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Abstract. The present work compares the MacCormack, the Harten, the Yee and Kutler and the Jameson and Mavriplis 
numerical methods, using a finite volume formulation and a structured spatial discretization, applied to the solution of 
the Euler equations in the two-dimensional space. All schemes are second order accurate in space. The MacCormack 
and the Jameson and Mavriplis schemes are also second order accurate in time and both use artificial dissipation 
operators to guarantee the convergence to the steady state solution. The steady state physical problems of the 
transonic flows along a convergent-divergent nozzle and around a NACA 0012 airfoil, the supersonic flow along a 
ramp and the “cold gas” hypersonic flow around a double ellipse configuration are studied. A spatially variable time 
step is implemented aiming to accelerate the convergence process. The results have demonstrated that the 
MacCormack scheme predicts the most critical solutions, although unphysical results were obtained in high Mach 
numbers. Shock pressure ratio, nozzle, and stagnation pressure, double ellipse, were best estimated by this scheme. 
This paper (RESULTS) presents the solutions of the numerical simulations performed by the schemes, comparisons 
between numerical and experimental or theoretical results and computational data. 
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1. INTRODUCTION 
 
 The development of aeronautical and aerospace projects require hours of wind tunnel essays. It is necessary to 
minimize such wind tunnel procedures due to the growing cost of electrical energy. In Brazil, there is the problem of 
this country has not yet wind tunnels of great capacity, able to generate supersonic flows or even high subsonic flows. 
So, Computational Fluid Dynamics, CFD, techniques have now great highlight in the aeronautical industry scenario. 
Analogous to wind tunnel essays, the numerical methods determine physical properties in discrete points of the spatial 
domain. Hence, the aerodynamic coefficients of lift, drag and momentum can be calculated. 
 The present work compares the MacCormack (1969), the Harten (1983), the Yee and Kutler (1985) and the Jameson 
and Mavriplis (1986) numerical methods, using a finite volume formulation and a structured spatial discretization, 
applied to the solution of the Euler equations in the two-dimensional space. All schemes are second order accurate in 
space. The MacCormack (1969) and the Jameson and Mavriplis (1986) schemes are also second order accurate in time 
and both use artificial dissipation operators to guarantee the convergence to the steady state solution. The Harten (1983) 
and the Yee and Kutler (1985) schemes are first order accurate in time. The steady state physical problems of the 
transonic flows along a convergent-divergent nozzle and around a NACA 0012 airfoil, the supersonic flow along a 
ramp and the “cold gas” hypersonic flow around a double ellipse configuration are studied. A spatially variable time 
step is implemented aiming to accelerate the convergence process. The results have demonstrated that the MacCormack 
scheme predicts the most critical solutions, although unphysical results were obtained in high Mach numbers. The 
pressure ratio at the shock, nozzle problem, and the stagnation pressure, double ellipse problem, were best estimated by 
the MacCormack (1969) scheme. 
 This paper (RESULTS), second part of this study, presents the solutions of the numerical simulations performed by 
the schemes, comparisons between numerical and experimental or theoretical results and computational data. To a brief 
description of the motivation, as well comments about the numerical methods implemented in this work, the reader is 
encouraged to read part I of this study (THEORY) and Maciel (2006). 
 
2. RESULTS 
 
 Tests were accomplished in a CELERON-1.2GHz and 128 Mbytes of RAM memory microcomputer. Converged 
results occurred to 4 orders of reduction in the value of the maximum residue. The maximum residue is defined as the 
maximum value obtained from the discretized conservation equations. A value of 1.4 was used to γ. A value of 0.0° was 
used to the entrance (nozzle problem) or to the attack (others problems) angle. 
 
2.1. Convergent-divergent nozzle physical problem 

 
 To this problem, an algebraic mesh with 61x71 points was used, which corresponds to 4,200 rectangular volumes 
and of 4,331 nodes, on a finite volume context. It was used an exponential stretching of 10% in both ξ and η directions.  



 Figures 1 to 4 show the pressure field generated by the MacCormack (196), by the Harten (1983), by the Yee and 
Kutler (1985) and by the Jameson and Mavriplis (1986) schemes, respectively. The pressure field generated by the 
Harten (1983) scheme is the most severe in relation to the others schemes. 

                   Figure 1. Pressure field (M/69).                                        Figure 2. Pressure field (H/83). 

 
          Figure 3. Pressure field (YK/85).                                             Figure 4. Pressure field (JM/86). 

 
 Figures 5 to 8 exhibit the Mach number contours obtained by the MacCormack (1969), by the Harten (1983), by the 
Yee and Kutler (1985) and by the Jameson and Mavriplis (1986) schemes, respectively. The Mach number field 
generated by the Yee and Kutler (1985) scheme is the most intense in comparison with the others schemes. 

        Figure 5. Mach number field (M/69).        Figure 6. Mach number field (H/83). 
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     Figure 7. Mach number field (YK/85).      Figure 8. Mach number field (JM/86). 

 
 

Figure 9. Wall pressure distributions. 

 
 Figure 9 shows the pressure distributions along the 
nozzle lower wall generated by the MacCormack (1969), 
by the Harten (1983), by the Yee and Kutler (1985) and 
by the Jameson and Mavriplis (1986) schemes. These 
distributions are compared with the experimental results 
of Mason, Putnam and Re (1980). It is possible to note 
that the pressure distribution generated by the 
MacCormack (1969) scheme is the closest with the 
experimental results. Moreover, the shock at the throat 
captured by the MacCormack (1969) scheme is the most 
severe in relation to the others schemes. The pressure 
ratio at the shock obtained by the MacCormack (1969) 
scheme has a value of 0.48, the Harten (1983) scheme 
presents a value to this pressure ratio equals to 0.47, the 
Yee and Kutler (1985) scheme presents a value of 0.46 
and the Jameson and Mavriplis (1986) scheme detects a 
value of 0.46. So, the MacCormack (1969) scheme is the 
most critical algorithm in this problem. 

 
2.2. Airfoil physical problem 
  
 To the physical problem of the airfoil configuration, an algebraic mesh of 49x100 points was used, which is 
constituted of 4,752 rectangular volumes and 4,900 nodes. 

                         Figure 10. Pressure field (M/69).                                             Figure 11. Pressure field (H/83). 



An exponential stretching of 5% in the η direction was implemented. The far field was located at 10.0 times the airfoil 
chord in relation to the airfoil leading edge. The freestream Mach number adopted in this simulation was 0.8, 
characterizing a transonic flow regime. 
 Figures 10 to 13 show the pressure field generated by the MacCormack (1969), by the Harten (1983), by the Yee 
and Kutler (1985) and by the Jameson and Mavriplis (1986) schemes, respectively. The pressure field generated by the 
Yee and Kutler (1985) scheme is the most severe in comparison with the others schemes. 

 
                       Figure 12. Pressure field (YK/85).                       Figure 13. Pressure field (JM/86). 

                    Figure 14. Mach number field (M/69).                    Figure 15. Mach number field (H/83). 

  
                  Figure 16. Mach number field (YK/85).                  Figure 17. Mach number field (JM/86). 
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 Figures 14 to 17 exhibit the Mach number field generated by the algorithms. The Mach number field generated by 
the MacCormack (1969) scheme is the most intense in relation to the others schemes. The TVD upwind schemes do not 
detects regions of supersonic flow, while the predictor-corrector and the symmetrical schemes present such regions. 

 
 

Figure 18. –Cp distributions. 

 Figure 18 shows the -Cp distributions around the 
airfoil geometry. The shock detected by the 
MacCormack (1969) scheme is the most severe. The -Cp 
curve generated by the MacCormack (1969) scheme 
presents a minimum -Cp value of 0.84 at x = 0.37m, 
which corresponds to the shock at the airfoil. The Harten 
(1983) scheme presents a minimum –Cp value of 0.56, at 
x = 0.32m, while the Yee and Kutler (1985) scheme 
presents such minimum with a value of 0.48, at x = 
0.42m. The Jameson and Mavriplis (1986) scheme 
presents a minimum –Cp value of 0.78 at x = 0.32m. 
 Table 1 exhibits the aerodynamic coefficients of lift 
and drag. As the simulation considered a zero value to 
the attack angle and due to the configuration symmetry 
in relation to the flow direction, zero value to the lift 
aerodynamic coefficient is the expected result. The 
Jameson and Mavriplis (1986) scheme presents the most 
accurate cL in relation to the others schemes. 

  
Table 1. Aerodynamic coefficients of lift and drag to the airfoil problem. 

 
Algorithm: cL: cD: 

MacCormack (1969) 7.451x10-5 2.329x10-4 
Harten (1983) -2,514x10-2 -5,954x10-5 

Yee and Kutler (1985) -1,183x10-2 -1,377x10-4 
Jameson and Mavriplis (1986) 3.565x10-9 2.791x10-10 

 
2.3. Ramp physical problem 
 
 To this physical problem, an algebraic mesh of 61x100 points or composed of 5,940 rectangular volumes and 6,100 
nodes was used. The angle of inclination of the ramp is 20º. The freestream Mach number adopted for this simulation is 
2.0, which characterizes a supersonic flow. 
 Figures 19 to 22 show the pressure field generated by the MacCormack (1969), by the Harten (1983), by the Yee 
and Kutler (1985) and by the Jameson and Mavriplis (1986) schemes, respectively. The pressure field generated by the 
MacCormack (1969) scheme is the most severe in relation to the others schemes. 

  
                 Figure 19. Pressure field (M/69).                                      Figure 20. Pressure field (H/83). 
 

 Figures 23 to 26 exhibit the Mach number field obtained by the MacCormack (1969), by the Harten (1983), by the 
Yee and Kutler (1985) and by the Jameson and Mavriplis (1986) schemes, respectively. It is possible to not pre-shock 
oscillations in the MacCormack (1969) solution. The Mach number field reaches a peak greater than the freestream 



Mach number, which is physically incorrect. The MacCormack (1969) scheme presents an error in this numerical 
solution. The Jameson and Mavriplis (1986) solution is the most intense in relation to the tested schemes, considering 
physically relevant solutions. 

  
          Figure 21. Pressure field (YK/85).                                         Figure 22. Pressure field (JM/86). 

  
       Figure 23. Mach number field (M/69).      Figure 24. Mach number field (H/83). 

  
    Figure 25. Mach number field (YK/85).    Figure 26. Mach number field (JM/86). 

 
 Figure 27 exhibits the pressure distributions along the ramp obtained by the MacCormack (1969), by the Harten 
(1983), by the Yee and Kutler (1985) and by the Jameson and Mavriplis (1986) scheme. They are compared with the 
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exact solutions from oblique shock theory and the Prandtl-Meyer expansion wave theory. It is possible to note that the 
Yee and Kutler (1985) solution presents the smoothest behavior in comparison with the others schemes. 

 

Figure 27. Pressure distributions. 

It does not present oscillations at the shock region, what 
characterizes the best solution, in comparison with the 
theory, in relation to the others schemes. The Harten 
(1983) distribution presents a sharp defined shock, but 
with a small peak in relation to the theory. The Jameson 
and Mavriplis (1986) distribution also predicts a peak at 
the shock, but it behaves better than the MacCormack 
(1969) solution, which presents a reduction in the pressure 
before the shock, characterizing an unphysical solution. 
This behavior is due to numerical oscillations typical of 
second order schemes, recognized in the literature as 
“Gibbs oscillations”. The MacCormack (1969) scheme 
also predicts a pressure peak at the ramp beginning. The 
expansion fan is well detected by all schemes as compared 
with the theory, with the smoothest behavior obtained by 
the Yee and Kutler (1985) scheme. The width of the 
constant pressure region after the shock (the plateau) at the 
ramp is well captured by all schemes, except by the Yee 
and Kutler (1985) scheme. 

 Other way to quantitatively verify if the solutions generated by each scheme are satisfactory consists in determining 
the shock angle of the oblique shock wave, β, measured in relation to the initial direction of the flow field. Anderson 
(1984) (pages 352 and 353) presents a diagram with values of the shock angle, β, to oblique shock waves. The value of 
this angle is determined as function of the freestream Mach number and of the deflection angle of the flow after the 
shock wave, φ. To φ = 20º (ramp inclination angle) and to a freestream Mach number equals to 2.0, it is possible to 
obtain from this diagram a value to β equals to 53.0º. Using a transfer in Figures 19, 20, 21 and 22, it is possible to 
obtain the values of β to each scheme, as well the respective errors, shown in Tab. 2. The results highlight that the 
Harten (1983) scheme is the most accurate of the studied schemes in this problem. 
 

Table 2. Shock angle and percentage errors to the ramp problem. 
 

Algorithm: β: Error (%): 
MacCormack (1969) 54.5 2.8 

Harten (1983) 54.0 1.9 
Yee and Kutler (1985) 54.5 2.8 

Jameson and Mavriplis (1986) 54.5 2.8 
 
2.4. Double ellipse physical problem 

                        Figure 28. Pressure field (M/69).                                              Figure 29. Density field (H/83). 
 
 To the physical problem of the double ellipse configuration, an algebraic mesh of 125x100 points was used, which 
is constituted of 12,276 rectangular volumes and 12,500 nodes. The freestream Mach number adopted in this simulation  



was 10.0, characterizing a hypersonic “cold gas” flow. 
 Figures 28 to 31 show the pressure field generated by the algorithms. The pressure field generated by the 
MacCormack (1969) scheme is again the most severe in comparison with the others schemes. 

  
                      Figure 30. Pressure field (YK/85).                      Figure 31. Pressure field (JM/86). 

       Figure 32. Mach number field (M/69).                    Figure 33. Mach number field (H/83). 

  
    Figure 34. Mach number field (YK/85).                  Figure 35. Mach number field (JM/86). 

 
 Figures 32 to 35 exhibit the Mach number field generated by the MacCormack (1969), by the Harten (1983), by the 
Yee and Kutler (1985) and by the Jameson and Mavriplis (1986) schemes, respectively. The Mach number field 
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generated by the MacCormack (1969) scheme again presents pre-shock oscillations. It is important again to note that 
the Mach number peak obtained by the MacCormack (1969) scheme is bigger than the freestream value, which is 
physically impossible. It constitutes a limitation of the MacCormack (1969) scheme as treating supersonic and “cold 
gas” hypersonic flows. Considering relevant physical results, the Jameson and Mavriplis (1986) scheme presents the 
most intense Mach number field. 

 
 

Figure 36. –Cp distributions. 
 

 Figure 36 shows the -Cp distributions around the 
double ellipse obtained by the MacCormack (1969), by 
the Harten (1983), by the Yee and Kutler (1985) and by 
the Jameson and Mavriplis (1986) schemes. The 
MacCormack (1969) scheme presents a Cp value of 2.04 
at the first shock and a Cp value of 1.32 at the second 
shock. The Harten (1983) scheme presents a Cp value at 
the first shock of 1.74 and at the second shock of 0.92. 
The Yee and Kutler (1985) presents at the first shock a 
value of Cp of 1.78, while at the second shock its value 
is of 0.88. The Jameson and Mavriplis (1986) scheme 
presents a Cp value of 1.72 at the first shock and of 1.1 
at the second shock. Hence, as the first shock is more 
intense than the second shock, the MacCormack (1969) 
scheme presents the most critical solution. 
 Another possibility to quantitative comparison of all 
schemes is the determination of the stagnation pressure 
ahead of the configuration. Anderson (1984) presents a 
table of normal shock wave properties in its B Appendix.  

This table permits the determination of some shock wave properties as function of the freestream Mach number. In front 
of the double ellipse configuration studied in this work, the shock wave presents a normal shock behavior, which 
permits the determination of the stagnation pressure, behind the shock wave, from the tables encountered in Anderson 
(1984). So it is possible to determine the ratio ∞prpr0  from Anderson (1984), where pr0 is the stagnation pressure in 
front of the configuration and pr∞ is the freestream pressure (equals to 1/γ to this problem nondimensionalization). 
 Hence, to this problem, M∞ = 10.0 corresponds to ∞prpr0 = 129.2 and remembering that pr∞  = 0.714, it is possible 
to conclude that pr0 = 92.25. Values of the stagnation pressure and the respective percentage errors are described in 
Tab. 3. These results indicate that the MacCormack (1969) scheme yields the most accurate solution to the stagnation 
pressure among the studied algorithms in this work to this problem. 
 

Table 3 – Stagnation pressure and percentage errors to the double ellipse problem. 
 

Algorithm: pr0: Error (%): 
MacCormack (1969) 95.85 3.9 

Harten (1983) 83.15 9.9 
Yee and Kutler (1985) 84.85 8.0 

Jameson and Mavriplis (1986) 81.34 11.8 
 
2.5. Numerical data 
 
 Table 4 presents the numerical data of the simulations to all problems, involving the four schemes tested in this 
work. As can be seen, the Harten (1983) scheme (the most expensive) is approximately 495% more expensive than the 
Yee and Kutler (1985) scheme (the cheapest). In all problems, the Jameson and Mavriplis (1986) scheme always used a 
CFL number greater than the others schemes, resulting, hence, in its excellent convergence ratio. In the airfoil problem, 
the Jameson and Mavriplis (1986) scheme is approximately 1,058% faster than the MacCormack (1969) scheme. 
 

Table 4 – Numerical data of the simulations. 
 

Nozzle Airfoil Ramp Double Ellipse 
Algorithm: CFL: Iterations: CFL: Iterations: CFL: Iterations: CFL: Iterations: Cost(1): 
M (1969) 0.4 20,068 0.1 38,297 0.5 1,897 0.1 6,098 0.0000336 
H (1983) 0.9 7,173 0.4 5,550 0.9 1,059 0.3 1,717 0.0000494 

YK (1985) 0.8 8,239 0.3 5,930 0.3 3,348 0.4 1,457 0.0000083 
JM (1986) 2.2 2,635 0.9 3,307 2.0 463 0.5 930 0.0000196 

(1): measured in seconds/per volume/per iteration. 



3. CONCLUSIONS 
 

 The present work is the second part of the study that aims a comparison among the predictor-corrector scheme of 
MacCormack (1969), the TVD flux difference splitting schemes of Harten (1983) and of Yee and Kutler (1985), and the 
symmetrical scheme of Jameson and Mavriplis (1986), all algorithms second order accurate in space, applied to 
aeronautical and aerospace problems in the two-dimensional space. The MacCormack (1969) scheme is integrated in 
time using a predictor/corrector method, the Harten (1983) and the Yee and Kutler (1985) schemes employ a time 
splitting method, and the Jameson and Mavriplis (1986) scheme uses a Runge-Kutta method of five stages. The Euler 
equations were solved using a finite volume formulation and a structured spatial discretization. A spatially variable time 
step was employed to accelerate the convergence process of the algorithms to the steady state solution. The physical 
problems of the transonic flows along a convergent-divergent nozzle and around a NACA 0012 airfoil, the supersonic 
flow along a ramp and the “cold gas” hypersonic flow around a double ellipse configuration were solved. 
 In the nozzle problem, the Harten (1983) scheme presented the most intense pressure field in relation to the others 
schemes. However, the MacCormack (1969) scheme predicted more accurately the pressure ratio of the shock, at the 
nozzle throat, as compared with the experimental results of Mason, Putnam and Re (1980). Hence, the MacCormack 
(1969) scheme predicted the most critical solution. In the airfoil problem, the Yee and Kutler (1985) scheme presented 
the most severe pressure field; Nevertheless, the MacCormack (1969) scheme detected the biggest value of Cp at the 
shock in comparison with the others schemes. Again, the MacCormack (1969) scheme predicted the most critical 
situation. The aerodynamic coefficient of lift was more accurately calculated by the Jameson and Mavriplis (1986) 
solution, which estimated a value closer to zero, the expected solution. In the ramp problem, the MacCormack (1969) 
scheme predicted the most severe pressure field. The pressure distribution along the ramp was best described by the Yee 
and Kutler (1985) scheme. All schemes detected a pressure peak at the ramp beginning, with exception of the Yee and 
Kutler (1985) scheme, which predicted the smoothest solution, as many in terms of shock resolution as in terms of 
expansion fan resolution. In comparison with the shock-expansion fan theory, the Yee and Kutler (1985) scheme 
presented the best solution. However, the Harten (1983) scheme predicted the best value of the shock angle of the 
oblique shock wave. In the double ellipse problem, the pressure field generated by the MacCormack (1969) scheme was 
the most critical in comparison with the others schemes. The biggest value of Cp at the first shock, the most severe, was 
estimated by the MacCormack (1969) scheme. Moreover, the stagnation pressure in front of the double ellipse 
configuration was best calculated by this scheme. The Harten (1983) scheme (the most expensive in this study) is 
approximately 495% more expensive than the Yee and Kutler (1985) scheme (the cheapest in this study). 
 It is possible to conclude that the MacCormack (1969) scheme presents the most severe, the most critical, pressure 
results in relation to the others schemes in all examples studied in this work. In terms of accuracy, MacCormack (1969) 
scheme was the most accurate in the nozzle and in the double ellipse problems, the Harten (1983) scheme was the most 
accurate in the ramp problem and the Jameson and Mavriplis (1986) scheme was the most accurate in the airfoil 
problem. A limitation of the MacCormack (1969) scheme is due to pre-shock oscillations and unphysical solutions that 
appear in supersonic and hypersonic “cold gas” flows. The implementation of an entropy condition could improve the 
results of the MacCormack (1969) scheme. 
 To initial project studies, the MacCormack (1969) scheme is recommended because of its simplicity in numerical 
implementation and more conservative results that can be obtained (more severe pressure fields). To more accurate 
results, the Harten (1983) and the Jameson and Mavriplis (1986) schemes are more recommended. 
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