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Abstract. This paper is concerned with the determination of thermal diffusivity and conductivity. The experimental 
apparatus is a rigid cylindrical tank filled with a granular medium that is heated with an electric resistance placed in 
the center of the cylinder. Temperatures at different radiuses are measured and used for the estimation of the thermal 
proprieties. A model of transient heat conduction transfer including temperature measurements is set and we have used 
the concept of the sensibility coefficients to demonstrate that it can not be possible to determine simultaneously the 
diffusivity, conductivity and heat capacity when only temperatures measurements are used, in this case only the 
diffusivity will be done. Eventually we have developed an inverse scheme to determine the profile of temperature 
between one sensor and the resistance, then the heat flux of the resistance heater is used to determine the thermal 
conductivity. Finally the sensibility of the estimated conductivity to the radius and resistance position is investigated..  
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1. INTRODUCTION 
 

Many physical and chemical processes in soil are temperature-dependent. An important one is the coupled heat and 
moisture transfer in soil that concerns many fields like meteorology, agronomy, geophysics and so on. The knowledge 
of the soil thermal properties is required to better predict these processes. There are two approaches, the first is a 
microscopic one that studies local processes and it seems to be so complicated, for example, in the case of a wet soil 
they have a so different scales such as masse and heat transfer by capillary flow and convective flow, radiation, heat 
diffusion between grain of rather complex structures, diffusion in the grains, phase change of water, adsorption 
phenomena (etc). The second one is a macroscopic approach treating the medium as homogenous system with apparent 
proprieties. These approaches are commonly the methods of choice for working engineers and researchers, and the 
questions of their accuracy are still open. In this study we will focus our interest to the second formulation in order to 
estimate the apparent thermal proprieties of dray soil. 

In thermal science, many methods for the estimation of conductivity and diffusivity are developed, and each one is 
more or less appropriate to the variety of matter and the heat and mass transfer phenomena that can occur in the 
considered medium. The heat pulse technique one is frequently used based on analytic or numeric solution (Da Silva, 
Laurent and Baillis, 1998), thermal impedance technique using alternative fluxes or temperature (Defer, Antczak and 
Duthoit, 2001) are largely used. An apparatus used for measuring thermal diffusivity of granular matter is shown in Fig. 
1. The granular medium is placed within the inner chamber of a cylinder and heated with an electric resistance. Three 
temperatures are measured in different positions r1, r2 and r3 and they are used for the identification of the apparent 
thermal diffusivity. Note that there is no need to impose any form of the heat flux dissipated by the resistance because 
in the model the heat flux is not explained. But if the conductivity will be estimated, it will be shown that there is to 
possibilities to do. The first consists of using the temperature measurements at a permanent regime and then the 
constant known heat flux is used to estimate only one value of the conductivity. The second consists of using the 
transient regime and the instantaneous heat flux so that the conductivity is estimated at each instant. 
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Figure 1. Apparatus for measurement of the thermal diffusivity and conductivity  
 
2. ESTIMATION OF THE THERMAL DIFFUSIVITY 
 

The direct model governing the heat conduction transfer accruing in the region between the sensors 1 and 2 can be 
in form: 

 

, ( , )T T T T r t
t

α∂
= ∆ ≡

∂
 (1) 

 
with boundary conditions 

 
( ) ( )1 1,T t tr F=  (2) 

 
( ) ( )2 2,T t tr F=  (3) 

 
and, initial condition is 

 
( ) ( )0, 0T r rF=  (4) 

 
where α is the thermal diffusivity:  
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The third measured temperature T(r3,t) = F3(t) will be used to estimate the diffusivity. It is important to remark that 
this model don’t include the heat flux φ dissipated by the resistance. 

The maximum likelihood estimate of the parameter is obtained by minimizing the quantity: 
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We have used the Gauss method of minimization. Eventually to remove instability and reduce oscillations we add 

the Levenberg-Marquardt parameter noted µ that is less then unity. The iterative formula to compute the diffusivity is as 
follows: 
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The sensitivity coefficient S is: 
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Derivative of the system of equations (1), (2), (3) and (4) to α vanish: 
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( )1, 0S tr =  (10) 

 
( )2, 0S tr =  (11) 

 
( ), 0 0S r =  (12) 

 
It can be easily verified that the diffusivity can not be estimated when only measurements at permanent regime are 

taken, the reason that S will be equal to zero all the time. A crucial remark to note is that α=∞ is a stationary point of 
convergence of the suite αk. Eventually, system of equations (1), (2), (3) and (4), has a natural constraint on the range of 
temperature because T must be between F(r1,t) and F(r2,t) independently of the value of the diffusivity αk. That means 

that
T

t

∂
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is bounded too. Now, If we set at any step of the iterative procedure αk=∞, so we have 
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obviously the system of equations (9), (10), (11) and (12), leads to Sn(αk)=0. Finally we have αk+1=αk=∞. In conclusion, 
a good estimate of the initial value of the diffusivity is required to avoid divergence. 

 
Assuming that the temperature measurements errors are additive, having a zero mean, independent with a normal 

distribution and having a constant standard deviations σT . The standard deviation of the estimated diffusivityα̂ is 
obtained approximately using the statistical analysis given by Beck and Arnold (1977): 
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The confidence interval at the 99% confidence level for the estimated diffusivity can be obtained as: 

 
( )ˆ ˆProbability 2.57. 2.57. 99%α αα σ α α σ− ≤ ≤ − =  (14) 

 
As an example, simulated experimental temperature measurements are made under the conditions given by table (1): 

 
Table 1. Experimental conditions. 

 
φ ( w/m2) α ( m2.s-1) λ (w.m-1.K-1) r0 (mm) r1 (mm) r2 (mm) r3 (mm) 

103 10-7 0.2 5 15 30 40 
 

where, r0 is the resistance radius. The exact temperatures at r1, r2 and r3 are given in Fig. 2. The Fig. 3 presents these 
temperatures with addition of a noise term aυ the four one present the filtered noise temperatures. To respect the 99% 



confidence interval, the modulus a  must be less than 2.57, in this case we have taken a=0.2. The noise υ is randomly 
generated using the GASDEV-RAN1 subroutine (Press, et al., 1992) 
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Figure 2. Exact temperatures histories at r1, r2 and r3  
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Figure 3. Noise temperatures 
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Figure 4. Noise and filtered temperatures 
 

The standard deviation of temperature is taken σT=0.01°C. The value of the estimated diffusivity and its standard 
deviation with exact, noise and the filtered data are given in Tab. 2:  
 

Table 2: Estimated diffusivity 
 

 Exact data Noise data Noise and filtered data 
α 10-7 1.006.10-7 1.007.10-7 
σα 0.1408.10-10 0.1416.10-10 0.1418.10-10 

 
3. ESTIMATION OF THE THERMAL CONDUCTIVITY 
 

The value of the apparent thermal proprieties are largely influenced bay many heat and mass transfer processes, 
Eventually by the one due to the capillary flow, the interstitial gas molecular effects and so on. These phenomena are 
temperature dependant, obviously it is recommended to determine the effective diffusivity and conductivity under the 
same conditions and eventually through the same experience. Note that the last experience involves the heat conduction 
equation and temperatures measurements as boundaries and initial conditions. With such model we can only estimate 
the thermal diffusivity. To proof this, one can make the derivative of the model (I) with respect to λ, ρc and α to give 
the sensitivity equations of the coefficients Sλ, Sρc and Sα. The result is: 
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The boundaries and initial conditions are zero for all the coefficients. So these coefficients are linearly dependent: 

 

cS S cSα λ ρα λ ρ= = −  (16) 
 

 So they can not be simultaneously estimated. To estimate the conductivity we use the knowing value of the heat 
flux dissipated by the resistance as a boundary condition. Generally authors use only two temperature measurements in 
permanent regime, and the conservation of the one dimensional heat flux to determine one value of the conductivity 
(Gurgel et al, 1996, Gurgel et al, 2001). In this work we suggest the use of the transient regime to obtain large number 
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of values. First we need to determine the temperature profile closely the electric resistance using an inverse scheme. 
The derivation of this space marching scheme consists of the use a variable transformation y=lnr, so the heat 
conduction equation leads to: 
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To obtain a stable scheme for the calculation we introduce a bias for the temporal term used firstly by Sassi and 
Raynaud (1998) such as: 
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In add, when using an explicit scheme to the spatial term we obtain: 
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The ai terms are given by: 
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It can be easily demonstrated that the scheme is stable. The details are discussed by Sassi and Raynaud (1998). Finally 
the conductivity is estimated as follows: 
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 As it is seen the estimation of the conductivity needs only an inverse model to extrapolate the field of the 
temperature. Only the value of the diffusivity and temperature measurements are needed to make calculation and this 
inverse problem can be regarded as an inverse heat conduction problem to determine heat flux at a boundary. This 
problem is widely discussed in literature by Sassi and Raynaud (1998) and the inverse procedure is efficient under the 
following constraint:  
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From literature the averaged value of the diffusivity is 710α −≈ . Many values of the time step and the distance 
between the resistance and the sensor that respect this condition are given in the table 3: 
 

Table 3: Condition to success the inverse heat conduction problem 
 

r1-r0 15mm 10mm 7mm 5mm 3mm 
∆t (s) 45 20 9.8 5 1.8 

Time of 1000 measures (h) 12.5 5.5 2.7 1.4 0.5 
 

The space marching molecule is derived using a const step for the variable y. The distribution of the real nodes between 
r1 and r2 has an exponential behavior. It is easy to prove that the space nodes are given by: 
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Figure presents the distribution of the space grid using a 21 nodes. 
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Figure 5. Space mesh with 21 nodes  
 
The bias introduced in the back scheme is a function of the used space step. As it is seen the grid is not a homogenous 
one, so we have running the inverse procedure with different node number to determine the one that introduce the 
minimum of bias. It is found 21 nodes. Figs. 6, 7 and 8 presents the heat conduction flux estimated with different data.  
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Figure 6. Exact and estimated heat flux using exact data 
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Figure 7. Estimated heat flux using noise data. 
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Figure 8: Estimated flux using filtered-noise data 
 

Table 4. present the conductivity estimated using the simulated temperatures described above. 
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Table 4: The estimated conductivity 
 

 Exact data Noise data Filtered Noise data 

λ̂  0.1974 0.2487 0.2015 
σλ 0.0011 0.2060 0.0290 

 
 Furthermore, the sensitivity analysis to the resistance radius chows that a 5% precision in estimated 
conductivity requires in the maximum 5% errors of the resistance radius or position see figure (9). So for accuracy, it is 
required to use a resistance having a large radius. This a crucial point because if we suppose an error ∆r=0.5mm on the 
position the diameter of the resistance must be at least d=20mm, so it will have a large heat capacity that implies errors 
for the knowledge heat flux generated by the resistance.  
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Figure 9. The conductivity relative error function of the radius one 
 
4. CONCLUSION 

 
This work develops an inverse procedure to determine simultaneously the thermal proprieties of soil. The analysis of 

the inverse models show that the estimation of the diffusivity using least-squares sense adding the Levenberg-
Marquardt parameter is accurate and easily implemented. On another hand the estimation of the thermal conductivity is 
more delicate. Eventually, the space grid must be at first optimized to minimize the bias introduced by the space 
marching scheme in the cylindrical geometry. Secondly, the position of the electric resistance and the large of its radius 
influence considerably the accuracy of the estimated conductivity. Finally, it is interesting to note that the procedure is 
independent of the heat flux field that makes easy experimental procedure. 
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