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Abstract. Thermal dispersion is the type of heat transferuoicg in a porous medium through which a fluid flowAn
application to chemical packed bed reactors is @#red here. Both thermal dispersion modeling inhsgranular porous
media (for further design and control) and its eximental characterization are presented in thisice. Its first deals with
two thermal dispersion modelling problems. The tamperature model using a single (enthalpic aveyagenperature
corresponding to homogenizetion of the whole med(fiaid and solid phases) is presented first. Tleresponding
homogenized heat equation requires the knowledgtheofcoefficients of a thermal dispersion tensdrese dispersion
coefficients, that depend on the Darcy velocitya@ constant over the entire porous bed in a (flowy case, if the bed can
be considered as a homogeneous porous medium. ldoveepractical modelling problem occurs near aidatall, where
this assumption is not valid any more in the cafa granular porous medium: higher porosity in thagion makes a
channeling effect, associated with higher local ©avelocities, appear. Division of the bed into twmmogeneous regions,
near wall layer and core region, with a third regi@orresponding to the solid wall domain, wherejagate transfer can
occur, is considered. Semi-analytical solutiontad three corresponding heat equations is made lplesby the use of two
integral transforms (thermal quadrupole modellingiplace transformation in time and Fourier transfwation in the flow
direction here). Simplifications of this three-layaodel allows to build a thermal impedance netwevkere the near-wall
layer is represented by a porous channel, with aerage Darcy velocity and a time and space varyialik temperature,
two heat transfer coefficients, and a thermal ingrez depending explicitly on the velocity distribnt The second part of
the article is devoted to thermal characterizatioh this channeling effect in an academic porous iomad(bed of
monodisperse glass beads through which air flows)) @f its thermal consequences. This is a paranestdmation problem
based on the previous two-dimensional three-layeduced model, where the experimental signal coomrdp to
thermocouple measurements inside a laboratory béd. plug flow case, with uniform surface heatinggdn time) over
part of the solid wall, is considered. A sengiigtudy shows that the near wall parameters kihéss, Darcy velocity, heat
capaciy, heat transfer coefficients, longitudindletmal dispersion coefficient) and the core regiparameters
(thermocouple positions, that are not perfectlywnpDarcy velocity) can be divided into three greugepending on the
possible prior knowledge on their values. A cormgting Bayesian least squares sum is constructedezpently and
Monte Carlo simulations are used to test of theusibess of the proposed estimation technique tlegiernd on
hyperparameters, the standard deviations of therpdistributions of the constrained parameters aidhe temperature
noise. The only fully unconstrained parameter iis #stimation process is the near-wall Darcy velpdeExperimental and
reconstructed thermograms, with low residuals, ab®wn. The resulting channeling effect (ratio ohmwall to core
velocities) depends on the core region Reynoldsbeurand a corresponding correlation is presentetlisTchanneling
effect is larger than what is given in the littars¢ and its thermal consequence deserve to be denesl in chemical bed
optimization problems .

Keywords: thermal dispersion, granular porous media, charmgliwall effect, Bayesian estimation.

1. INTRODUCTION

Heat transport in a porous medium through whichual fis flowing is called thermal dispersion. Itppdications are
numerous and range from classical ones such ad bre reactors in chemical engineering or morenteoaes such as
underground storage of solar energy or use of nietahs for the cooling of electronic circuits. Mdldey such type of
transfer requires some closer look at the definitbd temperature. Strictly speaking, the structofe porous medium is
deterministic: one can consider both flow and hemtsfer as pure convection in the fluid phase @ diffusion in the
solid phase. Unfortunately, it is impossible to mbdeat transfer at this scale, not because ofdnastal reasons, but
simply because the local morphology of the mediarariknown. Modelling heat transfer in that typesitfiation requires
making the two phase medium continuous, thamigscalingits structure, in order to get a continugusrous medium
characterized by some structural functions (locabpity, specific area, ...). The momentum and hgaaBons have to be
revisited consequently, with the introduction ofwnthermal quantities (Darcy or filtration velocitglispersion coefficients)
that govern a continuous temperature field, seeiafgv(1999) [1]. This upscaling will be presentedsection 2, with the
introduction of the simplest heat transfer modat tan be used for modeling thermal dispersionptieetemperature model.
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2. THE ONE-TEMPERATURE MODEL

Even if more elaborate models exist, see Quinth®®7) [2], the simplest continuous model that carused to describe
thermal dispersion in a porous medium is based lmta mean ‘enthalpic’ temperatuiigy defined at a point P (and for a
given timet) in the homogenized medium. This temperaturedssiface average of the local temperatures at thespg® of
the porous medium (P’ belonging either to the solidluid phase) located inside a sphere of volu{(@, D) of diameteD
and centred at Psee Fig.1. This sphere, also called Represent&lgementary Volume (R.E.V.), should constitute a
representative volume of the porous medium. Thismmemperature is a weighted average, the localnwelric heat
capacitiespc(P') being used as weights (Moyne et al. 2000) [3]:

_ 1 -1
To = 5Dy v o) PSP TEINV P = (H)P) (1)
where the total local volumetric heat is :
PG (P)=(pc,) (P)= & pey + &, pcy (2a)

and wheres; and &, are the local volume fractions of the fluRl ¢nd solid §) phases £; +£,=1) and pc; and pc, the

corresponding volumetric heat capacities. In theceding equationsH (P) is the local enthalpy by unit volume:
H(P)=pc((P)T(P) and< ) is the averaging operator, defined for any spaaid fi by:

1
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Figure 1. Principle of volume averaging: from twitage porous medium to continuous medium

In the preceding equations timéas not been written as an argument of the diffefnctions, in order to simplify the
notation.

Equation (1) can be viewed as a filtering, in tlaadprocessing meaning, of the local temperatetd, fihe filter used
being a moving average of widih For this homogenisation to be pertinent, diamBtef the sphere must be much larger
than the local characteristic size of the poroudiom, here the average diametieof the grains, and much smaller than the
characteristic size of the system that is modelled, the diameter effiked bed reactor for a process engineering agiiin
for example.
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The local mean temperatufg used here derives directly from the enthalpic xmimveragdH) , Which means that it

has an energetic meaning. As a consequence, noragasumption of local thermal equilibrium is neaid its definition and
in the use of the reduced one-temperature modehilidbe presented next.

At this stage it is possible to definehamogeneous porous meditas a medium where the local structure does not
depend on the location (poift, the centre of the Representative Elementary Veluthe sphere shown in Figure 1),
characterized by a porosity (=& ) that is uniform in the medium.

The one-temperature model requires the definitioa thermal dispersion tensdrwhose coefficients can be considered
as pseudo-conductivities depending on the natbernophysical properties and geometry of the sptans and of the
fluid, as well as on the local Darcy’s (or filtrai) velocityup. A convection-diffusion equation for the space dimde
variations of the averaged temperature can beenrftir a homogeneous porous medium:

oT,
pc[a—tHzﬂ.(/l OT,) - pc; up .OT, +5 (3)

with : up (P) = (u) 4
whereu is the local fluid velocity, which is equal to mein the solid phase.

In this equations is the volumetric heat rate of a source that egredd on both time and space. One can noticefhtbat t
coefficient of the transient term is the total volktric heatpc, while the advection term only uses its fluid comgotoc; .

The preceding equation (3) can be derived usirdgethe volume averaging technique or the homogéais method for a
spatially periodic porous medium.

3.MODEL FOR CHARACTERIZING THERMAL DISPERSION IN HOM OGENEOUS POROUSMEDIA

In order to characterize experimentally thermapeision using the one-temperature model, it is s&arg to design an
experiment that allows estimation of the unknowrap@eters present in equation (3) for a homogenportsus medium: its
filtration velocity up , the principal coefficientsl,, A, ,4, of the dispersion tensdrand its porositye

The simplest type of flow is a plug flow, that i®ae-direction flow in thex (longitudinal) direction, where the filtration
velocity will be notedu = up, now on. The longitudinal dispersion coefficient vk called A, , while its transverse (or

lateral) component (in the direction normal to tloav) will be noted A, =4, , with the additional assumption of isotropic
structure of the medium (no preferential direction)

In order for the porous medium to be uniform, theheuld not be any wall in the medium, which implee model (3)
valid for a domain of infinite extension in the elkrdirections starting from thermal equilibriumTat T, whereT, is both
the initial temperature of the medium, before hegtstarts, and the temperature of the incomingl flnithe packed bed.
Consequently, equation (3) becomes two-dimensibtia¢ heat sources = s (X, y, t) is also two-dimensional:

oT _ . 97T 9°T

oT
pqﬁ_ XW-F/]ya_yz_pCf UE"'S(X, y,t) (Sa)

The previous model has been used to estimate theispersion coefficients in a bed of monodispetass beadd(= 2
mm), with either water or air flowing trough it,es&letzger [4] and Testu [5]. Electrical heatingagingle resistive wire in
the z direction was used. So the source could lteenr s (X, y,t) =Q J(X) d(y) H(t) , whered (.) is the Dirac distribution

and H (.) the Heaviside function. In order to preveny amon-linear effect caused by variation with tengpere of the
different thermophysical properties of both fluiddagrains — mass density, viscosity, thermal cotidties — the level of the
heat steQ was chosen low enough to get a temperature dovger than one Celsius degree. This assumptioron$tant

dispersion coefficientsx‘x and /1y, volumetric heat capacities and filtration velgcinakes equation (5a) linear. This

equation can be solved using the Green’s functohriique [4]:
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T(xyt)= Q exp (p p)f " e | X —(,0 p)f 1_g|90 (5b)
471\//])( Ay 2 A, o Ac Ay 164, @ g

This previous model has been used to estimatewbedispersion coefficients in a bed of monodispeisss beadsd(= 2
mm), with either water [4] or air [5] flowing trotgit. Internal transient temperature measuremehterrfocouples) were
inverted using a specific Bayesian estimation thas able to take into account both temperatureatigoise as well as
uncertainty in the exact location of the thermodeupt junctions. The correlations correspondinth®longitudinal X) and
lateral ) dispersion set for air flow through a bed of glagads are recalled here:

A A
j—x = A—eq + 0.211Pe-*® =/]—eq + 0.126 R&*  for 12 <Re<130 and Pr=0.7 (6a)
f f f
A
/l_y =A, + B, /Re= 640+0.0788Re= 640+ 0.113Pe for12 <Re<130 and Pr=07 (6b)
f

where A is the equivalent conductivity of the isotropicuelent medium composed of fixed solid and fluitapesPe

(= u dfay, with a; = A /(ocp)r) andRe (= Pe/Pr) are the particulate Péclet and Reynolds numibensa bed of glass beads in air,
one hasly, = 0.2 Wm™K ™.

4. NEAR WALL THERMAL EFFECTS

As soon as a solid wall is present in a porous umadthe local structure of the porous medium is ifiediin its vicinity.
This effect is illustrated in Figure 2a for a grlamumedium used in a chemical reactor (packed lmadposed of catalyst
grains) through which reactive gases flow: the gnes of the reactor walls modify the arrangemeinhefgrains, with a local
variation of the porosity: the R.E.V. shown in Figu includes now part of the wall if its centegés too close to the wall.

The local porosity cannot be calculated wit
averages (2b) based on a spherical V.E.R. but w
surface averages, the surface being for exampigkeofl
diameterd parallel to the wall.
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reaction products (catalyst support)
shown inFigure (2b). He proposed the following law ir :
order to model the porosity in the near-wall region

£ (y) =qnin +(1_€min) 22
if 0<y<d/2

)= = (Eure™ &) em(—jz}oos(nﬁ zJ Q)

_ L
if y=2d/2
VV'th zZ= 2 (y/ d ) - 1 0.1f : 23::;2 ;‘)is:;i:ituigc;r}or the two regions
. . . % o5 1 15 2 25 3 35 4
wherez,,, is the porosity of the core region { ) i

_ - ; ; ; igure 2. Wall effects: R.E.V. modification (a) and porosity
a;\d Emin tz_e m]:nlmli;n porcl)lsny that is met at a distance distribution for a packed bed of spheres (b)
of one radius from the wall.
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The porosity variation with distance to wall is sfmin Figure 2b (withe.,.= 0.39 andg,;, = 0.23). One clearly notices
that porosity is maximum at the wald € 1, no solid) and decreases then with dampedlatgmis that tend to the core
porosity &, for large distances from the wall. If one defintbe near-wall region limit by the first minimum dis
distribution { = 0= d/2), it is possible, by averaging equation (3) ba {0 d/2] interval, to affect an average porosity
Eneawan = 0.487 to this region, see Figure 2b.

Martin [6] showed, using Ergun’s equation to botlartp of the packed bed, that the ratio of these two
velocitiesw = Uyeaman / Ucore depends on the particulate Reynolds nuniRer ug,.d /v .

For very small Re - 0) or very largeRe - ) Reynolds numbers, this ratio takes the asymptatices«w = 2.81 and
w, = 1.53 respectively (far,ge = 0.4 antE qawar = 0.5). This means that even moderate change®ipdlosity distribution

will cause considerable flowrate maldistributiorttwits consequences on the core-to-wall heat teansf

Studies on the thermal consequences of this chiammeffect, see Tsotsas and Schltinder (1988h&\e shown that the
use of anh coefficient was not pertinent to model the walfbleeat transfer for low Péclet numbers. More rdgent
Winterberg and Tsotsas (2000) [8] proposed to Uategal dispersion coefficient that varies witlke tfistance to the wall.

5. NON HOM OGENEOUS POROUS MEDIUM REPRESENTATION
5.1 General heter ogeneous case

We consider now the configuration depicted in Fégla: the volumetric heat source in equation (3¢daced here by
surface heating on the solid wall/porous mediunerface, with a surface heat ragl.(x, t) replacing the volumetric
heatings, see Figure 3. Since the porous medium is not gemeous anymore, its parameters (total volumeteat,h
dispersion coefficients) as well as its 1D filtoativelocityu (developed flow) are supposed to depend on thardie to the
wall y. It is then possible to consider the following thequation for the enthalpic mean temperature,rasgpa zero initial
temperature field:

T 0 aT aT
pq(y)—— AY) — ¥ ay[/ly(y)a—yj PCy u(y)& (8)
—Ay(0)6—y:¢e|ec(x.t) in y=0; With © Berec(X,1) =W (H () - H (x=£)) H (t)
To0asx-zco andT -0 ay - +ow ; T=0 at t=0

whereW is the surface density of the dissipated eledtgowver.
Functionsu (y), A, (y), A, (y) and pc; (y)depend ory because is a function of, see equation (7).

5.2 Homogeneous por ous medium solution

The first model, noted H1 here, that can be usesinmilate heat transfer in this configuration istppose the medium
homogeneous, that is to pose & and to consider all the coefficients Ay, A,,0¢; uniform in system (8), see Fig. 5a.

In that case, solution of system (8) can be fouiter @n exponential transformation, making the tasin of this equation
disappear, and a subsequent use of the corresgo@daen’s function:

(pegut  _ (poruyy’ ”
T(xyt)=—Y X [ 4poah e 4O [erf(z) +erf(z)] = (9)
pc U .[ [ 1 2 ]\/5
C: UX Cc: u(/-x
with: 7 pr 6 and z,= pf—() \/_
Y 47,0

An alternate solution can be found through theafdeaplace/Fourier integral transforms (quadrupukthod):

Toyp)=[ Tydew-pyd i T@yp=[  Twypee-iad 10
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Heat equation (8), with constant coefficient: ~ ~
becomes, for one layery( < y <y, ) of porous medium: ? ; P>
~ > —
2T ~
A Lpgu | =
a_-lz—_ _Xa2+&p+|&a T=0 (11
oy Ay Ay Ay

Introducing heat fluxg = —-A, 9T / dy allows solution

of (11) appear in terms of a matrix (quadrupolégtrenship
between the double transforms of the temperatursvese
flux vector on each face of the layer [8], see BEa.

T [A BT I

LD:L —[C D}Myz (12) . I .

Z, =2, = (A-1)IC = tanh(ke/2)/(/, k)
Z; =1/C =1/(4, k sinh (ke))

with:
A=D =cosh(ke) ; B=sinh(ke)/(A, k)

C = A,k sinh (ke) ; k? =ﬁa2+&p+ip"l“a
/ly /]y /]y

An alternate representation, using impedancesa"ify Figure 4. Quadrupole matrix (a) or network (b) e=gmntation of
analogical network, is possible, see Fig. 4b. one layer of porous material

The alternate solution, equivalent to (5b) is: H
. ey gmggg?egus
T, (v, p) =/l—k P ac(P) with a =nm/L i ¥ .
o (13a) +u Ay
. 7 — W -ia, ¢ L’
and: an,aec (p) -5 l-e™™ ) ,1)( @
I pan PCr feon
where L is a large length I( >>/). The real and
imaginary parts of the differenf, modes in the time @ -
domain being inverted through a numerical inver: oS . . - ﬁ/’
H . [} ]
Laplace transform algorithm, see [9]: —OD> : =z 1 [z hH |
~ 2 | I~
T, (v, 1) = L'l[Tn (\2 t)} (13b) Tw || i I T
: : |
and return to the spage domain is used with a finite S
inverse Fourier transform, with a large number N
modes: Figure 5. Model H1 — homogeneous porous layer
N
T(X y,t) =1 Z T, (xt)explia,t) (13c)
L n=-N+1

The analogical representation of the H1 model {@¢3jown in Fig. 5b, where the three impedancekehetwork are:
z, = tanhlk, y/2)/ (A k,) , Z3=1/(A,k,sinh(k,y)) ; Z. =1/ K, ) (13d)

5.3 Threelayer problem

It has been shown above that the presence of lameale the porous medium non homogeneous. Thesetasay to
model this heterogeneity is to separate the medtontwo homogeneous layers: a near wall layethwknessd = d/2, and
POrosity €= &Epeaman » @Nd @ core region of semi-infinite extent, staytaty = J, with porosity = €4 -

The corresponding heat equations are written foh ésyer:

aT a°T a°T aT
— = A —+ A, — - pC; U— for o< l4a
Paor oty o7 per U y (14a)
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aT' a°T a°T aT'
¢ci—=A,—+A,—-pc: U — for 0<y< o 14b
PC X ol Y oy? PCt W y (14b)

where the prime quantities correspond to the gtiestitemperature, uniform filtration velocity, gersion coefficients, total
volumetric heat) of the near wall layer whete &,cwa @Nd the non prime to the core regi@F(Eqre)-

In real experimental situationpnjugated heat transfer in the solid wall (hereaisotropic composite whose thickness is equal to
2¢e): can also be taken into account: the insulationdition at its mid-plane stems from a symmedriangement (same porous
medium and fluid flow on both side of the plateptthird heat equation in the solid:

aTwall 0 2Twall 0 2Twall

PCyall T = Awall X 6x2 + /]wall y ayg for —esys<O0 (14C)

System (9a, b, c) must be completed by the boundagrface and initial conditions:

oT, . oT, , oT' .
a_‘;vla” =0iny=-e ; —Au yd—v;a" + Peec(Xt) =-4 Va_y and T, =T in y=0 (10d, e, f)
T-0andT' - 0 asx - x0w; T -0 asy- +ow T=T and —A'X%iz—Axg—T in y=0 (14q, h, i, j)
y y
T=T'=0 at t=0 (14Kk)

The geometry of this new three-layer H3 model ievsh in Figure 6a. Analytical solution of the comesding
equations (14a-k) through the use of the Greenfgtians is not possible anymore, so only the soifuin the double
transformed domain, see equations (10), will bekddofor: each heat equation (14a-c), associateth@éoboundary or
interface equations on the two boundaries of theesponding domain, can be put under an input/autdationship of the
form given by equation (12). Hence, it is posstblenake the chain product of the corresponding 2 byatrices, in order to
make the interface transformed temperature/flutarsadisappear and to get an analytical solutidve Rarmonics of order
(n=0) of the Laplace temperature in the core layer is:

I

exp(- ky(y - 9))

To(y, p) = , 73 , if y2o
n(y p) /l'nk'nsmh (kné_) +/]ykn COSh(knd) aporousn(y p) y
- - . 1
where aporousn (¥, P) = Ky, Peiecn (P) with Kn = 1
+G,
_ : 15
g 2 vy Kuain 1K1, €) Ay Ky cosh(ky 8) + A,kysinh (ky 0) 4o
n XK. K ysinh (k, 8) + Ak, cosh(k, 3)
- A pC .. PCU o Ay 2. PC N L A 2, PC
with  kZ="XgZ+ Ll p+ig, a, ; kK2="Xa2+ZLptiag, " — ; = Zwallx g2y Fowall
n /]y n /]y p n y n n /]Iy n /].y p n /].y walln /]wally n /]wally p

where o045 1S the flux that enters the porous medium. It g of the surface heat sourgg. that is used to electrically
heat the system. Coefficien€,, that is equal to unity in case of a perfectlyulaging wall (A, y = 0), takes into account
this type of conjugated transfer between near lagér and solid wall.

The thermal network of this three-layer systemnaidl impedances derived from the four quadrupol&imeoefficients given
in Figure 4, are shown in Figure 7b. Here, theahagers thicknesses are the half of the soliceflaitkness, the near wall

layer thicknes® and the thickness of the core layer betw@andy, the point where the transform of temperaturegadij here,
is looked for. The impedances have the followinlyes:

letanh(K] (y—d)lz) /@ykn); Z,= tanlﬁ ko /)2 IA y‘kn' ) 5 L = tar(hm;énne /)2 A(/ally & o

z, =1(Ak,sinh(k = 6)) ; Zo= 1A}k, sinff K3)) : Z,u = 1Q/1wa”y Ko SINQL kK, e)) (16)
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Let us notice that the temperature field in theeamgion (15) can also be calculated using theepliag impedances:

Insulation

Figure 7. Model H3 — Solid wall/near wall layer/edayer
a) Geometry — b) Analogical thermal network

ZI3
W+z/12,)[z, Wz +1zZy) + Z125)+ 241 Z

T (v, p) = B (Vo) i y20 (16)

where Z =2, +2Z, and Z'=71+27Z,

In practice, thermal characterization of the wafleets in thermal dispersion requires measuremdntransient
temperatures inside the porous medium and estimatfothe unknown parameters of the model by ineersef these
experimental data.

- near wall s core
S layer layer y
© - -
2 u’ : u
E l, : l LP Ay
PC; PC h) o b
0 T, (x,1) . PC;
® :
A5 :
~ ‘?_’elec ~ ~ o~
Pwyall R Pporous R Os Py
— — )
Z wal | YWV L4 | Z;
Za el Tmsul %w TZ-b Z'S o -',:-5 TJ/ Zr

Figure 7. Model H3R — Solid wall/reduced near iayler/core layer
c) Geometry — d) Analogical thermal network
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In practice both velocities andu’ are unknown, as well as the thermal dispersiofffic@nts A", and A, and the total
volumetric heatoc in the near wall layer{,andA, can be calculated by correlation (6), omoestimated).

So the difficulties will be large for this experintal estimation, since the parameters being lodkedire numerous.
Another point deserves to be emphasized: the valfial the parameters of the near wall layer dégeaiso of its thickness
o, hered/2, but this value, that can be compared to a baynidyer thickness over a flat plate, is quitdteaby. So there is no
point in making temperature measurement insideng@ wall layer and only measurements in the cegeon deserve to be
inverted.

It is therefore possible to reduce the number ofipaters of the previous model [10]: the tempeeatlistribution in the
near wall layer can be replaced by a unique avelageerature over its width, that can be considesed bulk temperature
T, (x, t) in the corresponding channel of thicknessand of uniform velocitw'. Its Laplace/Fourier transform can be

obtained by the corresponding transformations agéqn (14b) and by integration over the layerkhiss:

~ ~ . 1 1
T =2 - with Z'5 g = = 16
b 3red (?ﬁporous %) 3red 5/1'yk'§ /1'X5 0’5 + ,UC't 5 P+ : a, pc; Su ( )

Let us notice here that impedangg ,.4is equal to the first order series expansion ofottiginal “parallel” impedance

Z';as 0 goes to zero. The physical nature of the thraedeaf the determination of its expression (16) lsarexplained:

* pC,0 p is a capacitive term that determines the heat atstored in this channel because of transienttsifét does

not play any role for long times (steady statet tha going to infinity orp going to zero). Let us note that capacity
p C, 0 incorporates both the fluid and the solid compasienfthe heterogeneous layer;

A0 aﬁ is an axial conductance term that causeseaalistribution of the local heat flux reaching fharous core layer;

*i a, pca, is an axial redistribution term that is causedallyection, that is by the channeling effacti§ larger than
u for a granular porous medium).

Heat flux entering the porous medium is expresse®g,qus = Peiec ~ Pwai » Where @, represents the heat redistributed
in the wall with an inertia effect.

Both fluxes @yqr0us @aNd @, have to be related to temperature differencesciwisi made by replacing the transverse (or
lateral) dispersion coefficient’, by two transfer coefficients andhy:

Twall (X’ t) —Tp (X, t) =R ¢porous (X 1) ; T, (X, t)— Ts (X, t) =R¢gs (xt) (17a, b)

where the two thermal resistances &g=1/h, and R =1/ h(on a unit area basis) angrepresents the flux that enters the
core layer. Let us note, that in the cdsélh, [J2 A4/ J, these resistances are fivst order series expansion of the original

“serial” impedanceZ';as k', d goes to zero. An example of steady state temperalistribution, for model H1, for different
distances to the wall, is shown in Fig. 8 (air ghass beadsd = 2 mm, /¢ =10cm, e=1 mm, &= 0.365,£ = 0.487,N =

2000,L = 3 m). The difference with the H3 model is aldotted: the near wall layer, with its higher velycireduces the
temperature rise in the core region of the bed.
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Figure 8. Simulated temperature field for the Hildelqsteady state) and comparison with the H3 model

6. EXPERIMENTAL BENCH FOR AND INVERSE METHOD

6.1 Experimental bench

The fixed bed is contained in a polymethyl methkatey = - 3
box (150 mm x 200 mm cross section, 400 mm heigitt) ﬁ'r ﬁ'r
a central plate heated on both of its faces by faib o ow ) ow
electrical resistances (in order to guarantee aulation e — 35 0
boundary condition in the mid-plane of the plate, for a3 + > E
symmetrical reason) and filled with spherical gléesads 3 ]
with uniform air flow parallel to it. Thermocouple$ type E I y o o1
of 127 um diameter (hot junction of diameters of a few lent ‘; '; 5 1' 27| =
of millimetres) have been embedded in the bed atvikn = T P s .1[1"1
(nominal) positions,(x™™, y"™) , see Fig. 9. Step heating  —| | * 98 7606 Bl =
has been applied and the corresponding temperahanes ’ L * X
been recorded. Assuming that the thermocoupleipositire 4 iﬁ} 41312110 23 g
known, and that the Darcy velocity of the fluiddeduced i egiitiy i . ¥
from the output ug,, Of a hot wire sensor in the resistor 190 19181718 30 ﬁ
downstream duct, linking bed and fan, the recorde p L an . lo
thermograms can be used to estimate the model psresn = 2h 23z R&\ f,-'gl [
A sensitivity study (see Fig. 10 further down) sleaw & Gl e 55Thermnc; el
that parameters of model HR3 are correlated. Seret 5 G b
information is needed for their estimation. The emxpental 26
bed has been disassembled, and the exact posdfotie | a2 9 74
thermocouples were measured once again: they weghtl\s = AL R — >
different from their original positions. The reasfor this " 150 "

™

deviation is that the glass beads slightly movea th
thermocouples when the bed was constructed. Soakact
positions always need to be estimated. The samgusion

is valid for the Darcy velocity, because of theciciaracy of
the measuring instrument.

Figure 9. Experimental bench and thermocouple iocat
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6.2 Sensitivity study and estimation method

Once experimental temperature measuremd{t$, available atNs different (x ;) locations forN, times t, , the

different parameterss; , gathered in a column parameter vecfoy can be estimated through minimization of the ruay
least square (OLS) sum:

Ns Nt

2 2
Jois (B) = Z Z (Tii)(p =T (%Yt ﬂ)) = “TEXp -T(B) “ (18)
i=lk=1
with g = [u' u ((xi i), fori=1to Ns) pc; h J]T. So then = 6 + 2 Nsparameters present ifi have to be estimated.
In the Jo s sum, the experimental measuremeR{s” have been put under the form of a single columnoveE®® | that is
related to the corresponding H3R model outp ) . The difference of these two vectors is equahtortoise vectors where

noises¢;, are supposed unbiased (zero expectancy, notedhgrg), uncorrelated and of constant standardatiewi o ,
with a spherical variance-covariance matrix, nated (.) here:

TP =T(p) +¢ where E (¢) =0, and  cov(e) = g% I, where m= Nsx Nt (19)

Classical non linear minimization techniques, sastthe Gauss-Newton method [11], can be used dotti@ maximum
of the least square criterion (18), starting fromimitial “guess” corresponding to the nominal \edys"°" of the different
parameters:

£ = gD [x tp0Dy x (poody | gDy (Texp T (ﬂ(k—l))) with @ = gom  (20)

whereX is the sensitivity matrix:

F i ]
xio.. x} & ill
: : : XZJ'
X (B) =(D;;Tt)t L Xp o X X where X = : and Xy = 9T (% Yot B)
dﬂ X_kj 0,3]- Byzj = constant
xlNS co XNs 0 xNs
: " | Xhtj |

(21)

The coefficients of the reduced sensitivity vectgzi?rjsxli(j are plotted, for two fixed locatiofx;, y;) , versus timet, , in

Figs. 10a and 10b , for the following values of fr&rametersW = 1000 W.nf, £ = 0.365,& = 0.487,u = 0.325 m/s,
u'= 0.569 m.§ (Pe= 30;Pe= 52.5), /1'X=1.91Wm_1K'1. For the location(x;, y;) parameters, thicknesshas been used
for normalization and the plotted coefficients adedT / 0x; ando 0T / dy, . One can notice that sensitivities tioe two

velocitiesu andu’ are nearly proportional and that sensitivitiesxtod',, h are extremely low: it will be necessary to give

prior information on the values of these parameierthe criterion to be minimized to prevent a lmmhditioning of the
information matrixX ' X that has to be inverted in the minimization algorit(20). The same remark can be made forythe
position whose sensitivity is quite low in the dastneam region, see Fig. 10b. Let us note that themetric total heat
capacity pc, has a sensitivity that vanishes for long times.

It is therefore possible to distinguish three typeparameters in parameter veggar

- parameters with low sensitivity coefficientd'( ,h), or arbitrary valuesdj. Choice of their values is not critical.
So, they will be considered as “givenfye, = [h Ay J]I. During the iterative minimization process, theyl w
be either kept constant equal to their nominal edld = d/ 2) or given by a correlation, see equation (6a) for
A and (6b) forh =25/, =693W.m?*K™. In practice, we will keefn equal to 1000W.m™.K *further
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down.

- parameters whose values should not depart too rfroch a nominal valueﬁ?om. These are “supposed to be
known”: g, = [u, folop ((xi ;). fori=1to Ns)]t . The nominal values taken here ar€™ = K Uggpson WhereK is

the ratio of the areas of the cross sections ottreesponding outlet duct and of the porous hed,"" is given

by equations (2a) and (7) and the nominal val§gs™", y"") corresponding to Fig. 8 are taken for the

thermocouple locations. It is compulsory to assecéastandard variation that is accepted for th@atiran of these
parameter during the iterative minimization proaedu

- Parameters that are really unknown (no prior infation) and whose value entirely depends on themesitn:
PBunknown = [u] Only an order of magnitude' , depending onu™™through Martin’s use of Ergun’s equation in
the near wall and core layers, see section 4,asadble.

15 . . T T 20
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K @ y=3mm 10 a \\\ 14, 7
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Figure 10. Simulated thermograms and reduced sétsitoefficients, model H3R
Parameter vectop is therefore partitioned into three vectors now:
ﬂgiven B B
— — given : —_| #unknown
ﬂ - ﬂunknown or ﬂ - with ﬂsought_ (22)
ﬂsought ﬂsk
ﬂsk

which means that onlyy, and B, nnoun Will constitute the parif,,q, Of g that will be estimated. Let us note that the exact

values of the components of both vectors are censiinow as stochastic variables. Hence, the @nstt OLS sum, that
corresponds now to Bayesian estimation [12], besome

Ns Nt
Jpayes(B) =D D J—lz(T 0T (% Y1 b U U0 Fguer)) + % (w-urom)? + 021 (pdt - pc}“”“) i
i=1k=10T u pet (23)
Ns Ns
+ Z %(XI _ Xinom) 2 + Z %(yi _ inom) 2
i=1%Yx i=17~Yy

Minimization of the new criterionJg, . criterion can be made using a Gauss-Newtamimization algorithm, similar to
(22):

K — plk-1 t( p(k-1 k-1 2 5 | ytypk-t k-1 2 0
ﬂs(ozjght_ s(oug?1t+ X (ﬂs(oug?n) X(ﬂéouggn) t o7 R ] (X (ﬂéouggn) (Texp -T (ﬂéouggn)) + o7 R |:ﬂnom _ UI?:D (24)
s

with g9 = grom
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where:
0 0 0 O ns O ns C U
-2 t
0 oy 0 Ox ns O1xns u X=[q X o Xy
_2 . 3
R= 0 0 Jpc‘1 le Ns 01>< Ns with ﬂsought =1 PCy and
_2 —_— t
Onsxt Onsxi Onsxi Ox “Tnsxns  Onsxns X y= [Y1 Yo yNs]
-2
_ONsxl ONsxl ONsxl ONst Uy lex Ns | L y i

I nsxns 1S the identity matrix of sizBlsx Nsand 0, , zero matrices of sizex g.

pxq
The different variance ratios(a, / o7)?, (0, / 01)?, (0,  07)* and(o, / o7)?, can be considered as regularization
parameters that allow a compromise between fidedithe data (minimum of the first term of (23g, s (Bsougny) » fOr zero

or) and full respect to the constrainigf,qn= g, for oy, gy, g, and g, equal to zero).

6.3 Monte Carlo ssimulations of inversion

In order to assess the quality of the estimatiod tnstudy the effect of the temperature and locatioise on the
estimator obtained by minimization of sum (23)sitrery interesting to implement it on synthesireglsurements, that is to
use a Monte Carlo process: the exact temperatgponse of model H3is noised with an independent additive normal

random noise of zero mean and standard deviatipnwhich yields simulated experimental temperatufgs”. The same
technique is implemented with both exact thermot®w@oordinates(x; ,y;) that are noised the same way with a noise of
standard deviationsr, ando, to produce the nominal locatior{s™™,y{"") . A number Ng;,, = 160 simulations lead to
,23’1” estimates (for j = 1 td\g;y,, ) of thej " component of Vectofs, qni- Both biasb; and statistical standard deviatioss

can be calculated fods= 6 thermocouples:

-7 exact _ 1 L (ﬁ”)z =\ 2 . = 1 Nsimui N
b, = B - B and s == (B)- (ﬁj) with == B (25a)
simul =1 simul n=1

with the following values of the different standateviations defininglg,yes:

oy =002K ; 0, =1mm; o, =1mm; g,. =005pc,""; g, = 0.20 Usensr (25b)

Biasesb; are much lower than standard deviatiesand the errore; (defined ase; = |bj|+ s;j) in the estimated

e

locations were lower than 0.7 mm. Relative erreys S; *act \were 7 % fowr, 2 % foru, and 31 % forpc, .

7.RESULTS

7.1 Thermograms and residuals

In the experimental application [13] of the mini@tion of Jg, s, @ criterion has to be chosen for stopping the tiena
A least square residual sum corresponding to desingasurement was defined:

1/2
S® = (07 1 O yue) [Tpayes(Bahgn)! (NS N (26)

sough

where o7, = 0.01 K is the standard deviation that can be orealsbefore heating starts (this value is twicelenthan the
oy value used in the definition afgayes.

So iterations were stopped as soon as one of tae following criterions were fulfilled: i)S(k) lower than 1.2,
i) ( s gk) )/ S® Jower than 5 18 and iii) no more than 40 iterationk € 40).
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Figure 11. Experimental and recalculated (H3R madhelrmograms

Four thermocouples, TC 3 (20 mm, 3 mm), TC 6 (50, &atmm), TC 17 (120 mm, 4 mm) and TC 22 (140 mmmmd),
were chosen for the inversions: two are locateftant of the heating plate, at itslevel, and the two other ones in the
downstream region. The corresponding experimemntiracalculated thermograms are shown in Fig. hie €an see that the
residuals are very low. The corresponding values anvergence of the minimization algorithm are:
0 =0.115m/s;i = 0560m/s;& =0.53 S =1.06.

7.2 Estimation of the channelling effect

The previous estimation technique was applied foe ¢egion velocities from 0.06 to 0.511 m/s, whichresponds to
core region particulate Péclet numbers in the 8;idterval and Reynolds numbers in the [8; 68¢imal. The ratio of both
estimated average Darcy velocitiés/ U is plotted versus the estimated Péclet numberign £2. One can see that,
depending on the velocity and therefore on thed®éuimber in the core region of the bed, this \iglaatio is between 2
and 1.5 larger than its value calculated by Mastinthe basis of a Ergun law with uniform velocitiashe near-wall and
core layers (curve also shown in Fig. 12).

6
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2 Experimental estimations
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Figure 12. Experimental estimation of the channgliffect
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A linear regression has been implemented for oyesmental points. It is valid for air flow through bed of
monodisperse spherical beads of core porasity.365, with a near-layer thicknedsqual to one bead radius:

U /u=-0.0483Fe +541=0.343Re+ 541 for 6< Pe< 48 and & R 6 (27)

The channeling effect is therefore larger than etgue the maximum temperature deficit in the cdrthe bed, according
to Martin’s theory was close to 15 %, see Fig. Bdd?éclet number equal to 30. This maximum deéait become larger
than 25 % if the same type of simulations is impeared with near-wall layers velocities calculateugh equation (27).

8. CONCLUSIONS

The thermal dispersion model that uses only onth&pic’ average temperature obtained from an @bsg process can
be used for simulating heat transfer in an air filmough a bed of glass beads. Attention has beeumght here to what
happens in the region of the bed close to a sohdl. vA semi-analytical modelization, in the doullaplace-Fourier
transformed domain, allowed to build a thermal idgoece network, where the near-wall layer is reprieseby a porous
channel, with an average Darcy velocity and a tame space varying bulk temperature, two heat tearesfefficients, and a
thermal impedance depending explicitly on the vigyodistribution. Because of this thermal impedanttet takes into
account the near-wall layer lower heat capacity langer velocity and the flux and temperature reitistion in the flow
direction caused by longitudinal dispersion in thiekness of this layer, the thermal field in tleree region differs from the
homogeneous dispersion case.

An experimental bench, with internal point temperatmeasurements, has been constructed to assesmginitude of
this channelling effect for air flow through a cotidated bed of monodisperse glass beads. It usgseeific Bayesian
inverse parameter estimation technique that usesipformation on the thermocouple locations (noativalues) as well as
on core velocity (order of magnitude measured byaanemometer) and on the near wall layer heat cpébieoretical
porosity profile). This estimation algorithm, aslas the values of the regularization hyperparansethave been validated
through a Monte Carlo process of inversion of sgathed noised measurements. Experimental inversisirgy four
thermocouple transient temperature measurementthangrevious reduced three layer model display i@~ temperature
residuals. They allowed to construct, for differerdin flow velocities, a correlation giving the weity ratio (near-wall over
core region velocity) as a function of the partital Reynolds number. This ratio is much higher tluhat is presented in the
literature. As a consequence, channelling effdotsa granular porous medium, affect heat transfeahe core layer of the
bed in a higher way than thought previously.
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