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Abstract. The present work aims at the implementation of finite element sensitivity analysis for components modeled with
the CAD/CAM/CAE software CATIA. Performing structural optimization with CATIA using the built-in first order opti-
mization tools, though possible, has many limitations, from inefficiency to lack of convergence. However, the attractiveness
for doing structural optimization inside the suite is high, since the user can benefit from its integrated environment. It
would be very desirable that optimization could be done using more efficient tools, which could even be fully controlled by
the user. With this idea in mind a specific code has been developed in VBA (Visual Basic for Applications) language with
the purpose of computing finite element sensitivity analysis of structural responses of parts modeled with the suite. The
finite difference sensitivities are carried out with respect to parameters defining component geometry. The paper presents
the sensitivity of the von Mises stress with respect to independent modeling parameters to be used as design variables in
a complex three dimensional part discretized with solid finite elements. The ability of performing user controlled struc-
tural response sensitivity analysis with CATIA opens new perspectives for future implementations of much more efficient
structural optimization inside this integrated environment.
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1. INTRODUCTION

CATIA is well known as a powerful CAD tool, having the capability for the geometric modeling of virtually any part
used in engineering design. It also has a reasonable capability for finite element structural analysis, including shell and
solid elements. For instance, after the appreciation of finite element method (FEM) analysis responses, the part can be
modified by the engineer with the aim of improving the satisfaction of design requirements. This typical trial and error
approach is not efficient for designing because many time consuming stages of geometrical modeling and FEM analysis
may be necessary in order to achieve an acceptable design, specially when design requirements are tight.

In a previous article by Hernandes et al. (2008) CATIA was evaluated with respect to its efficiency for doing structural
optimization by means of its own modules without help of any external programmed interface. In the same fashion, the
work Ferreira and Hernandes (2007) evaluates the software efficiency in the optimization of isotropic sheet metal panels
whose masses are minimized under fundamental natural frequencies constraints.

In the present work an effort is made to obtain the finite element structural sensitivity analysis of von Mises equivalent
stress in some control points defined in the component modeled by CATIA. This sensitivity analysis may open new
possibilities for the implementation of more efficient structural optimization tools in the future. To achieve this goal a
module was coded using VBA programming language. It is based on von Mises stresses obtained from CATIA FEM
analysis.

A new approach for calculating the finite differences sensitivities is suggested in such a way to smooth the values
of von Mises equivalent stress aiming to stabilize the function values used with this purpose. This is necessary because
in order to get the function derivatives the finite element component model must be remeshed and the new mesh can be
different from the original one. Essentially the program perturbs some of the component independent parameters used
as design variables, calculating the von Mises stress in the control points in the original and the perturbed designs. This
process is repeated for the number of control points defined in the component.

Two examples are presented to illustrate the method. A simple tubular beam of rectangular section discretized with
three-dimensional hexahedron finite element and a component with a more complex geometry, similar to some parts
found commonly in the industrial environment, discretized with a three-dimensional tetrahedron finite element. In each
one, control points are defined and parameterized in agreement with the geometry.

2. VON MISES STRESS SENSITIVITY ANALYSIS IN THE CONTROL POINTS

The filtering of the sensitivity information in topology optimization is highly efficient and ensure mesh-independence
(Bendsøe and Sigmund, 2004). It is based on a weighted average of the element sensitivity in a fixed neighborhood or the
filter area. The idea of filtering can be applied to other quantities defined over the finite element mesh, which we would
like to make smoother or to have more independency from the mesh. In our case these are the von Mises stress in control
points over the part discretized with finite elements. Therefore, the von Mises stress in a point located on the component
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shaped can be obtained from the weighted average of stresses from nodes in a fixed neighborhood. This suggests that the
value of the filtered equivalent stress in the control point will be independent of the mesh.

The value of the von Mises stress σpc in a control point is determined by:

σpc =
1∑n

i=1Hi

n∑
i=1

Hiσnd (1)

where σnd is the nodal stress, n is the number of nodes. The weight factor Hi is given by:

Hi = rmin − dk,i (2)

The radius rmin defines the filter area around the control point k and dk,i is the distance between node i and control point
k. The operator Hi decays linearly with increasing distance dk,i. If dk,i > rmin than the operator Hi = 0. Therefore the
contribution of stresses given by each node decays linearly with distance. Supposing that the control point coincides with
a node, then in the limit, when the radius becomes zero, the von Mises filtered stress would match the nodal von Mises
stress.

The sensitivity of the von Mises stress in a control point with respect to a design variable is based on the finite
differences method. The method requires two structural analysis. One for the initial stress state in the body with its
original shape and another for the final stress state in the body with its perturbed shape due to a small change in the design
variable. For the perturbed FE analysis a remesh of the body must be performed according to the current variable being
perturbed.

Although it is possible to keep the mesh size constant, the new FE mesh will differ from the one of the original body.
This means that it is not possible to base finite difference sensitivities directly on the nodal value of a von Mises stress
and therefore we have the justification for using the proposed filtering scheme.

The determination of the stress σpc in the control point is straightforward. The strategy used here is one in which a
certain number of FE nodes is stipulated and the minimum radius that contains this number of nodes is used in Eq.(1).
This strategy seems to work better than fixing an arbitrary radius. Therefore, the rmin is determined by:

rmin = 1.2 dk,n+1 (3)

where dk,n+1 is the distance between the node n+ 1 more close of the control point k. The factor 1.2 is used as a margin
to fix rmin.

The sensitivity analysis (Haftka and Gürdal, 1992) with respect to the design variables is given by:

∂σpc
∂qj

=
σ′
pc − σpc

∆qj
(4)

where σpc is the initial Von Mises Stress and σ′
pc is the final Von Mises Stress after the perturbation ∆qj of the design

variable.

2.1 CONTROL POINTS

The control points are positioned in strategic locations where von Mises stress are high. When the body has one of
its design variables perturbed, the position of the control point may change. Therefore the position of control points must
be parameterized such that it follows the perturbed geometry. For example, considering the Fig.1, lets imagine a control
point k defined over a segment between points A and B at position Lp1 in the line r of length L1, which represents the
original body. In the perturbed body, the point k will assume a proportional location and in the direction of the variation
∆L1, as in the Fig.1.

The new position of k is given by Lp2 = Lp1
L2
L1

. If points k andA have coordinates s1 and sA, then the new coordinate
s2 of point k is given by:

s2 = s1 +
(

(s1 − sA)
L2

L1
− (s1 − sA)

)
(5)

where, Lp1 = (s1 − sA). Similar parametrization can be applied to control points defined over surfaces or volumes.

3. COMPONENTS SHAPED UNDER STUDY

Two components are discretized and analyzed by the finite element method.

3.1 COMPONENT 1

The component 1 is a tubular cantilever beam of square section made in aluminum. One vertical load of F = 2500N
is applied on the extremity, as shown in Fig.2.
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Figure 1. Displacement of the control point k.

Figure 2. Component 1, load and constraints.

Two control points are defined where the von Mises stress will be computed. The point P1 is an internal point close to
the node where the von Mises stress is higher, the point P2 is located in the beam web, as depicted in Fig.3.

The design variables T1 and T2 increase in the directions d1 and d2, respectively, when are perturbed. The relation
between Tj for j = 1, 2 and points Pk is given by:

x2,k = x1,k+
(

(x1,k−xA)
T ′

2

T2
− (x1,k−xA)

)
y2,k = y1,k z2,k = z1,k+

(
(z1,k−zA)

T ′
1

T1
− (z1,k−zA)

)
(6)

T ′
1 and T ′

2 are the values of the perturbed design variables. The beam is discretized in three-dimensional hexahedron
finite element with eight nodes and maximum size equal 6mm. This mesh is shown in Fig.4.

The finite element uniform meshes are generated by the Advanced Meshing Tools and analyzed with the Generative
Structural Analysis, which are modules internal to CATIA (Dassault Sistèmes, 2005).

For control points P1 and P2 the radius corresponding to 10 neighbor FE nodes were established for the sensitivity
analysis. Table 1 shows the results obtained for the sensitivity analysis of the von Mises stress for perturbations from 1%
to 5% in the design variables.

Table 1. Results of Sensitivity Analysis, Component 1.

For ∆Tj = 5%Tj For ∆Tj = 3%Tj For ∆Tj = 1%Tj

Pk
Tj Size of Tj rmin n σpc σ′

pc
∂σpc

∂Tj
σ′
pc

∂σpc

∂Tj
σ′
pc

∂σpc

∂qj

(mm) (mm) (MPa) (MPa) (MPa
mm ) (MPa) (MPa

mm ) (MPa) (MPa
mm )

P1
T1 6.0 9.230 10 26.660 26.300 -1.205 26.440 -1.216 26.590 -1.239
T2 6.0 9.23 10 26.660 26.465 -0.660 26.540 -0.652 26.630 -0.567

P2
T1 6.0 9.890 10 7.400 7.328 -0.234 7.356 -0.241 7.385 -0.246
T2 6.0 9.890 10 7.400 7.354 -0.153 7.385 -0.0848 7.395 -0.083

It can be seen in Tab.1 that the values of the derivatives seem to converge for the 5% to 1% perturbations. Certainly
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Figure 3. Component 1, 2D views with design variables and control points, units in (mm).

Figure 4. Component 1, showing its hexahedron mesh. The regions in red present the highest stresses.

this nice behavior is influenced by the good quality of the uniform FE mesh obtained with the hexahedron element.

3.2 COMPONENT 2

The component 2 has a much more complex geometry. The idea here is to have a part similar to those found in the
industrial environment. Loads and displacement constraints are showed in Fig.5. Again, two control points are used. P1

and P2 are fixed in the neighborhood of maximum von Mises stress. There are six design variables, H1, H2, Ea and
Eb which increase in directions d1, d2, da and db, respectively, when are perturbed. These variables and directions are
indicated in Fig.6. The relation between the design variables and control points coordinates are as follows, for k = 1, 2:

x2,k = x1,k +
(

(x1,k − xA,k)
E′
a

Ea
− (x1,k − xA,k)

)
x2,k = x1,k +

(
(x1,k − xA,k)

E′
b

Eb
− (x1,k − xA,k)

)
(7)

y2,k = y1,k +
(

(y1,k − yA,k)
E′
a

Ea
− (y1,k − yA,k)

)
y2,k = y1,k +

(
(y1,k − yA,k)

E′
b

Eb
− (y1,k − yA,k)

)
(8)

z′
2,k = H2 − (H2 − z1,k)

(
H2 −H ′

1

H2 −H1

)
(9)
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z2,k = (H ′
1) + (z′

2,k − 2H1 +H ′
1)
(
H ′

1 − 2H1 +H ′
2

H ′
1 − 2H1 +H2

)
(10)

where x1,k, y1,k, z1,k are the coordinates of the points P1 and P2 before perturbation and x2,k, y2,k, z2,k are the coor-
dinates after perturbation. The coordinates xA,k, yA,k and zA,k = z1,k belong to points located in the edges of the part
as can be seen from Fig.6. Parameters as H ′

1, H ′
2, E′

a and E′
b are the variables after perturbation. The Component2 is

discretized in three-dimensional tetrahedron finite element with ten nodes and maximum size equal 6mm. This mesh is
shown in Fig.7.

Figure 5. Component 2, load and constraints.

Figure 6. Component 2, 2D views with design variables and control points, units in (mm).

A first positive result from Tab.2 is that the signs of the derivatives are the same for the three perturbations of 5% to
1%. It can be seen in Tab.2 that the values of the derivatives for 5% and 3% are better related than the results of the 3%
and 1%. If we assume that the tendency of change from the 5% to 3% is correct, it is hard to accept the changes obtained
with the 1% perturbation, with higher jumps and tendency which for some variables are opposite to the one from 5% to
3%. Therefore it would wise to discard the results obtained with the 1% change.

4. CONCLUSIONS

The method proposed for the sensitivity analysis of von Mises stress worked satisfactorily. The von Mises stress
sensitivities are calculated based on a weighted average of von Mises stress in a fixed neighborhood. This average was used
to obtain the derivatives with respect to design variables by finite differences. Preliminary results for two problems show
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Figure 7. Component 2, showing its tetrahedron mesh. The regions in red present the highest stresses.

Table 2. Results of Sensitivity Analysis, Component 2.

For ∆qj = 5%qj For ∆qj = 3%qj For ∆qj = 1%qj

Pk
qj Size of qj rmin n σpc σ′

pc
∂σpc

∂qj σ′
pc

∂σpc

∂qj σ′
pc

∂σpc

∂qj
(mm) (mm) (MPa) (MPa) (MPa

mm ) (MPa) (MPa
mm ) (MPa) (MPa

mm )

P1

H1 18.00 6.014 20 140.727 140.209 -0.576 140.265 -0.856 140.626 -0.561
H2 21.00 6.014 20 140.727 135.682 -4.804 137.303 -5.434 140.0132 -3.397
Ea 10.00 6.014 20 140.727 138.358 -4.738 138.568 -7.194 140.340 -3.863
Eb 10.00 6.014 20 140.727 139.498 -2.458 139.914 -2.707 140.061 -6.653

P2

H1 18.00 8.330 20 72.450 70.782 -1.853 71.404 -1.936 71.442 -5.601
H2 21.00 8.330 20 72.450 69.164 -3.130 68.956 -5.546 70.570 -8.953
Ea 10.00 8.330 20 72.450 70.125 -4.651 71.271 -3.929 71.238 -12.115
Eb 10.00 8.330 20 72.450 70.329 -4.241 69.656 -9.314 71.176 -12.738

that the derivatives seem to be stable for different perturbations from 1% to 5%. The results are specially encouraging for
the second problem where a very complex mesh of parabolic tetrahedron finite elements was used to discretize a part with
a complex shape. The method needs to be further tested and in the future incorporated to an experimental optimization
code together with other appropriate techniques.
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