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Abstract. An adaptive hybrid level-set/front-tracking method is applied in order to efficiently solve relevant physical
scales of multi-phase flows, especifically deformable droplet and the breakup of fluid-fluid interface. Geometric interfacial
quantities are computed from front-tracking while the level-set function, which is evaluated fast and to machine precision,
is used as a fluid indicator. To solve accurately sharp gradients and flow features adaptive mesh refinements are employed.
Using this numerical methodology is possible to simulate the liquid sheets in which the edge receding and accumulate
fluid and an pendant drop formation.
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1. INTRODUCTION

Multi-phase flows are a source of numerous nonlinear processes of both scientific and technological relevance. The
formation of drops or its impact over a surface is a complex phenomenon which is not easy to predict the distribution of
their sizes or to observe the intricate dynamics involved. The phenomenon is also of intrinsic interest because it represents
a challenging moving boundary problem. Therefore, the effective numerical simulation of these flows requires both an
accurate representation of the singularly supported interfacial forces and of all physically relevant flow quantities and to
faithfully capture the disparate scales. The method presented here is able to simulate with accuracy all theses quantities. It
couples the hybrid level-set/front-tracking (LeFT), the fast and accurate fluid indicator developed in Ceniceros and Roma
(2005), and the adaptive immersed boundary (IB) method first introduced by Roma, et al. (1999).

LeFT does an explicit tracking of the interface using the IB method framework and employs a continuous level-
set function as a fluid indicator. The interfacial tension and the geometric quantities are evaluated from the tracked
interface while the level set function is used to update the material quantities. Thus, the method retains one of the
advantages of front-tracking (accurate evaluation of interfacial quantities) and at the same time benefits from a continuous,
geometry-based fluid indicator, the level-set function. Moreover, this signed distance function is updated only locally, in
a thin neighborhood of the interface, at optimal computational cost and is computed to machine precision for a piece-
wise linear representation of the interface. Here, we also use a hybrid Lagrangian/Eulerian approach due to Shin, et al.
(2005) to evaluate the tension force. This hybrid force formulation combined with the accurate fluid indicator leads to an
unprecedented reduction of spurious currents.

In addition, a semi-implicit time discretization which stably handles the non-linear viscous term explicitly is adopted.
As proposed by Ascher et al., (1995), the IMEX (Implicit-Explicit Method) method with some simples modifications
assure the time step being restricted only by a linear CFL constraint (∆t = O(∆x)). This efficient semi-implicit time
discretization based on IMEX Method is employed along with centered finite differences for the discretization in space.
Special multilevel-multigrid methods are applied to solve the linear systems arising from the convection-diffusion equation
and from the pressure-correction Poisson equation.

The paper is organized as follows. Section 2.gives a brief introduction to the mathematical model, presenting LeFT
method and the hybrid interfacial force adopted. The numerical method is presented in Section 3.. In Section 4.two
phisically relevant numerical examples are presented.

2. LEVEL-SET/FRONT-TRACKING METHOD

Consider a single fluid interface separating two incompressible fluids of constant but possibly different densities and
viscosities and in the presence of surface tension. In this method the interface or immersed boundary is explicitly tracked
and the level set function φ is used as a fluid indicator. The motion equation for both fluid and interface X(α, t), where α
is a Lagrangian parameter, is given by:
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ρ(φ)[ut + (u · ∇)u] = ∇ · [µ(φ)(∇u +∇u†)]−∇p + ρ(φ)g + fH, (1)
∇ · u = 0, (2)

Xt(α, t) =
∫

Ω

u(x)δh(x−X(α, t)) dx, (3)

where φ > 0 for one of the fluids, φ < 0 for the other, φ = 0 along the interface between the two phases and is computed
directly but locally using a fast algorithm for signed distance. Here, u, p, g, and fH are the velocity field, the pressure,
the gravitational acceleration, and the surface tension force respectively. The δ-distribution in (3) is replaced by mollified
function δh as done originally by Peskin (1977), where δh(x) = dh(x)dh(y) with

dh(ξ) =

{
0.5 [1 + cos(π

h ξ)]/h for |ξ| ≤ h,

0 for |ξ| > h,
(4)

where h = 2∆x, and here is assumed that ∆x = ∆y.
With the level-set function defined, is possible to obtain the material quantities, given by:

ρ(φ) = ρ1 + (ρ2 − ρ1)Hh(φ), (5)
µ(φ) = µ1 + (µ2 − µ1)Hh(φ), (6)

where ρ1, ρ2 and µ1, µ2 are the constant densities and viscosities of the bulk phases, respectively, and Hh(φ) is a mollified
Heaviside function defined by

Hh(ξ) =


0, for ξ < −h

0.5 [1 + ξ/h + sin(π
h ξ)/π], for |ξ| ≤ h

1, for ξ > h.

(7)

The hybrid surface tension force fH as proposed by Shin, et al. (2005) is briefly shown here, where fH is given by the
spread of normal (n) and the lagragian surface tension force (fL), such that

fH(x) = σκL(x)∇Hh(φ(x)) (8)

κL(x) =
1
σ

fL(x) · n̂L(x)
n̂L(x) · n̂L(x)

. (9)

where κ is the curvature mean, σ is the surface tension, and,

fL(x) = σ

∫
Γ

κ(α)n̂(α)δ(x−X(α))|Xα(α)| dα, (10)

n̂L(x) =
∫
Γ

n̂(α)δ(x−X(α))|Xα(α)|dα. (11)

3. NUMERICAL METHOD

As said before a hybrid adaptive method is applied, which means that qualities from both front-tracking and level-set
method are employed, and by the fact that adaptivity is introduced in space and time through dynamic control of the
lagrangian markers and through Eulerian refinement, and trough an adaptive, robust second order semi-implicit temporal
discretization (Ceniceros et al., 2009).

A semi-implicit time discretization is based on a second order IMEX schemes (Ascher et al., 1995) with some modi-
fications employed by Badalassi et al. (2003) and detailed too in Villar et al. (2006).

With the IMEX schemes is possible to obtain a family time discretization, which is applied to Navier-Stokes equation
and initially described by:

ρ(φ)
∆t

[
(γ +

1
2
)un+1 − 2γun+(γ − 1

2
)un−1

]
= (γ + 1)f(un)− γf(un−1) (12)

+ µ
[
γ +

c

2
g(un+1) + (1− γ − c)g(u)n +

c

2
g(un−1)

]
−∇pn+1 + ρ(φ)g,

where f(u) represents the advective term and g(u) the diffusive term. γ and c are constants with which is possible to
obtain the SBDF (semi-backward difference formula), CNAB (Crank Nicolson Adans Bashforth), MCNAB (modified
Crank Nicolson Adans Bashforth) and CNLF (Crank Nicolson Leap Frog) Methods.



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

The equation (12) is rewritten to use here the modifications proposed by Badalassi et al. (2003) and Euler Method in
the first time step, such that

ρ(φ)
∆t

(α2un+1 + α1un+α0un−1) = b1g(un) + b0g(un−1)+ (13)

λ
[
(γ +

c

2
)∇2un+1 + (1− γ − c)∇2un +

c

2
∇2un−1

]
−∇pn+1 + ρn+1(φ)g,

where λ = |µ|∞, and α0, α1, α2, b0 , b1 again are constants that allow the user to decide which IMEX schemes apply.
Doing this is necessary to complete the motion equation, and the g(u) function is not necessarily composed only by
advective terms, but either by surface tension term and diffusive term.

g(u) = −λ∇2u +∇ ·
[
µ(∇u +∇uT )

]
− u · ∇u + fH (14)

Now is possible to define each constant in agreement to the IMEX scheme desired, being known that the time-step
is constant. For SBDF method (γ, c) = (1, 0), MCNAB method (γ, c) = ( 1

2 , 1
8 ), CNAB method (γ, c) = ( 1

2 , 0), CNLF
method (γ, c) = (0, 1) and for both α2 = γ + 1

2 , α1 = −2γ, α0 = γ − 1
2 , b1 = γ + 1, b0 = −γ. In the first time-step the

Euler Method is applied which leads (γ, c) = (1
2 , 0) and α2 = 1, α1 = −1, α0 = 0, b1 = 1, b0 = 0.

A fractional-step projection method is applied to the Navier-Stokes equations, resulting a scheme which is second-
order accurate for the velocities and at least first-order for the pressure. In practice, the solution of Eqs. (1)-(2) is computed
in three steps by a projection method specially designed for composite grids. The following development assumes that
the pressure and other scalar functions are placed at the centers of the computational cells, while velocity and other vector
function components are placed at cell edges. First, in the parabolic step, one must solve, for a provisional velocity u∗,
the implicit parabolic equation

ρn+1,0(φ)
∆t

(α2u∗
n+1 + α1un+α0un−1) = b1g(un) + b0g(un−1)+ (15)

λ
[
(γ +

c

2
)∇2u∗n+1 + (1− γ − c)∇2un +

c

2
∇2un−1

]
−∇pn+1,0 + ρn+1,0(φ)g,

where pn+1,0 and ρn+1,0 are given approximations of the pressure and of the density at t = tn+1, respectively. Second ,
in the elliptic step, where must solve the pressure-correction Poisson equation

∇ · (1
ρ
∇qn+1) =

α2

∆t
∇ · u∗, (16)

with homogeneous boundary conditions. In the third step, to complete the projection, the provisional velocity field u∗ is
decomposed using the pressure correction obtained

un+1 = u∗ − ∆t

α2

∇qn+1

ρn+1,0
, (17)

given as a result un+1, a discretely divergence-free vector field defined on the entire composite grid. This step is referred
to as the decomposition step.

Another intrinsic problem of front-tracking method applied to multi-phase flows comes from the excessive marker
(particle) clustering. To overcome this difficulties Ceniceros and Roma (2004) propose to select a tangential velocity of
the interface markers to control their distribution at all times, and the markers move only with the normal velocity of the
fluid. Thus 3 is modified by:

Xt(α, t) =
∫

Ω

u(x)δh(x−X(α, t)) dx + UA(α, t) t̂, (18)

where UA(α, t) is arbitrary defined by

UA(α, t) = −UT (α, t) +
∫ α

0

(sακUN− < sακUN >) dα′, (19)

where UT = t̂ ·
∫

u(x)δh(x −X(α, t)) dx, UN = n̂ ·
∫

u(x)δh(x −X(α, t)) dx, sα =
√

X2
α + Y 2

α is the arc-length
metric, κ is the mean curvature, and < · > stands for the spatial mean over one spatial period. It is important to note that
the evolution of the interface followed by its regularization is done once more by IMEX scheme.
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3.1 Adaptive Mesh Refinement

The existence of local phenomena and the need for more grid points to accurately capture them suggest the application
of local mesh refinement techniques. The AMR developed by Berger and coworkers (Berger and Oliger (1984) and Berger
and Colella (1989)) and extended to the elastic interfaces by Roma et al. (1999) is based on a collection of logically
rectangular meshes that make up the coarse grid; refinements cover a subset of the domain and use smaller rectangular
grid patches. These finer patches can be recursively nested until a given level of accuracy is attained. For this case special
multilevel-multigrid methods are applied to solve the linear systems arising from the convection-diffusion equation and
from the pressure-correction Poisson equation. An example of adaptive mesh used here is presented in Fig. 1.

Figure 1: An example of structured adaptive mesh

A staggered (composite) grid, i.e., pressure and other scalar variables are placed at the centers of the computational
cells, the first component of vector variables are placed at the middle of the vertical edges, and the second component
are placed in the middle of the horizontal ones. The discretization of the Laplacian, gradient and divergence differential
operators are performed by standard, cell-centered second order stencils.

4. RESULTS

Two tests are presented to verify the capabilities of the proposed adaptive hybrid method in the formation of growth
waves and the breakup of drop. One analyze the instabilities that lead to the growth waves and later the breakup in the
middle of the sheet and not at the edge as shown by Song and Tryggvason (1999). The last test focus on process of
breakup and the formation of the primary drop.

4.1 Fluid-Film

During the drop formation process, in many atomizers, a thin liquid sheet that eventually breaks up into drops is
formed. Although, before the disintegration of the liquid sheets the edge receding and accumulate fluid. The breakup
of filaments has been studied by a large number of authors, such as Lozano et al. (1998) and Song and Tryggvason
(1999) but today is still very complex to understand the physics that governs the growth waves and the breakup. Here
two-dimensional simulation try to explore the vorticity filed formation during the receding and accumulate fluid process
to explain its formation.

Many study shows that the edge of the sheet is pulled back by surface tension, forming a thick blob. The speed
at which the edge is pulled back depends primarily on the Ohnesorge number (Oh = µd

(ρddσ)0,5 ), which is the ratio of
viscous forces to surface force, and to a lesser degree on the properties of the extern fluid. Three values of Ohnesorge are
reproduced here Oh = 0, 98, Oh = 0, 098, Oh = 0, 0098, in an Ω = [0, 1] × [0, 4] domain and 32 × 128L3 adaptive
mesh. The initial length of the sheet is 3, 7 and its thickness is 0, 15. For this simulation the SBDF method was applied.

The Figure 2 presents the evolution of vorticity field at Oh = 0, 0098, which admit low viscosity effects leading
the formation of symmetric waves that propagate along the sheet, away from the blob. These instabilities will create a
primary drop and many satellite drops. The origin of these instabilities comes from in flexional profile velocity, where the
inflection point is on the interface. This inflection allow the formation of the Kelvin-Helmholtz instability that generates
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a pressure jump with a bigger extern pressure than in the internal region. In the other hand, a negative curvature takes
place and creates a restoring force out of the interface. Those three mechanisms (pressure jump, surface tension force and
vorticity) assure a condition to amplify the instability leading to the necking.

(a) (b) (c) (d) (e) (f)

Figure 2: Evolution of the sheet boundray overlapped by vorticity field at Oh = 0, 0098. (a) t = 0, 39s, (b) t = 50, 75,
(c) t = 101, 5s, (d) t = 152, 25s, (e) t = 203s e (f) stream lines at t = 203s

The Figure 3 shows the pressure field and the velocity graphic at Oh = 0, 98 for t = 30s. In this case is possible
to note the smooth inflexional velocity graphic (Fig. 3b) which doesn’t lead to necking. A steep profile is observed in
Oh = 0, 098 and Oh = 0, 0098. The Figs. 4 - 5 shows again the pressure field and the vertical velocity taken in the
position indicated by the dashed line. At Oh = 0, 0098 the steep inflexional profile is noted in the first initial time-steps
for t = 3, 9s.

(a) (b)

Figure 3: (a) Pressure field at Oh = 0, 98 and t = 30s , (b) Velocity graphic taken at the dashed line position.
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(a) (b)

Figure 4: (a) Pressure field at Oh = 0, 098 and t = 300s , (b) Velocity graphic taken at the dashed line position.

(a) (b)

Figure 5: (a) Pressure field at Oh = 0, 0098 and t = 3, 9s , (b) Velocity graphic taken at the dashed line position.

4.2 Pendant drop

The dynamics of the growth and detachment of drops from a capillary tube or a nozzle into ambient fluids is a
challenging task to numerical simulation due to high ratio of physical properties, the formation of extremely sharp regions
in the process of breakup and the presence of high curvature (Davison and Cooper-White, 2006; Yildirim et al., 2005 and
Wilkes et al., 1999).

To simulate the pendant drop, consider a drop growing downward in a gas phase from a cylindrical nozzle with internal
diameter 2a and external diameter 4a as shown in Fig. 6. The relevant parameters include gravity, surface tension, and
viscous effects. Here is defined the Bond number and the Weber number. The Bond number represents the ratio of gravity
to capillary forces (Bo = ρ1gr2

0/σ). The Weber number compares inertia and capillarity forces and it is based on the
influx velocity V (We = ρ1V

2r0/σ). A velocity profile linear is assumed at the end of the nozzle located at the top
boundary of numerical box v = V (1− x/r0) for x < r0 and v = 0 for x > r0, where r0 = a = 1 · 10−3m.

The simulation is reported on 32 × 64L5 grid, with Bo = 1, 20, Fr = 1, 74, Oh = 5, 91 · 10−2, ρ1/ρ2 = 1000,
µ1/µ2 = 333, and Q = 4, 12 · 10−7m3/s. For this case the MCNAB method is applied, which assure larger time-step
and stability. The evolution of fragmentation process is shown in the Fig. 7.

An important issue in the drop formation process is the flow field inside a drop. During the period that a drop grows,
recirculating toroidal edges are created in the vicinity of the drop surface. The liquid elements, tend to flow toward the
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Figure 6: Schematic drop shape.

(a) (b) (c) (d) (e)

Figure 7: Evolution of density in time on 32× 64L5 grid.

apex of the drop along its axis of symmetry flowing tangentially into annular space, resulting in recirculations within the
drop. So the eddies disappear and the fluid motion is essentially in the downward direction (Zhang, 1999). In Fig. 8
is possible to note these toroidal recirculations through the vorticity filed. When the flow rate is low or moderate, after
the first breakup, the thread rolls up rapidly due to the unbalanced capillary force and breaks again generating a satellite
droplet. By contrast, at Q > 3, 33 · 10−7m3/s after its first breakup, the threads rolls and coalesces with the liquid cone
without secondary breakup and satellite drop generation.

(a) (b) (c) (d) (e)

Figure 8: Evolution of vorticity field in time on 32× 64L5 grid.
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Many existant numerical methods are not conservative when the breakup process occur. The adaptive hybrid method
presented here, allow to quantify and reduce, without excessive computational cost, the mass loss in the breakup process.
The graphic plotted in Fig. 9 shows the evolution of flux mass per m/s in time on a two refinement levels. For 32× 64L4
the mass loss was 0, 99% while the 32× 64L5 presents just 0, 025%.

Figure 9: Evolution of flux max per m/s.

5. CONCLUSIONS

In this work the performance of the adaptive hybrid level-set/front-tracking method was illustrated through the sim-
ulations of deformable fluid-fluid interface interactions. The dynamic adaptation presented occur both in the lagrangian
markers and Eulerian mesh refinement which increase locally the resolution of the fluid solver with a sequence of nested,
progressively finer refinement levels.

It allows to simulate with a high level of precision and low cost, the Kelvin-Helmholtz instabilities formation on
a film-fluid and the breakup process on a drop. In both cases were employed adaptive mesh refinement, second-order
discretization in space and time and semi-implicit temporal discretization. In the first case was possible to verify the
inflexional profile that creates the waves propagation and helps in the creation of necking process. The last case use front-
tracking methology to simulate a breakup process drop with minimum mass loss about 0, 025%. The observed features of
the elastic fluid-fluid interface deformation were well reproduced at Q = 4, 12 · 10−7m3/s.
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