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Abstract. Thermal dispersion is the type of heat transfer occuring in a porous medium through which a fluid flows. An 
application to chemical packed bed reactors is considered here. Both thermal dispersion modeling in such granular porous 
media (for further design and control) and its experimental characterization are presented in this article. Its first deals with 
two thermal dispersion modelling problems. The one-temperature model using a single (enthalpic average) temperature 
corresponding to homogenizetion of the whole medium (fluid and solid phases) is presented first. The corresponding 
homogenized heat equation requires the knowledge of the coefficients of a thermal dispersion tensor. These dispersion 
coefficients, that depend on the Darcy velocity, remain constant over the entire porous bed in a plug flow case, if the bed can 
be considered as a homogeneous porous medium. However, a practical modelling problem occurs near a solid wall, where 
this assumption is not valid any more in the case of a granular porous medium: higher porosity in that region makes a 
channeling effect, associated with higher local Darcy velocities, appear. Division of the bed into two homogeneous regions, 
near wall layer and core region, with a third region corresponding to the solid wall domain, where conjugate transfer can 
occur, is considered. Semi-analytical solution of the three corresponding heat equations is made possible by the use of two  
integral transforms (thermal quadrupole modelling: Laplace transformation in time and Fourier transformation in the flow 
direction here). Simplifications of this three-layer model allows to build a thermal impedance network, where the near-wall 
layer is represented by a porous channel, with an average Darcy velocity and a time and space varying bulk temperature, 
two heat transfer coefficients, and a thermal impedance depending explicitly on the velocity distribution. The second part of 
the article is devoted to thermal characterization of this channeling effect in an academic porous medium (bed of 
monodisperse glass beads through which air flows) and of its thermal consequences. This is a parameter estimation problem 
based on the previous two-dimensional three-layer reduced model, where the experimental signal corresponds to 
thermocouple measurements inside a laboratory bed. The plug flow case, with uniform surface heating (step in time) over 
part of  the solid wall,  is considered. A sensitivity study shows that the near wall parameters (thickness, Darcy velocity, heat 
capaciy, heat transfer coefficients, longitudinal thermal dispersion coefficient) and the core region parameters 
(thermocouple positions, that are not perfectly known, Darcy velocity) can be divided into three groups depending on the 
possible prior knowledge on their values. A corresponding Bayesian least squares sum is constructed consequently and 
Monte Carlo simulations are used to test of the robustness of the proposed estimation technique that depend on 
hyperparameters, the standard deviations of the prior distributions of the constrained parameters and of the temperature 
noise. The only fully unconstrained parameter in this estimation process is the near-wall Darcy velocity. Experimental and 
reconstructed thermograms, with low residuals, are shown. The resulting channeling effect (ratio of near wall to core 
velocities) depends on the core region Reynolds number and a corresponding correlation is presented. This channeling 
effect is larger than what is given in the litterature and its thermal consequence deserve to be considered in chemical bed 
optimization problems .  
 
Keywords: thermal dispersion, granular porous media, channeling, wall effect, Bayesian estimation. 

 
1. INTRODUCTION 

 
Heat transport in a porous medium through which a fluid is flowing is called thermal dispersion. Its applications are 

numerous and range from classical ones such as fixed bed reactors in chemical engineering or more recent ones such as 
underground storage of solar energy or use of metal foams for the cooling of electronic circuits. Modelling such type of 
transfer requires some closer look at the definition of temperature. Strictly speaking, the structure of a porous medium is 
deterministic: one can consider both flow and heat transfer as pure convection in the fluid phase and pure diffusion in the 
solid phase. Unfortunately, it is impossible to model heat transfer at this scale, not because of fundamental reasons, but 
simply because the local morphology of the medium is unknown. Modelling heat transfer in that type of situation requires 
making the two phase medium continuous, that is upscaling its structure, in order to get a continuous porous medium 
characterized by some structural functions (local porosity, specific area, …). The momentum and heat equations have to be 
revisited consequently, with the introduction of new thermal quantities (Darcy or filtration velocity, dispersion coefficients) 
that govern a continuous temperature field, see Kaviany (1999) [1]. This upscaling will be presented in section 2, with the 
introduction of the simplest heat transfer model that can be used for modeling thermal dispersion, the one-temperature model. 
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2. THE ONE-TEMPERATURE MODEL 

 
Even if more elaborate models exist, see Quintard (1997) [2], the simplest continuous model that can be used to describe 

thermal dispersion in a porous medium is based on a local mean ‘enthalpic’ temperature TH defined at a point P (and for a 
given time t) in the homogenized medium. This temperature is the space average of the local temperatures at the points P’ of 
the porous medium (P’ belonging either to the solid or fluid phase) located inside a sphere of volume V (P, D) of diameter D 
and centred at P, see Fig.1. This sphere, also called Representative Elementary Volume (R.E.V.), should constitute a 
representative volume of the porous medium. This mean temperature is a weighted average, the local volumetric heat 
capacities )(P'cρ  being used as weights (Moyne et al. 2000) [3]: 
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where the total local volumetric heat is : 
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and where fε  and sε  are the local volume fractions of the fluid (f) and solid (s) phases ( fε + sε = 1) and fcρ  and scρ  the 

corresponding volumetric heat capacities. In the preceding equations, H (P) is the local enthalpy by unit volume: 
(P)(P(P) T)cH ρ= and is the averaging operator, defined for any space field f  by: 
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Figure 1. Principle of volume averaging: from two phase porous medium to continuous medium 
 
In the preceding equations time t has not been written as an argument of the different functions, in order to simplify the 

notation. 
 
Equation (1) can be viewed as a filtering, in the data processing meaning, of the local temperature field, the filter used 

being a moving average of width D. For this homogenisation to be pertinent, diameter D of the sphere must be much larger 
than the local characteristic size of the porous medium, here the average diameter d of the grains, and much smaller than the 
characteristic size L of the system that is modelled, the diameter of the fixed bed reactor for a process engineering application 
for example. 
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The local mean temperature TH used here derives directly from the enthalpic volume average H , which means that it 

has an energetic meaning. As a consequence, no a priori assumption of local thermal equilibrium is made in its definition and 
in the use of the reduced one-temperature model that will be presented next. 

 
At this stage it is possible to define a homogeneous porous medium as a medium where the local structure does not 

depend on the location (point P, the centre of the Representative Elementary Volume, the sphere shown in Figure 1), 
characterized by a porosity ε  (= fε ) that is uniform in the medium. 

 
The one-temperature model requires the definition of a thermal dispersion tensor λλλλ whose coefficients can be considered 

as pseudo-conductivities depending on the nature, thermophysical properties and geometry of the solid grains and of the 
fluid, as well as on the local Darcy’s (or filtration) velocity uD. A convection-diffusion equation for the space and time 
variations of the averaged temperature can be written for a homogeneous porous medium: 
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with :     uu =)(PD       (4) 

 
where u is the local fluid velocity, which is equal to zero in the solid phase. 
 
In this equation, s is the volumetric heat rate of a source that can depend on both time and space. One can notice that the 

coefficient of the transient term is the total volumetric heat tcρ  while the advection term only uses its fluid component fcρ . 

The preceding equation (3) can be derived using either the volume averaging technique or the homogenisation method for a 
spatially periodic porous medium. 
 
3. MODEL FOR CHARACTERIZING THERMAL DISPERSION IN HOMOGENEOUS POROUS MEDIA 

 
In order to characterize experimentally thermal dispersion using the one-temperature model, it is necessary to design an 

experiment that allows estimation of the unknown parameters present in equation (3) for a homogeneous porous medium: its 
filtration velocity Du , the principal coefficients zyx ,, λλλ  of the dispersion tensor λλλλ and its porosity ε  

The simplest type of flow is a plug flow, that is a one-direction flow in the x (longitudinal) direction, where the filtration 
velocity will be noted u = uDx now on. The longitudinal dispersion coefficient will be called xλ , while its transverse (or 

lateral) component (in the direction normal to the flow) will be noted zy λλ = , with the additional assumption of isotropic 

structure of the medium (no preferential direction). 
 
In order for the porous medium to be uniform, there should not be any wall in the medium, which implies a model (3) 

valid for a domain of infinite extension in the three directions starting from thermal equilibrium at T = T∞, where T∞ is both 
the initial temperature of the medium, before heating starts, and the temperature of the incoming fluid in the packed bed. 
Consequently, equation (3) becomes two-dimensional if the heat source )( t,y,xss =  is also two-dimensional: 
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The previous model has been used to estimate the two dispersion coefficients in a bed of monodisperse glass beads (d = 2 

mm), with either water or air flowing trough it, see Metzger [4] and Testu [5]. Electrical heating by a single resistive wire in 
the z direction was used. So the source could be written: )()()(),,( tHyxQtyxs δδ= , where δ (.) is the Dirac distribution 

and H (.) the Heaviside function. In order to prevent any non-linear effect caused by variation with temperature of the 
different thermophysical properties of both fluid and grains – mass density, viscosity, thermal conductivities – the level of the 
heat step Q was chosen low enough to get a temperature a rise lower than one Celsius degree. This assumption of constant 

dispersion coefficients xλ  and yλ , volumetric heat capacities and filtration velocity makes equation (5a) linear. This 

equation can be solved using the Green’s function technique [4]: 
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This previous model has been used to estimate the two dispersion coefficients in a bed of monodisperse glass beads (d = 2 
mm), with either water [4] or air [5] flowing trough it. Internal transient temperature measurements (thermocouples) were 
inverted using a specific Bayesian estimation that was able to take into account both temperature signal noise as well as 
uncertainty in the exact location of the thermocouple hot junctions. The correlations corresponding to the longitudinal (x) and 
lateral (y) dispersion set for air flow through a bed of glass beads are recalled here: 

 

701301212602110 451451 .PrReRe.Pe. .

f

eq.

f

eq

f

x =<<+=+= andfor
λ
λ

λ
λ

λ
λ

 (6a) 

70130124007880406 .PrRePe.Re..ReBA yy
f

y =<<+=+=+= andfor  0.1136
λ
λ

    (6b) 

 
where eqλ  is the equivalent conductivity of the isotropic equivalent medium composed of fixed solid and fluid phases. Pe      

(= u d/af, with af = λf /(ρcp)f) and Re (= Pe/Pr) are the particulate Péclet and Reynolds numbers. For a bed of glass beads in air, 

one has -1-1KWm20.eq =λ . 
 
4. NEAR WALL THERMAL EFFECTS 
 

As soon as a solid wall is present in a porous medium, the local structure of the porous medium is modified in its vicinity. 
This effect is illustrated in Figure 2a for a granular medium used in a chemical reactor (packed bed composed of catalyst 
grains) through which reactive gases flow: the presence of the reactor walls modify the arrangement of the grains, with a local 
variation of the porosity: the R.E.V. shown in Figure 1 includes now part of the wall if its center P gets too close to the wall. 
 

The local porosity cannot be calculated with 
averages (2b) based on a spherical V.E.R. but with 
surface averages, the surface being for example a disk of 
diameter d parallel to the wall. 
 

Martin [6] tried to model the consequences of this 
structure modification on fluid flow and heat and mass 
transfer in the near-wall region, that cannot be 
considered as a homogeneous medium anymore. He 
used the fact that porosity, which is constant in the core 
region of a bed of spherical beads of diameter d, varies 
in the near-wall region with the distance to the wall y, as 
shown in Figure (2b). He proposed the following law in 
order to model the porosity in the near-wall region: 
 

2
min min

core core min

( ) (1 )

if 0 / 2

1 3
( ) ( ) exp cos

4 2

if / 2

with 2 ( / ) 1

y z

y d

y z z

y d

z y d

ε ε εε ε εε ε εε ε ε

ε ε ε πε ε ε πε ε ε πε ε ε π

= + −= + −= + −= + −
≤ ≤≤ ≤≤ ≤≤ ≤

        = − − −= − − −= − − −= − − −                       

≥≥≥≥
= −= −= −= −

ε (7) 

 
where coreε  is the porosity of the core region (y → ∞) 

and minε the minimum porosity that is met at a distance 

of one radius from the wall. 

 

 
Figure 2.  Wall effects: R.E.V. modification (a) and porosity 

distribution for a packed bed of spheres (b) 
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The porosity variation with distance to wall is shown in Figure 2b (with coreε = 0.39 and minε = 0.23). One clearly notices 

that porosity is maximum at the wall (ε = 1, no solid) and decreases then with damped oscillations that tend to the core 
porosity ∞ε  for large distances from the wall. If one defines the near-wall region limit by the first minimum of this 

distribution (y = δ = d/2), it is possible, by averaging equation (3) on the [0  d/2] interval,  to affect an average porosity 

wallnearε = 0.487 to this region, see Figure 2b. 

 
Martin [6] showed, using Ergun’s equation to both parts of the packed bed, that the ratio of these two 

velocities corewallnear u/u=ω  depends on the particulate Reynolds number ν/duRe core= . 

  

For very small (Re → 0) or very large (Re → ∞) Reynolds numbers, this ratio takes the asymptotic values ω0 = 2.81 and 
ω∞ = 1.53 respectively (forcoreε = 0.4 and wallnearε = 0.5). This means that even moderate changes in the porosity distribution 

will cause considerable flowrate maldistribution with its consequences on the core-to-wall heat transfer. 
 

Studies on the thermal consequences of this channelling effect, see Tsotsas and Schlünder (1988) [7], have shown that the 
use of an h coefficient was not pertinent to model the wall/bed heat transfer for low Péclet numbers. More recently 
Winterberg and Tsotsas (2000) [8] proposed to use a lateral dispersion coefficient that varies with the distance to the wall. 
 

5. NON HOMOGENEOUS POROUS MEDIUM REPRESENTATION 
 
5.1 General heterogeneous case 
 
We consider now the configuration depicted in Figure 2a: the volumetric heat source in equation (5) is replaced here by 

surface heating on the solid wall/porous medium interface, with a surface heat rate )( t,xelecϕ  replacing the volumetric 

heating s, see Figure 3. Since the porous medium is not homogeneous anymore, its parameters (total volumetric heat, 
dispersion coefficients) as well as its 1D filtration velocity u (developed flow) are supposed to depend on the distance to the 
wall y. It is then possible to consider the following heat equation for the enthalpic mean temperature, assuming a zero initial 
temperature field: 
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where W is the surface density of the dissipated electrical power. 
Functions )(and)(),(),( ycyyyu tyx ρλλ depend on y because ε  is a function of y, see equation (7). 

 
5.2 Homogeneous porous medium solution 
 
The first model, noted H1 here, that can be used to simulate heat transfer in this configuration is to suppose the medium 

homogeneous, that is to pose ε = εcore and to consider all the coefficients tyx c,u ρλλ ,,  uniform in system (8), see Fig. 5a. 

In that case, solution of system (8) can be found after an exponential transformation, making the last term of this equation 
disappear, and a subsequent use of the corresponding Green’s function: 
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An alternate solution can be found through the use of Laplace/Fourier integral transforms (quadrupole method): 
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Heat equation (8), with constant coefficients, 

becomes, for one layer ( 21 yyy ≤≤ ) of porous medium: 
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Introducing heat flux y/Ty ∂∂−= λϕ allows solution 

of (11) appear in terms of a matrix (quadrupole) relationship 
between the double transforms of the temperature-transverse 
flux vector on each face of the layer [8], see Fig. 4a: 
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An alternate representation, using impedances Z in a “T” 
analogical network, is possible, see Fig. 4b. 

 

 
Figure 4. Quadrupole matrix (a) or network (b) representation of 

one layer of porous material 

The alternate solution, equivalent to (5b) is: 
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where L is a large length ( l>>L ). The real and 

imaginary parts of the different nT
~

 modes in the time 

domain being inverted through a numerical inverse 
Laplace transform algorithm, see [9]: 
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and return to the space y domain is used with a finite 
inverse Fourier transform, with a large number N of 
modes: 
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Figure 5. Model H1 – homogeneous porous layer 

 

The analogical representation of the H1 model (13) is shown in Fig. 5b, where the three impedances of the network are: 
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5.3 Three layer problem 
 

 It has been shown above that the presence of a wall made the porous medium non homogeneous. The easiest way to 
model this heterogeneity is to separate the medium into two homogeneous layers: a near wall layer, of thickness δ = d/2, and 
porosity ε’= wallnearε , and a core region of semi-infinite extent, starting at y = δ � , with porosity��ε  = coreε . 

The corresponding heat equations are written for each layer: 
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where the prime quantities correspond to the quantities (temperature, uniform filtration velocity, dispersion coefficients, total 
volumetric heat) of the near wall layer where ��ε’ = wallnearε  and the non prime to the core region (ε = coreε ).  

In real experimental situation, conjugated heat transfer in the solid wall (here an anisotropic composite whose thickness is equal to 
2e):  can also be taken into account:  the insulation condition at its mid-plane stems from a symmetric arrangement (same porous 
medium and fluid flow on both side of the plate) to a third heat equation in the solid: 
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System (9a, b, c) must be completed by the boundary, interface and initial conditions: 
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 The geometry of this new three-layer H3 model is shown in Figure 6a. Analytical solution of the corresponding 

equations (14a-k) through the use of the Green’s functions is not possible anymore, so only the solution in the double 
transformed domain, see equations (10), will be looked for: each heat equation (14a-c), associated to the boundary or 
interface equations on the two boundaries of the corresponding domain, can be put under an input/output relationship of the 
form given by equation (12). Hence, it is possible to make the chain product of the corresponding 2 by 2 matrices, in order to 
make the interface transformed temperature/flux vectors disappear and to get an analytical solution. The harmonics of order n 
( 0≥n ) of the Laplace temperature in the core layer is: 
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where  porousϕ  is the flux that enters the porous medium. It is a part of the surface heat source elecϕ that is used to electrically 

heat the system. Coefficient nK , that is equal to unity in case of a perfectly insulating wall ( 0=ywallλ ), takes into account 

this type of conjugated transfer between near wall layer and solid wall. 
 
The thermal network of this three-layer system, using Z impedances derived from the four quadrupole matrix coefficients given 
in Figure 4, are shown in Figure 7b. Here, the three layers thicknesses are the half of the solid plate thickness e, the near wall 
layer thickness δ and the thickness of the core layer between δ and y, the point where the transform of temperature, noted Ty here, 
is looked for. The impedances have the following values: 
 

( ) ( ) ( )
( )( ) ( )( ) ( )( )

1 1 1 wall wall wall wall

3 3 3 wall wall wall wall

tanh k ( )/2 / ( ) ; ' tanh k' /2 / ( ' ' ) ; Z tanh k / 2 / ( k )

Z 1/ sinh k ( ) ; Z' 1/ ' ' sinh k' ; Z 1/ k sinh k

n y n n y n n y n

y n n y n n y n n

Z y k Z k e

k y k e

δ λ δ λ λ

λ δ λ δ λ

= − = =

= − = =
 (16) 
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Figure 7. Model H3 – Solid wall/near wall layer/core layer 

a) Geometry – b) Analogical thermal network    
   

Let us notice that the temperature field in the core region (15) can also be calculated using the preceding impedances: 
 

 ( ) [ ] δϕ ≥
++++

=
∞

yp,y
~

Z/ZZZ/Z

'Z
p,yT

~
nn if)(

/ZZ')1/Z(1/Z
)(  porous

33 31

3

1
  (16) 

 

3131 'Z'Z'ZZZZ +=+= andwhere           
 

In practice, thermal characterization of the wall effects in thermal dispersion requires measurement of transient 
temperatures inside the porous medium and estimation of the unknown parameters of the model by inversion of these 
experimental data.  

 

 
Figure 7. Model H3R – Solid wall/reduced near wall layer/core layer 

c) Geometry – d) Analogical thermal network 
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In practice both velocities u and u’ are unknown, as well as the thermal dispersion coefficients yx '' λλ and  and the total 

volumetric heat t'cρ in the near wall layer ( yx λλ and can be calculated by correlation (6), once u estimated).  

 
So the difficulties will be large for this experimental estimation, since the parameters being looked for are numerous. 

Another point deserves to be emphasized: the values of all the parameters of the near wall layer depends also of its thickness 
δ, here d/2, but this value, that can be compared to a boundary layer thickness over a flat plate, is quite arbitrary. So there is no 
point in making temperature measurement inside the near wall layer and only measurements in the core region deserve to be 
inverted.  

 
It is therefore possible to reduce the number of parameters of the previous model [10]: the temperature distribution in the 

near wall layer can be replaced by a unique average temperature over its width, that can be considered as a bulk temperature 
( )t,xTb  in the corresponding channel of thickness δ  and of uniform velocity u'. Its Laplace/Fourier transform can be 

obtained by the corresponding transformations of equation (14b) and by integration over the layer thickness: 
 

( )
'ucip'c''k'

'Z
~~

'ZT
~

fntnxny
b δραδραδλλδ

ϕϕ δ ++
==−=

2233
11

redporousred with    (16) 

 
Let us notice here that impedance red3'Z is equal to the first order series expansion of the original “parallel” impedance 

3Z' as δ  goes to zero. The physical nature of the three terms of the determination of its expression (16) can be explained: 
 

• p'c t δρ  is a capacitive term that determines the heat amount stored in this channel because of transient effects. It does 

not play any role for long times (steady state, that is t going to infinity or p going to zero). Let us note that capacity 
δρ t'c  incorporates both the fluid and the solid components of the heterogeneous layer; 

 

• 2
nx' αδλ is an axial conductance term that causes a x redistribution of the local heat flux reaching the porous core layer; 

 
• nn ci αρα  is an axial redistribution term that is caused by advection, that is by the channeling effect (u′ is larger than  

u for a granular porous medium). 
 

Heat flux entering the porous medium is expressed as: wallelecporous ϕϕϕ −= , where wallϕ represents the heat redistributed 

in the wall with an inertia effect.  
 

Both fluxes porousϕ  and wallϕ  have to be related to temperature differences, which is made by replacing the transverse (or 

lateral) dispersion coefficient y'λ  by two transfer coefficients h and h0: 

 
( ) ( ) ),( porous txRt,xTt,xT bwall ϕ0=−  ; ( ) ( ) ),( txRt,xTt,xTb δδ ϕ=−              (17a, b) 

 
where the two thermal resistances are 00 1 h/R =  and h/R 1= (on a unit area basis) and δϕ represents the flux that enters the 

core layer. Let us note, that in the case δλ /hh eq20 ≅≅ , these resistances are the first order series expansion of the original 

“serial” impedance 1Z' as δnk' goes to zero. An example of steady state temperature distribution, for model H1, for different 

distances to the wall, is shown in Fig. 8 (air and glass beads, d = 2 mm, cm10=l , e = 1 mm, ε = 0.365, ε’  = 0.487, N = 

2000, L = 3 m). The difference with the H3 model is also plotted: the near wall layer, with its higher velocity, reduces the 
temperature rise in the core region of the bed.  
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Figure 8. Simulated temperature field for the H1 model (steady state) and comparison with the H3 model 

 
6. EXPERIMENTAL BENCH FOR AND INVERSE METHOD 
 
6.1 Experimental bench 
 
The fixed bed is contained in a polymethyl methacrylate 

box (150 mm x 200 mm cross section, 400 mm height) with 
a central plate heated on both of its faces by two foil 
electrical resistances (in order to guarantee an insulation 
boundary condition in the e mid-plane of the plate, for 
symmetrical reason) and filled with spherical glass beads 
with uniform air flow parallel to it. Thermocouples of type E 
of 127 µm diameter (hot junction of diameters of a few tenth 
of millimetres) have been embedded in the bed at known 

(nominal) positions, )( nomnom
ii y,x , see Fig. 9. Step heating 

has been applied and the corresponding temperatures have 
been recorded. Assuming that the thermocouple positions are 
known, and that the Darcy velocity of the fluid is deduced 
from the output sensoru  of a hot wire sensor in the 

downstream duct, linking bed and fan, the recorded 
thermograms can be used to estimate the model parameters.  

A sensitivity study (see Fig. 10 further down) showed 
that parameters of model HR3 are correlated. So external 
information is needed for their estimation. The experimental 
bed has been disassembled, and the exact positions of the 
thermocouples were measured once again: they were slightly 
different from their original positions. The reason for this 
deviation is that the glass beads slightly moved the 
thermocouples when the bed was constructed. So their exact 
positions always need to be estimated. The same conclusion 
is valid for the Darcy velocity, because of the inaccuracy of 
the measuring instrument. 
 

 
Figure 9. Experimental bench and thermocouple locations 

 
 
 

air 
flow 

air 
flow 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

6.2 Sensitivity study and estimation method 
 

Once experimental temperature measurements exp
kiT , available at Ns different )( ii yx  locations for Nt times kt , the 

different parameters jβ , gathered in a column parameter vector β , can be estimated through minimization of the ordinary 

least square (OLS) sum: 
 

( ) 2

1 1

2
)();()( expexp
βTTββ −=−= ∑ ∑

= =

Ns

i

Nt

k
kiikiOLS t,y,xTTJ     (18) 

 

with ( )[ ] T
tii h'cNsiy,xu'u δρ  to1  for  ),( ==β . So the Nsn 26 += parameters present in β have to be estimated.  

In the OLSJ  sum, the experimental measurements exp
kiT have been put under the form of a single column vector expT  , that is 

related to the corresponding H3R model output )(βT . The difference of these two vectors is equal to the noise vectors where 

noises kiε  are supposed unbiased (zero expectancy, noted E (.) here), uncorrelated and of constant standard deviation Tσ , 

with a spherical variance-covariance matrix, noted cov (.) here:  
  

NtNsmmTm xwhere)(covand)(Ewhere)(exp ===+= IεεεβTT 2σ0  (19) 

 
Classical non linear minimization techniques, such as the Gauss-Newton method [11], can be used to find the maximum 

of the least square criterion (18), starting from an initial “guess” corresponding to the nominal values nomβ of the different 

parameters: 
 

[ ] ( ) nom)()(exp)()()()()( with)()()()( βββTTβXβXβXββ =−+= −−−−−− 0111111 kktkktkk  (20) 

 
where X is the sensitivity matrix:  
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(21) 
 

The coefficients of the reduced sensitivity vectors i
jkj Xβ  are plotted, for two fixed location )( ii y,x , versus time kt , in 

Figs. 10a and 10b , for the following values of the parameters: W = 1000 W.m-2, ε = 0.365, ε’  = 0.487, u = 0.325 m/s,          

u’= 0.569 m.s−1 (Pe = 30; Pe’= 52.5), 11KWm −−= 911.' xλ . For the location )( ii y,x  parameters, thickness d has been used 

for normalization and the plotted coefficients are ii y/Tx/T ∂∂∂∂ δδ and . One can notice that sensitivities to the two 

velocities u and u’ are nearly proportional and that sensitivities to x, x'λ , h are extremely low: it will be necessary to give 
prior information on the values of these parameters in the criterion to be minimized to prevent a bad conditioning of the 
information matrix X t X that has to be inverted in the minimization algorithm (20). The same remark can be made for the y 
position whose sensitivity is quite low in the downstream region, see Fig. 10b. Let us note that the volumetric total heat 
capacity t'cρ  has a sensitivity that vanishes for long times. 

 
It is therefore possible to distinguish three types of parameters in parameter vectorβ : 
 

- parameters with low sensitivity coefficients ( h,'xλ ),  or arbitrary values (δ). Choice of their values is not critical. 

So, they will be considered as “given”: [ ] t
x'h δλ=givenβ . During the iterative minimization process, they will 

be either kept constant equal to their nominal value ( 2/d=δ ) or given by a correlation, see equation (6a) for 

x'λ and (6b) for 1-2.KW.m −== 6932 y'/h λδ . In practice, we will keep h equal to  1000 1-2.KW.m − further 
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down. 
 

- parameters whose values should not depart too much from a nominal value nom
jβ . These are “supposed to be 

known”: ( )[ ]t
iit Nsiy,x'c,u   to1  for  ),(sk == ρβ . The nominal values taken here are sensor

nom uKu = , where K is 

the ratio of the areas of the cross sections of the corresponding outlet duct and of the porous bed. nom
t'cρ  is given 

by equations (2a) and (7) and the nominal values )( nomnom
ii y,x  corresponding to Fig. 8 are taken for the 

thermocouple locations. It is compulsory to associate a standard variation that is accepted for the variation of these 
parameter during the iterative minimization procedure: 

 
- Parameters that are really unknown (no prior information) and whose value entirely depends on the estimation: 

[ ]'u=unknownβ . Only an order of magnitude 0'u , depending on nomu through Martin’s use of Ergun’s equation in 

the near wall and core layers, see section 4, is available. 
 

 
  

Figure 10. Simulated thermograms and reduced sensitivity coefficients, model H3R 
 

Parameter vector β  is therefore partitioned into three vectors now: 
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which means that only skβ and unknownβ will constitute the part soughtβ  of β  that will be estimated. Let us note that the exact 

values of the components of both vectors are considered now as stochastic variables. Hence, the constrained OLS sum, that 
corresponds now to Bayesian estimation [12], becomes: 
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Minimization of the new criterion BayesJ  criterion  can be made using a Gauss-Newton minimization algorithm, similar to 

(22): 
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nom(0)
skwith ββ =   
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where: 
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NsNsxI  is the identity matrix of size Ns x Ns and qp x0 zero matrices of size p x q.  

The different variance ratios, 2222 )(and)()()( TuT'cTyTx //,/,/
t

σσσσσσσσ ρ , can be considered as regularization 

parameters that allow a compromise between fidelity to the data (minimum of the first term of (23), )( soughtβOLSJ , for zero 

Tσ ) and full respect to the constraints ( nom
sought ββ = , for xσ , yσ , 

t'cρσ and uσ  equal to zero). 
 

6.3 Monte Carlo simulations of inversion 
 

In order to assess the quality of the estimation and to study the effect of the temperature and location noise on the 
estimator obtained by minimization of sum (23), it is very interesting to implement it on synthesized measurements, that is to 
use a Monte Carlo process: the exact temperature response of model H3R is noised with an independent additive normal 

random noise of zero mean and standard deviation Tσ , which yields simulated experimental temperatures exp
kiT . The same 

technique is implemented with both exact thermocouple coordinates )( ii y,x  that are noised the same way with a noise of 

standard deviations yx σσ and  to produce the nominal locations )( nomnom
ii y,x . A number simulN  = 160 simulations lead to 

n
jβ̂  estimates (for j = 1 to simulN ) of the j th component of vector soughtβ . Both bias jb  and statistical standard deviations js  

can be calculated for Ns = 6 thermocouples: 
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with the following values of the different standard deviations defining BayesJ : 

 

sensor
nommm;mmK u.;'c.;;. ut'cyxT t

20005011020 ===== σρσσσσ ρ     (25b) 

 

Biases jb are much lower than standard deviations js  and the errors je (defined as jjj sbe += ) in the estimated 

locations were lower than 0.7 mm. Relative errors je / exact
jβ  were 7 % for u’, 2 % for u, and 31 % for t'cρ . 

 
7. RESULTS 
 
7.1 Thermograms and residuals 
 
In the experimental application [13] of the minimization of BayesJ , a criterion has to be chosen for stopping the iteration. 

A least square residual sum corresponding to a single measurement was defined: 
 

[ ] 21/k
TT

k Ns NtJ/S ))/(()( )(
soughtBayestrue

)(
βσσ=      (26) 

 

where trueTσ = 0.01 K is the standard deviation that can be measured before heating starts (this value is twice smaller than the 

Tσ  value used in the definition of BayesJ .  

So iterations were stopped as soon as one of the three following criterions were fulfilled: i) )(kS lower than 1.2,  

ii) ( )(kS - )( 1−kS )/ )(kS  lower than 5 10-6 and iii) no more than 40 iterations ( 40≤k ). 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 
 

 
Figure 11. Experimental and recalculated (H3R model) thermograms 

 
Four thermocouples, TC 3 (20 mm, 3 mm), TC 6 (50 mm, 4 mm), TC 17 (120 mm, 4 mm) and TC 22 (140 mm, 4 mm),  

were chosen for the inversions: two are located in front of the heating plate, at its x level, and the two other ones in the 
downstream region. The corresponding experimental and recalculated thermograms are shown in Fig. 11. One can see that the 
residuals are very low. The corresponding values at convergence of the minimization algorithm are: 

06153056001150 .S;.'ˆ.'û.û ==== εm/s;m/s; . 
 

7.2 Estimation of the channelling effect 
 
The previous estimation technique was applied for core region velocities from 0.06 to 0.511 m/s, which corresponds to 

core region particulate Péclet numbers in the [6; 48] interval and Reynolds numbers in the [8; 68] interval. The ratio of both 
estimated average Darcy velocities û/'û  is plotted versus the estimated Péclet number in Fig. 12. One can see that, 
depending on the velocity and therefore on the Péclet number in the core region of the bed, this velocity ratio is between 2 
and 1.5 larger than its value calculated by Martin on the basis of a Ergun law with uniform velocities in the near-wall and 
core layers (curve also shown in Fig. 12). 

 

 
Figure 12. Experimental estimation of the channelling effect 
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A linear regression has been implemented for our experimental points. It is valid for air flow through a bed of 

monodisperse spherical beads of core porosity ε = 0.365, with a near-layer thickness δ equal to one bead radius: 
 

415343041504830 .Re..Pe.u/'u +=+−=  for 6 48 and 8 Re 68Pe≤ ≤ ≤ ≤  (27) 
 
The channeling effect is therefore larger than expected: the maximum temperature deficit in the core of the bed, according 

to Martin’s theory was close to 15 %, see Fig. 8 for a Péclet number equal to 30. This maximum deficit can become larger 
than 25 % if the same type of simulations is implemented with near-wall layers velocities calculated through equation (27). 

 
8. CONCLUSIONS 
 
The thermal dispersion model that uses only one ‘enthalpic’ average temperature obtained from an up-scaling process can 

be used for simulating heat transfer in an air flow through a bed of glass beads. Attention has been brought here to what 
happens in the region of the bed close to a solid wall. A semi-analytical modelization, in the double Laplace-Fourier 
transformed domain, allowed to build a thermal impedance network, where the near-wall layer is represented by a porous 
channel, with an average Darcy velocity and a time and space varying bulk temperature, two heat transfer coefficients, and a 
thermal impedance depending explicitly on the velocity distribution. Because of this thermal impedance, that takes into 
account the near-wall layer lower heat capacity and larger velocity and the flux and temperature redistribution in the flow 
direction caused by longitudinal dispersion in the thickness of this layer, the thermal field in the core region differs from the 
homogeneous dispersion case.   

An experimental bench, with internal point temperature measurements, has been constructed to assess the magnitude of 
this channelling effect for air flow through a consolidated bed of monodisperse glass beads. It uses a specific Bayesian 
inverse parameter estimation technique that uses prior information on the thermocouple locations (nominal values) as well as 
on core velocity (order of magnitude measured by an anemometer) and on the near wall layer heat capacity (theoretical 
porosity profile). This estimation algorithm, as well as the values of the regularization hyperparameters, have been validated 
through a Monte Carlo process of inversion of synthesized noised measurements. Experimental inversions using four 
thermocouple transient temperature measurements and the previous reduced three layer model display very low temperature 
residuals. They allowed to construct, for different main flow velocities, a correlation giving the velocity ratio (near-wall over 
core region velocity) as a function of the particulate Reynolds number. This ratio is much higher than what is presented in the 
literature. As a consequence, channelling effects, for a granular porous medium, affect heat transfer in the core layer of the 
bed in a higher way than thought previously. 
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