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Abstract. Based on experimental evidence it is well known that the material properties of metals are strongly 

influenced by the characteristics of the microstructure of the material, such as the average size of grains, and their 

orientation in grains and sub grains. During mechanical deformation processes, materials suffer significant changes in 

their microstructures, which in turn affect considerably the mechanical properties of materials. Our aim, in this work 

is to present a thermo-mechanical model and propose a numerical scheme for the analysis of hot forging processes of 

metals that includes the evolution of the microstructure of the material. 

The accounted mechanism of evolution of the microstructure of the material during a hot forging process includes 

the hardening of the material, the dynamic recrystallisation, which leads to the decrease of the grain sizes, and the 

grain growth phenomenon. 

A total Lagrangian approach is employed in the formulation of the problem. Also, a logarithmic strain measure is 

employed together with the associated rotated Kirchhoff stress tensor. The discretization of the problem is done by 

applying the Galerkin finite element method, where plane strain and axisymmetric problems are considered. The metal 

is modeled by a viscoplastic material model that includes as internal variables, besides the viscoplastic strain and the 

accumulated effective viscoplastic strain, the material strength and the average grain size of the material. In order to 

investigate the adequacy of the presented theory and to attest the effectiveness of the proposed numerical scheme, one 

solves a set of simple problems. 
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1. INTRODUCTION 
 

In hot forging of metals, materials experiment changes in their microstructures that affect considerably their 

mechanical properties. The evolution of the microstructure under hot deformation processes generally involve strain 

hardening of the material, dynamical recovering, recrystallisation and grain growth, been these processes strongly 

dependent on temperature and rate of deformation.  

The process of recrystallisation leads to the local annihilation of a large number of dislocations and is in general 

associated with the decrease of the average grain size. As a result, the material suffers locally a softening, giving rise to 

localized deformations, which may produce slip lines and nucleation of micro cracks. These localizations are also 

responsible for residual stresses and strains after the cooling process of the material. The prediction of such phenomena 

is fundamental for the control of the mechanical properties of metals undergoing hot deformation processes. 

Manny different constitutive models have been proposed in the literature, with the aim of describing the evolution of 

the microstructure of metals, under thermo mechanical loadings, see Lin and Dean (2005), Lin and Liu (2003), Cheng 

(2000), Bontcheva and Petzov (2003), Molinari and Ravichandran (2005), Poliak and Jonas (2003) and Busso (1998). 

Since the research in this field is still recent, there is no relation that may be seen as consolidated.  

The objective of this work is to extend the work of Busso (1998) and Ganapathysubramanian and Zabaras (2004) in 

order to account in the analysis the effect of the coupled thermomechanical deformation process. Moreover, the 

description of the evolution of the microstructure under hot deformation processes, following the ideas of Busso (1998), 

is done with the use of internal variables. This results in a consistent formulation that is able to describe the 

recrystallisation, the strain hardening, and the static and dynamic recovering processes of a material under hot finite 

deformation modeled by a thermal viscoplastic constitutive relation. 

Macroscopically, the grain refinement due to dynamic recrystallisation causes a softening of the material as shown 

in Fig. 1, for different deformation rates. 
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Figure 1. Stress-strain curves for different deformation rates 

 

From experimental observations, the extension of the process of material softening during recrystallisation is related to 

the reduction of the mean density of dislocations and the average grain size of the material. A typical evolution of the 

mean density of dislocations in a material during recrystallisation is depicted in Fig. 2, in which 
0ρ  and 

fρ  denote the 

initial and final mean densities of the dislocations, after recrystallisation, and 
0L  and L∗  denote the initial and final 

mean grain sizes, where L∗  corresponds to the stabilized average grain size obtained after the end of recrystallisation. 

 
Figure 2. Evolution of the average grain size for a given temperature and deformation rate 

 

 

Under isothermal processes and constants deformation rates, shown in Fig. 2, the extension of the recovery of 

dislocations, i.e. dislocation annihilation, during recrystallisation is given by the difference between the initial and final 

dislocation densities of the recrystallisation process 
cρ  and 

fρ  respectively. As in the macroscopic behavior, 

illustrated in Fig. 1, one may identify a mean critical density of the accumulated viscoplactic deformation, p

Cef
e , from 

which the recrystallisation takes initializes. The required deformation for the termination of the softening of the material 

leaving the material partially or totally recrystallised is given by
p p

C Ref efe e+ . 

 

2. THEORETICAL DEVELOPMENT 
 

The proposed model is implemented in a Total Lagrangian framework that considers: a multiplicative decomposition of 

the deformation gradient, into a plastic and an elastic part and a constitutive relation given in terms of the logarithmic, 

or Hencky, strain measure and the rotated Kirchhoff stress. 

 

2.1. Kinetics of deformation 
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The viscoplasticity model presented in this paper considers the multiplicative decomposition of the deformation 

gradient F into an elastic deformation, Fe, and a plastic deformation, Fp. Thus, 

 
e p=F F F            . (1) 

 

Moreover, since e e e=F R U , one computes the elastic strain as ( )lne e=E U  and employ the conjugate stress measure 

e T e(R ) (R )τ τ ==== , where τ  is the Kirchhoff stress, det(F)τ σ= , with σ  denoting the Cauchy stress  

 

2.2. Constitutive modelling and hyperelastic response 
 

Here, one introduces the deviatoric rotated Kirchhoff stress, given by ( )I
1
tr
3

D
τ τ τ= − , The von Mises effective 

rotated Kirchhoff stress, given by 
3

:
2

D D
q τ τ=  and the hydrostatic pressure stress, given by ( )

1

3
p tr τ= − . 

Moreover, one may decompose the elastic strain as e eD e

HE E e I= + , with 
1

3

e e

He tr E =   . As a result, one may define 

the thermal hyperelastic response as 

 

( ) ( )2 3 2 3
e

Hp e Tµ λ α µ λ= + − + ∆          (2) 

 

( )1
2D eD eDE

ν
µ

+
= =E Eττττ           (3) 

 

where ( )oT T T∆ = − , with oT  denoting the initial temperature of the body. Also, one has the Fourier Law, given for the 

thermal problem by oq k T= − ∇
�

, in which oq
�

 is the heat flux per unit area. 

 

2.3. Viscoplastic flow rule 
 

The viscoplastic model with no yield function is given by 

 

3

2

D
ijp p

efq
e=D �

ττττ
              (4) 

where 

( ) ( ) ( )
1

1
0

0
exp sinh

n
efp ac

w
Q Lp

ef ef RT L S
e e

τ

ξ
 = −   

� �          (5) 

 

in which 
0L  is the initial average grain size of the material, 

0

p

efe�  is the effective rate of deformation reference loading 

condition, considered known, ξ , 
1n  and w  are material constants. The temperature dependence was introduced 

through the classical Arhenius laws in terms of the activation energy 
acQ , considered known and the material constant 

R . This prescribed flow rule is complemented by postulating a null plastic spin, compatible with plastic isotropy, 

i.e., 0p =W . The evolution of the plastic deformation is given by p p p=F L F
�

�  where ( ) ( )
1

p e p e
−

=L U L U
�

, 

( )1

2

T
p p p = +  D L L  and ( ) ( )

1

0p e p e
−

= =W U W U
�

. 

 

2.4. Evolution law of the state variables 
 

The evolution law for the deformation resistance variable S  

 

hard recrS H R= −� � �            (6) 

 

in which the hardening function is given by ( ) ., , ,hard hard efH H S L Tτ=� �  Here, 
hardH�  is the strain hardening function 

of the material, which may be seen as the rate in which the mean dislocation evolve in the material, before or after 

recrystallisation. The dynamic recovering is given by ( ), , , .recr recr efR R S L Tτ=� �  Here, 
recrR�  is the function related to 
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the dynamic recovery process which describes the rate of annihilation of dislocations due to the nucleation of new 

grains during the recrystallisation process. The hardening rule, proposed by Busso (1998) and also used by 

Ganapathysubramanian and Zabaras (2004), employed in this work, is  

 

( )1 1
sa

pS S
hard s efS S

H h sign e∗ ∗= − −� �          (7) 

 

in which 
sh  and 

sa  are material parameters and S
∗ , is the asymptotic stabilized value of S  that represents the 

saturation condition of the evolution of S , obtained in experimental tests, for prescribed values of ( )0 , ,
L p

efL
e T� . 

The function ( )sign �  is introduced in a way to permit the softening of the material, that may occur in situations of 

rapid increase of local temperature, in which the value of S is larger than S
∗ . Thus, 0 , ,p

ef

L
S S e T

L

∗ ∗  
=  

 
� , which may 

be approximated as 

 

2

0 0

exp
p

n
wp

ef ac

ef

e QL
S

e L R T
χ

∗
∗

     
=     

    

�

�
         (8) 

 

where χ  and 
2n  are material parameters. This equation may be written as ( ) 2

0

.

0

n w
L

L
S S

∗∗ ∗=  in which 

 

( ){ }
2

0

0 exp
p
ef ac

p

ef

n
e Q

R Te
S χ∗ =

�

�
.          (9) 

 

The description of the dynamic recovery, that consists in the reduction of the density of dislocation in the material, 

which occurs during the recrystallisation process, requires an expression for the change of state between the initial and 

final stages of the recrystallisation process. In this work, the “driving force” that governs the recrystallisation process is 

the energy stored in the hardening process of the material, i.e., stored in the form of an increase of the density of 

dislocations, been this energy responsible for the nucleation of new grains in the material, which may occur in the 

boundary or even in the interior of the grains. In this way, the initial and final states of recrystallisation are given by the 

densities of dislocations cρ  and fρ  described in Fig. 2. Thus, 

 
p

recr R R f efR f X S S e = − 
� � ,          (10) 

 

where ( ), , ,R R efX X S L Tτ=  is the function that represents the volume fraction of the recrystallised material 

associated with the actual state, given in terms of  ( ),S L . Here, Rf  is a material parameter that defines the magnitude 

of the dynamic recovery and fS  is the deformation resistance, in the end of the recrystallisation process. Here, one 

considers { }1 exp ,R L rec RX A L t= − − �  in which Rt  is the time or duration of the process of recrystallisation, LA  is the 

average size of the area of the grain and sub grain boundaries per unit of volume and recL�  is the mean rate of grain 

refinement during a recrystallisation. For a given rate of effective deformation
p

efe� , the recrystallisation time can be 

expressed in terms of the accumulated effective plastic deformation p

efe  as 

 

.

p

C

p

ef ef

R p

ef

e e
t

e

−
=

�
           (11) 

Notice that �  represents the positive part operator of ( )� . With the aim of avoiding the excessive nucleation of grains 

and subgrains during the deformation process one considers .L

fx
A

L
∗

=  Moreover, one may show that 

 

p

R

rec rec

p

efef

L L

ee

∆
=

�

�
            (12) 
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where 
recL∆  is the change of the mean grain size during the recrystallisation process. This relation is approximated by 

 

0

p

R

rec

p

efef

L L

ee
≈

�

�
            (13) 

 
which gives 

 

01 exp .

p

C

p

R

p

ef ef

R

ef

e eL
X fx

eL
∗

 −  
= − −  

   
        (14) 

 

An expression for fS , representing the deformation resistance in the end of the recrystallisation, is given, for 1sa ≠ , by 

 

( )

1
1

2 2 2
1. . .

0 0 0

0

0 0 0

1 1 1 .

ass

p p

C R

an w n w n w

S

f s ef ef

h L S LL
S S a e e

L S L S L

−−
∗

∗

∗ ∗ ∗ ∗

 
        = − − + + −                  

   (15) 

 

In order to avoid new grain refinement processes, after the primary recrystallisation, one may impose that fS S=  

whenever 
p p

C R

p

ef ef ef
e e e> + . Substituting the above relations one derives 

 

( )
2 2. .

0 0

0 0

.1 1

sa
n w n w

p

S R R f ef

L LS S
S h sign f X S S e

L S S L
∗ ∗ ∗ ∗

      
= − − − −            

� �      (16) 

 

Figure 3 depicts the evolution of the deformation resistance and of the average grain size in terms of the accumulated 

effective viscoplastic strain p

efe  for a typical steel, for a prescribed constant values of p

efe�  and T . 

 

 
Figure 3. Typical evolution of the mean grain size for constant temperature and strain rate 

 

A phenomenological relation largely employed in the literature relating the stabilized effective stress state after the 

recrystallisation efτ ∗  and the average grain size after the recrystallisation L∗  is given by 

 
1
p

ef

q
L

τ
∗

∗

 
=   
 

            (17) 

 

where p  and ( )q q T=  are material constants. An expression for the stabilized effective stress efτ ∗  in terms of p

efe� , T , 

and L
∗  is given, see Busso (1998), by 
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1

0

1

0

sinh exp .
p

n
wp

ef ac

ef

ef

e QL
S

e L R T
τ ξ

∗
∗ ∗ −

    
 =    
    

�

�
        (18) 

 

Combining the above results with the expression for S
∗  gives an implicit relation, in terms of p

efe� , T  and 
0L  

 

( ){ }
1

1

1 2

2

ln 1 ,

p
p

n n

n

q
L A A

Aξ χ

−
∗  

= + + 
 

 with ( ) ( )
1

1

sinh .
n

ef
w

L

S L
A

τ

ξ

∗ =   
     (19) 

 

In this way, for a given value of ( )0, ,p

efe T L� , one may compute the stabilized average grain size L∗ , after 

recrystallisation. The solution of this implicit problem is done by applying Newton’s method. 

 

The Evolution law for the mean grain size during and after the recrystallisation is given by 

 

row ,ref gL L L= +� � �            (20) 

 

Where ( ), , , , ,ref ref ef RL L S L T Xτ=� �  is a function which describes the grain refinement process during 

recrystallisation and ( )row row , , , , ,g g ef RL L S L T Xτ=� �  is the function that represents the kinetics of grain increase 

governed by the energies stored in the grain boundaries during secondary recrystalisation – cooling process. 

Consider now that L L∗< − >  represents the magnitude of the loss of dynamic equilibrium occurring in the material 

softening process. Therefore, the rate of grain refinement may be expressed as 

 

,
p

ref R R efL f X L L e
∗= − < − >� �           (21) 

 

where 
Rf  is a material constant. The inclusion of 

RX  makes 0refL =�  in the critical condition of recrystallisation 

assuring a smooth process as observed experimentally. 

 

If the magnitude of the loss of dynamic equilibrium is expressed in terms of the fraction of recrystallised material, at 

the end of recrystallisation, 
cRX , as 

cR RX X< − >  then the rate of grain growth may be expressed as 

 

{ }( ) 0

row 0 1 exp exp
c

ac

g R R

L Q
L L X X

L RT

   
= − − < − > −   

   
� �        (22) 

 

in which 
0L�  is also a material constant. Also, one may obtain an expression for 

cRX  from 
RX  by considering that 

L L
∗=  when 

p p

C R

p

ef ef ef
e e e= + , giving 01 exp{ }.

cR

L
X fx

L
∗

 
= − −  

 
 Replacing these expressions in the previous relations 

yields 

{ }( ) 0

0 1 exp exp .
c

p ac

R R ef R R

L Q
L f X L L e L X X

L RT

∗    
= − < − > + − − < − > −   

   
� ��     (23) 

 

The effective accumulated viscoplastic strain from which the recrystallisation process begins, given by 
p

Cefe  and 

depicted in Fig. 2, may be estimated as 

 

( )0

2

3

p

C

c

ef c

C
e f S S

µ
∗= −           (24) 

 

Where 0 (0)S S=  is the initial deformation resistance, cf  is a prescribed fraction, cC  is a material constant and Gµ =  

is the shear modulus. The effective viscoplastic strain necessary to complete the material softening process making it 

partially or totally recrystallised is given by 

 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

2 2. .

0

0 0

2

3

p

R

w n w n

R

ef

C L L
e S

L Lµ

∗
∗    

= −   
   

         (25) 

 

2.5. Weak formulation of the coupled thermomechanical problem 
 

The problem consists in determining ( ) ( )( ), , ,u X t T X t ∈
�

K , for each 0, ft t ∈   , so that 

 

. . . .
t

o o o
o o o o o oX

u d b u d t u d uδ ρ δ δ δ
Ω Ω Γ

∇ Ω = Ω + Γ ∀ ∈∫ ∫ ∫P �

��� � � �

u
V       (26) 

and 

ˆ ˆ ˆ ˆ. .

ˆ ˆ( )

o o o qq

qh

p

o s o o o onX

f

c T Td k T T d T d q T d

h T T T d T

ρ ϖ
Ω Ω Ω Γ

Γ

Ω + ∇ ∇ Ω − Ω = − Γ∫ ∫ ∫ ∫

+ − Γ ∀ ∈∫

D�� ττττ

T
V

     (27) 

 

where 1

oq J q
−= F

� �
, with q

�
 denoting the heat flux per unit of area of the deformed configuration. 

In order to solve the above problem, one applies an incremental procedure which leads to an incremental weak form. 

A consistent tangent operator is then derived and the weak incremental form is discretized and solved by Newton’s 

method. 

 

3. EXAMPLES AND CONCLUSION 
 

3.1. Uniaxial compression 
 

Here, one considers a uniaxial compression described in Fig. 4, consist. The dimensions are h=1.0m and diameter 

d=0.2m. The prob lem is considered axisymmetric and is subjected to a linearly varying displacement with a total upset 

of 0.4u = − m applied in the interval [ ]0,1t ∈  in seconds. 

 
 

Figure 4. Uniaxial test 

 

The material parameters used in the analysis are given by: 
0 91.0 06L d m= − , 0.308ξ = , 2.9w = , 

0.728Cf = , 8.314 /R J mol K= , 1.55sa = , 
2 0.069n = , 1.0fx = , 0.8p = , 6 1

0 6.0 10L ms
−= ∗� , 59cC = , 

0

12.618 11p

ef
e d s

−= =� , 
1 0.11n = , 1283acQ kJmol

−= , 7800.0Sh MPa= , 2431.0 ( / )MPa N mmχ = , 120.0Rf = , 

2

0 150.0 ( / )S MPa N mm= , 2 25 19905.358527p p
q Nmm Nm

− −= = , 0.728Cf = , 59RC = .  

Also, 57.69G GPaµ = = is the shear modulus, 125.0K GPa=  is the volumetric modulus, ( )
1

12.0 06 o
d Cα

−

= − is the 

thermal expansion coefficient, 43.0 / o
k W m C=  heat conductivity, 0.9ϖ = , ( )2

3.689 06 /
o

pc d N m Cρ = +  is the 

density times the heat capacity, ( )24.5 / o
h W m C=  is the convection film coefficient. 

The evolution of the mean grain size is depicted in Fig. 5. 
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Figure 5. Evolution of the mean grain size (L) with load parameter t 

 

The evolution of the deformation resistance is depicted in Figure 6. 

 
Figure 6. Evolution of the deformation resistance (S) with load parameter t 

 

The evolution of the effective von Mises stress is depicted in Fig. 7 

 
 

Figure 7. Evolution of the effective von Mises (q) with load parameter t 

 
3.2. Compression of a Cone 

 

Here, one considers a compression of a conical bar described in Fig. 8. The dimensions are h=0.1m and diameters 

ds=0.09m and dl=0.18m. The problem is considered axisymmetric and is subjected to a linearly varying displacement 

with a total upset of 0.04u = − m applied in the interval [ ]0,1t ∈  in seconds. Here, one makes use of the same material 

constants given in example 3.1. 
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Figure 8. Compression of a conical bar test 

 

The distribution of the deformation resistance (S) is depicted in Fig. 9. 

 
Figure 9. Distribution of the deformation resistance at the end of the loading 

 

The distribution of the mean grain size (L) is depicted in Fig. 10. 

 
Figure 10. Distribution of the mean grain size (L) at the end of the loading 

 

The distribution of the von Mises stress is depicted in Fig. 11. 

 
Figure 11. Distribution of the von Mises stress (q) at the end of the loading 

 

4. CONCLUSION 
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The above procedure has shown to be able to describe the softening of the material once a recrystallisation process 

starts. Also, the modeling of the strain hardening is adequate and describe by the evolution of the deformation 

resistence. However, the model has failed for the application of very high strain rate, as seen in Fig. 10, where one sees 

negative values for the mean grain size. This problem is not present for moderately fast strain rates. To overcome this 

problem, of non physical solutions, one must impose some internal locking constraint assuring that the mean grain size 

must be larger or equal to zero. Also, a more smooth solution for the mean grain size could be obtained by considering a 

nonlocal theory in terms of the mean grain size, L. Another difficulty in the application of the local state method for 

modeling the evolution of the microstructure of the material is the large number of parameters that must be identified.  

However, the approach has shown to be promising in order to be able to describe the evolution of the microstructure 

of metals, which is fundamental for the control of the mechanical properties of metals undergoing hot deformation 

processes. 
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