, = 1    are related to the coexistence of phases. 

Moreover, the phases �	  and �
  should not appear for a stress-free state. In order to consider this aspect of the 
physical behavior, it is adopted the restriction E� = E� = 0    if T�� = 0 and E�W = E�W = 0  where E�Wand E�W provide 
information about the loading history and corresponds respectively to the values of E�   and E� when each phase 
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transformation begins. Now, it is possible to use the condition E, = 1 − E� − E� − E(  to define a free energy density in 
terms of only three macroscopic phases: 

 
������ , �, �, ��� , E�, E�, E(, E,� = 
7E���� − �,� + E���� − �,� + E(��( − �,� + �,9 + IY  �E�, E�, E(�              (7) 
 
The indicator function IY  �E�, E�, E(� is related to the convex set defined as follows, which can be geometrically 

interpreted by a tetrahedron in the  E�, E�, E( −space, shown in Fig.1. 
 Z = LEG ∈  ℜ O 0 ≤ E[ ≤ 1�\ = 1,2,3�;  E� + E� + E( ≤ 1 E� = E� = 0   if   T�� = 0   and   E�W = E�W = 0  DX                                                                                (8) 
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Figure 1. Tetrahedron of the constraints π. 

 

Therefore, the free energy density of the mixture has the following form: 
 
������ , �, �, ��� , E�, E�, E(� =  ! ]E� − 1β ^ − "�E� + E�� + _�� ��) − �������� ��  +     ��) − ������� ���� −�#��) − #������ − �$����� − "( + �� �%) − %���� + ` ��&* −      ��&'a ������b E( + _�� ������� �� + ������ ���� b −#����� − �$����� + "( + �� %��� + ��&' ������ + IY  �E�, E�, E(�             

             

                                                         (9) 

 
where " = 2"�  and "( = "� + "). The elastic strain is defined by establishing an additive decomposition given by: 
 ���� = ��� − ���c − ���dc +  ��e �E� − E��sign����� �                                                                                                          (10) 

 
where ���c  

is the plastic deformation, ���dcis the TRIP deformation and  ��e  is responsible for the horizontal size of the 
hysteresis loop. 

From the generalized standard material approach, the thermodynamical forces associated with each internal variable 
are defined as follows (Lemaitre & Chaboche, 1990): 

 T������� , �, E�, E�, E(� = 
 fgfhijk = ����� l�� + 2����� +  m���E� − E�� − #���� − �$�                                                  (11) n� ∈ −
opq� = ! + " + r� −  ��e #���� − �$� − opqIY                                                                                         (12) n� ∈ −
ops� = −! + " − r� +  ��e #���� − �$� − opqIY                                                                                      (13) n( ∈ −
opt� = "( + r� + ���� �#��) − #������ − �$� − �� �%) − %���� − ` ��&* − ��&*a ������ − optIY                   (14) u�� = −
 fgfhijvw = ����� l�� + 2����� +  m���E� − E�� − #����� − �$� = T��                                                                 (15) 

x�� = −
 fgfhijw = ����� l�� + 2����� +  m���E� − E�� − #����� − �$� = T��                                                                  (16) 

y ∈ −
 fgfz = % �                                                                                                                                                        (17) {�� =∈ −
 fgf|ij = − �& ���                                                                                                                                            (18) }� =∈ −
 fgf~i = −o��1�                                                                                                                                              (19) 

 
where n� , u, x�� , y, {�� and }� are thermodynamics forces while T�� represents the stress tensor. The preceding equations 
have used the following auxiliary parameters: 

r� = ������ l�� + 2����� � ��e +  �E� − E�� ��(  ��e +  �  ��
O�(�skO sign����� ��                                                                      (20)  
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r� = −������ l�� + 2����� � ��e −  �E� − E�� ��(  ��e +  �  ��
O�(�skO sign����� ��                                                                   (21) 

r( = _�− �� ��)����� �� + 2�)���� ���� � + �� �������� �� + 2������ ���� ��b                                                                          (22) 

 
Where 
  1� = �6 7� ��e −  ��e ������ − ���� � + � ��e −  ((e ������ − �((� � + � ((e −  ��e ���((� − ���� � + 6� ��e ���� +  �(e ��(� + �(e ��(� �9                                                                                                                                                                      (23) 

 
Here the op�� � represents the subdifferential with respect to E[. Note that the material parameter is given by a 

kind of rule of mixtures, being defined as follows: 
 � = �� + E(��) − ���              � = �� + E(��) − ���           #�� = #��� + E(�#��) − #����                                                                                                                                        (24) % = %� + E(�%) − %��         �& = �&' + E( ` �&* − �&'a               

 
It is also important to observe that, 
 

m�� = �( l�� + �(hijk 
h��k �ij(O�(�skO � sign����� �                                                                                                                       (25) 

 
Moreover, the functions Λ and Λ3are temperature dependent as follows: 
 " = 2"� = L−�$ + ��' �� − ���  if  � > �� −�$         if                   � ≤ ��     D                                                                                                                         (26) 

"( = "� + ") = �−�$) + �*�' �� − ���  if � > �� −�$)        if                   � ≤ ��     D                                                                                                                 (27) 

where �� is the temperature below which the martensitic phase becomes stable. Besides, �$, �, �$) and �) are 
parameters related to phase transformation critical stresses. Note that, based on the previous definition, the phase 
transformation stress level is constant for � < �� 

Since ����� l�� + 2����� = ��������, it is possible to rewrite the stress-strain relation as follows: 
 T�� = �������� +  m���E� − E�� − #���� − �$�                                                                                                         (28) 

 
where ����� = ������ + E(������) − ������ �. In case of isotropic materials, Lamé coefficients can be expressed in terms of 
engineering constants as follows: 
 � = ����	����
���   and  � = ����	��                                                                                                                                (29) 

 
where � is the elastic modulus, � is the shear modulus and υ is the Poison ratio. 

The thermomechanical behavior of SMAs is intrinsically dissipative and therefore, it is important to establish the 
pseudo-potential of dissipation that allows the description of dissipative materials. By assuming that this potential may 
be split into mechanical and thermal parts, its mechanical part may be considered as follows: �[∗ �n� , x�� , y, {�� , u, }�� = ���q �n� + ���y + �����{���� + ���s �n� + ���y + �����{���� + ���t �n( − ���y − �����{���� +u����(�E� + ��(E(�E�� + ��(�E� + ��(E(�E�� + ��,(E( + �(,�1 − E� − E� − E(��E�(  + .E��.}� + .E��.}� +.E�(.}( + I¡�nG� + I¢�x�� , y, {�� , u, }��                                                                                                                       (30) 

 
where I¡ = I¡�E��, E��, E�(� is the indicator function related to the convex set χ, that provides constraints associated with 
phase transformation evolution. This set establishes conditions for the correct description of internal sub-loops due to 
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incomplete phase transformations and also to eliminate the phase transformations M+ → M or M− →M (Savi & Paiva, 
2005). Basically, for T��� ≠ 0: ¤ = LE�G ∈ ℜ OΓ�E�� ≥ 0; Γ�E�( ≤ 0  if  Γ > 0Γ�E�� ≤ 0; Γ�E�( ≥ 0  if  Γ < 0DX                                                                                                                         (31) 

And for  T� �� = 0: 

¤ =
¦§§̈
§§©E�G ∈ ℜ ª

ª �� E�� >< 0 if   �� > 0, T < T��«�d  and E�W ≠ 0 = 0, otherwise D
�� E�� >< 0 if �� > 0, T < T��«�d  and E�W ≠ 0= 0, otherwise D

�� E�( ≥ 0−E��� − E��E�( = 0     or   − E��� − E��E�( = 0 
D
®§§̄
§§°

                                        (32) 

where E�W and E�Ware the values of β1 and β2, respectively, when the phase transformation begins to take place. 
Moreover, T��«�d, which actually has different values for tensile or compressive behaviors, is the critical stress value for 
M → M+ and M → M– phase transformations.  

The parameter �[�\ = 1,2,3� is associated with the internal dissipation of each phase of the material, while ��� and ����� are respectively, isotropic and kinematic parameters related to plastic-phase transformation coupling: ��( =�(�, ��( = �(� and �(, = �,(  are parameters associated with the TRIP effect. 
In order to contemplate different aspects of kinetics of phase transformation, parameter iη  may assume different 

values for cases of loading or unloading behaviors: 
 L�� = ���   if   Γ� > 0 �� = ��±   if  Γ� < 0 D                                                                                                                                                   (33) 

 
where ��� and ��±are internal dissipation parameters related to variable E�  during loading or unloading process, 
respectively. 

At this point, it is important to define aspects related to classical plasticity. The indicator function I¢ is associated 
with a function f, which is related to the yield surface: 

 ² = .³�� − ���. − ��( �T´ − %��                                                                                                                                          (34) 

 
where f  obeys the conditions of Kuhn-Tucker condition defined by: 

 µ ≥ 0,        ²�T�� , ��� , �� ≤ 0         and       µ²�T�� , ��� , �� = 0                                                                          (35) 
 

and the consistency conditions, defined by: 
 µ²��T�� , ��� , �� = 0                                                                                                                                                    (36) 

 
Here, ³��  is the deviatoric tensor from T��, T´ is the yield stress of Von Mises and µ is the plastic multiplier. The yield 
stress T´ has different values for austenitic and martensitic phases. For high temperatures the value of T´ tends to 
decrease. Therefore, the yield stress is temperature dependent being defined as follows: 

¦§̈
§© T´ = T�́   if   � ≤ ��  T´ = ¶'· ��*
��	¶*,i· ��
�'��*
�'   if   �� < � ≤ �)

T´ = ¶*,i· ��¸
��	¶*,¹· ��
�*��¸
�*    if    �) < � ≤ �º
D    

                                                                                                      (37) 

 
where �º  is a high value reference temperature and  �) is the temperature above austenite is the only stable phase. 

The description of the TRIP is made by considering the parameter variation with respect to a variable that represents 
the accumulation of phase transformation, ��. Under this assumption, it is possible to control the stress-strain hysteresis 
by considering the following definitions: 
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� =  » �¼	½¾¿�
[�~q�¼	� �   if  Γ ≥ 0 =  » �¼	½¾¿�
[�~s�¼	� �  if Γ < 0 D                                                                                                                               (38) 

¦§̈
§© ��e =  »��e À¼	½¾¿`
[�Á~qa¼	� Â ¶ij.¶ij.    if  Γ ≥ 0

 ��e =  »��e À¼	½¾¿`
[�Á~sa¼	� Â ¶ij.¶ij.    if Γ < 0 D                                                                                                                (39) 

 

where 
¶ij.¶ij. = 0 if .T��. = 0. 

Moreover, it is important to define the parameters of functions "�, "�e "(, by the same way, 
 �$� = �Ã$� �¼	½¾¿�
[Ä~q�¼	� �                                    �� = �Ã� �¼	½¾¿�
[Ä~q�¼	� �                                                                    (40) �$Å = �Ã$Å �¼	½¾¿�
[Ä~s�¼	� �                                    �Å = �ÃÅ �¼	½¾¿�
[Ä~s�¼	� �                                                                    (41) �$) = �Ã$) �¼	½¾¿�
[Ä~t�¼	� �                                    �) = �Ã) �¼	½¾¿�
[Ä~t�¼	� �                                                                    (42) 

 
And the TRIP strain is characterized by: 
 ��( = �Æ�(exp�−\����           �(� = �Æ(�exp�−\����                                                                                          (43) ��( = �Æ�(exp�−\����           �(� = �Æ(�exp�−\����                                                                                          (44) �(, = �Æ(,exp�−\��(�           �,( = �Æ,(exp�−\��(�                                                                                          (45) 

 
In order to control the amount of TRIP strain at different temperatures, the parameters associated with the TRIP 

effect should also be temperature dependent. Thus, the parameters assumed to be linearly dependent on temperature. 
For example, to the following expression is adopted: 

 

�Æ�( = � 0      if    � < ��ÉÊË�Æ�(É�¢ ��
�ÌÍÎÏ���¸
�ÌÍÎÏ�  if  � ≥ ��ÉÊË   D                                                                                                                     (46) 

 

where �Æ�(É�¢  is a reference value of ��( at � = �º  and ��ÉÊË is at a temperature below which transformation plasticity 
(TRIP) should not exist. Similar expressions are used to �Æ(�, �Æ�(and �Æ(�. For the sake of simplicity, this article 
considers �Æ(, = �Æ,( = 0  

These equations form a complete set of constitutive equations, summarized the set equations that follows. 
 T������� , �, E�, E�, E(� = �������� +  m���E� − E�� − #���� − �$�                                                                          (47) E�� = ��q _! + " + r� −  ��e #���� − �$� + ���%� − ����� |ij& − opqIY  b + op� qI¡                                                      (48) E�� = ��s _−! + " − r� +  ��e #���� − �$� − ���%� − ����� |ij& − opsIY  b + op� sI¡                                                   (49) E�( = ��t _r(+"(+���� �#��) − #������ − �$� − �� �%) − %���� − ` ��&* − ��&*a ������ + ���%� + ����� |ij& − optIYb +op� tI¡                                                                                                                                                                        (50) ����dc = 2T��Ð��(�E� + ��(E(�E�� + ��(�E� + ��(E(�E�� + ��,(E( + �(,�1 − E� − E� − E(��E�(Ñ                      (51) ��� = .E��.         ��� = .E��.          ��( = .E�(.                                                                                                                     (52) ����c = µÒÓÔQ�³�� − ����                                                                                                                                            (53) �� = ��( µ + ����E�� + E�� + E�(�                                                                                                                               (54) ���� = �( -����c + ������E�� + E�� + E�(�                                                                                                                           (55) 

 
3. NUMERICAL SIMULATIONS 

 
This section presents numerical simulations that are carried out in order to evaluate the model capability to capture 

the general thermomechanical behavior of SMAs. Initially, TRIP effect is of concern by considering experimental tests 
by Lagoudas et al. (2003). Basically, the SMA is subjected to a cyclic stress loading. Model parameters are presented in 
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Table 1 (where plastic parameters are omitted) and Figure 2 shows the comparison between experimental and numerical 
stress-strain curve. Note a good agreement between results showing the ability of the model to represent the 
phenomenon of saturation. After a few cycles, there is a stabilization of the SMA behavior and the TRIP effect is no 
longer observed. This result is particularly important because it enables the understanding of saturation in SMAs, 
allowing the description of the SMA training necessary to its use in various applications. Figure 3 shows the volume 
fraction time evolution during the test. 

 
Table 1. Model parameters for TRIP analysis based on experimental results by Lagoudas et al. (2003). 

 
EA (GPa) EM (GPa) ΩA (MPa/K) ΩM (MPa/K)  »��e   »(MPa) 

72 28.2 0.74 0.17 0.038 200 �$���rÕ� �$���rÕ� �$)��rÕ� �) ��rÕ� ���%� �$�%� 

0.1 41.5 0.63 152 291.4 323 �)�%� �º�%� ��ÉÊË�%� Q��(MPa.tu) 

(MPa.tu) 

η1
U
 (MPa.tu) Q��(MPa.tu) 

307.5 423 330 0.1 0.04 0.1 Q�±(MPa.tu) Q(�(MPa.tu) 

(MPa.tu) 

Q(±(MPa.tu) 

(MPa.tu) 

�Æ�( (GPa
-1

) �Æ(� (GPa
-1

) mM 

0.04 0.1 0.04 0.063 0.063 0.12 

mL \� \�Á \c N  

0.2 0.45 0.007 0.12 2  

 

 
Figure 2. Numerical-experimental comparison to cyclic loading (Lagoudas et al., 2003). 

 

 
Figure 3.  Temporal evolution of volume fractions to cyclic loading. 

 
Phase transformation, plasticity and TRIP are now concerned by considering model parameters presented in Table 2. 

Initially, a cyclic loading with constant maximum stress of 1.3 GPa is imposed (Figure 4). Figure 4a shows the loading 
history while Figure 4b presents the stress-strain curve. Note the saturation effect due to TRIP occurs before the plastic 
behavior is reached. Figure 5 presents a different situation where loading history has maximum stress values that vary 
progressively from 1.0 GPa to 1.3 GPa. Figure 5a shows the loading history while Figure 5b presents stress-strain 
curve. Under this new condition, a different evolution occurs and the plastic behavior is preponderant during the first 
cycles and then the TRIP becomes more important. 
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Table 2.  Model parameters. 
 �A (GPa) ����rÕ� #)(MPa/K) ΩM (MPa/K)  »��e   »(MPa) 54 42 0.74 0.17 0.0463 330 �$���rÕ� �$���rÕ� �$)��rÕ� �) ��rÕ� ���%� �$�%� 

0.15 41.5 0.63 185 291.4 307 

TA (K) TF (K) TTRIP (K) T�́  ��rÕ�  T),�´  ��rÕ� T),¢´  ��rÕ� 
307.5 423 330 0.5 1.5 1.0 

KA (GPa) KM (GPa) HA (GPa) -�  (GPa)  ��� ��� 

1.4 0.4 4 1.1 -0.01 -0.01 Q��(MPa.tu) 

(MPa.tu) 

Q�±(MPa.tu) Q��(MPa.tu) Q�±(MPa.tu) Q(�(MPa.tu) Q(±(MPa.tu) 
1 2.7 1 2.7 1 2.7 �Æ�( (GPa

-1
) �Æ(� (GPa

-1
) �Æ�( (GPa

-1
) �Æ(� ��rÕ
��  �Æ(, ��rÕ
��  �Æ,(��rÕ
�� 

0.009 0.003 0.009 0.003 0 0 \� \�Á \� \c \� Ø� 

0.2 0.03 0.1 0.1 0.1 0.3 Ø)\� \�Á \� \c \� Ø� 

0.44      

 

 
                                                          a                                                                               b 

Figure 4. Pseudoelastic and plastic behaviors - TRIP and plastic evolution. 
(a) Loading history; (b) Stress-strain curve. 

 
                                                             a                                                                               b 

Figure 5. Pseudoelastic and plastic behaviors - Plastic and TRIP evolution. 
(a) Loading history; (b) Stress-strain curve. 

  
In order to consider a multiaxial test, we now analyze the pure shear test that is used to compare pure shear loading 

with biaxial loading. Therefore, two different loading are of concern defined by the following stress tensors:  
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TÅ = Ù0.5 0 00 −0.5 00 0 0Ú GPa                                   TÝ = Ù 0 0.5 00.5 0 00 0 0Ú GPa                                                              (56) 

 
It is assumed a pseudoelastic behavior and therefore, the yield surface is not reached being performed with � = �$. 

This test is interesting to verify the coordinate invariance. Figure 6 shows a comparison between the stress-strain curve 
for the two loadings considered (σ�� × ε�� and σ�� × ε��). Both curves are identical, representing a typical 
pseudoelastic behavior with a TRIP strain at the end of the test. Figure 8 illustrates the evolution of volume fractions 
involved in the process. These phenomena are similar in both cases showing the main characteristics of the model 
where phase transformations are induced by the inductor that includes either volumetric and deviatoric strains. It should 
be highlighted that both loading histories induce the same volume fraction and besides, the coordinate system 
invariance. 

 

Figure 6. Comparison of loading T��Å   and  T��Ý. 

 

Figure 7. Volume fraction time history for the pseudoelastic effect. 
 

4. CONCLUSIONS 

 
A three dimensional macroscopic constitutive model is proposed to describe SMA thermomechanical behavior 

including plasticity and TRIP. Numerical simulations are carried out showing different aspects of SMA behavior. TRIP 
phenomenon is described and compared with experimental data, presenting a good agreement. The occurrence of both 
TRIP and classical plasticity together can induce interesting behaviors of the SMA. Saturation effect is of special 
interest due to its importance to training of SMAs. Concerning multiaxial tests, the proposed model is able to capture 
the general thermomechanical behavior of SMAs. This paper presents a pure shear test showing the coordinate system 
invariance. 
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