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Abstract. In this paper we apply a Bayesian approach for the simultaneous identification of volumetric heat capacity, 
thermal conductivity and boundary heat flux, in a one-dimensional nonlinear heat conduction problem. It is assumed 
that the measurement noise and the unknown parameters are normally distributed and independent, so that the 
solution of the inverse problem is obtained via the minimization of the Maximum a Posteriori Objective Function. 
Results are presented for an experiment involving the heating of a sample material with an oxyacetylene torch.  
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1. INTRODUCTION  
 

The Brazilian Space Agency is dedicating efforts to build a satellite that will reenter the atmosphere after staying a 
couple of days in orbit. The Laboratory of Heat Transmission and Technology of COPPE is involved in the design of 
the heat shield for such satellite, which can be constituted of ablating and non-ablating materials. An important 
requirement for the thermal design of heat shields of vehicles re-entering the atmosphere, which are subjected to 
extremely high heat loads, is to have prior accurate information regarding the thermal properties of the materials 
utilized. Rey Silva and Orlande (2002) presented the solution of the inverse problem of parameter estimation used for 
the identification of the thermal properties of ablating materials. The D-optimum approach was used, together with the 
analysis of the sensitivity coefficients, for the design of the experiment for the estimation of thermal conductivity, 
volumetric heat capacity and heat of ablation of materials with negligible thermal decomposition. A combination of the 
Levenberg-Marquardt method (Beck and Arnold, 1977, Ozisik and Orlande, 2000) and of the sequential parameter 
estimation technique (Beck and Arnold, 1977) was used as the estimation procedure. Simulated temperature 
measurements taken inside the specimen were used for the inverse analysis in order to examine the accuracy of the 
proposed approach. Other works can be found in the literature related to the identification of the thermophysical 
properties of ablating materials (see, for example, Kanevce et al, 1999). 

With respect to the heat loads that the surface of vehicles re-entering the atmosphere are subjected to, a usual 
approach for the design of the heat shield is to use simplified models (DeJarnette et al, 1987). On the other hand, the use 
of inverse analysis techniques can provide the important information on how accurate such simplified models are. 
Oliveira and Orlande (2002) examined the use of simulated temperature measurements taken below the surface for the 
solution of such inverse problem, by using the conjugate gradient method with adjoint problem (Alifanov, 1994, Ozisik 
and Orlande, 2000). Accurate results were obtained for functions containing sharp corners and discontinuities, but only 
for small magnitudes of the peak-flux, when the portion of material removed during ablation was small. In (Oliveira and 
Orlande, 2004) we examined the use of surface position measurements, in addition to temperature measurements, for 
the estimation of the boundary heat flux at the surface of ablating materials. Surface position measurements are highly 
sensitive to variations on the unknown heat flux during ablation, when the temperature measurements become less 
sensitive due to the energy consumption at the ablating surface. The use of simulated surface position measurements 
containing random errors resulted on unstable inverse problem solutions when the discrepancy principle was used to 
stop the iterative procedure of the conjugate gradient method. However, in these cases the a priori filtering of the 
measured data provided accurate and stable solutions for the inverse problem. 

More recently, (Mota et al, 2004) used inverse analysis techniques of function estimation in order to identify the 
heat flux at the surface of a reference material with known thermophysical properties. The experimental setup consisted 
of an oxyacetylene torch that was used to heat the specimen with unknown thermophysical properties. Such 
experimental setup was based on that described in the ASTM standard E-285 (1996). A high-quality graphite sample 
was used as the reference material for the identification of the imposed heat flux. The type of graphite utilized in this 
work was the same used in the aerospace industry, like in rocket nozzles. The thermophysical properties of such 
reference material were available from its manufacture for a wide temperature range, but the thermal conductivity, 
specific heat and thermal diffusivity of the sample, were also measured in a Flash-method apparatus based on the 
ASTM standard 1461 (2001). For the solution of the inverse problem, the temperature dependence of the 



thermophysical properties was taken into account in the form of functions selected to fit the experimental results, while 
temperature measurements taken below the surface were used for the identification of the imposed heat flux. In order to 
solve the inverse problem, a function estimation approach based on the conjugate gradient method with adjoint problem 
(Mota et al, 2004) was used.  

One major limitation of the technique used in (Mota et al, 2004) is that the thermophysical properties of the sample 
were assumed to be deterministic and known parameters. On the other hand, the use of the statistical inversion 
approach advanced in (Kaipio and Somersalo, 2004) permit that not only the mean values of the thermophysical 
properties, but also the uncertainties associated with them, be taken into account for the solution of the inverse problem. 
The statistical inversion approach is based on the following principles (Kaipio and Somersalo, 2004): 1. All variables 
included in the model are modeled as random variables; 2. The randomness describes the degree of information 
concerning their realizations; 3. The degree of information concerning these values is coded in the probability 
distributions; and 4. The solution of the inverse problem is the posterior probability distribution. Therefore, this 
approach relies fundamentally on the principles of the Bayesian statistics to obtain the solution of inverse problems 
(Kaipio and Somersalo, 2004, Tan et al, 2006, Lee, 2004, Beck and Arnold, 1977, Winkler, 2003). 

We present below the application of the statistical inversion approach to the solution of the inverse problem dealing 
with the estimation of the thermophysical properties and a boundary heat flux, in a one-dimensional heat conduction 
problem. The a priori information available for the parameters is assumed to be in the form of normal distributions with 
known means and known covariance matrices. A similar hypothesis is assumed valid for the measurement errors, so 
that the solution of the inverse problem can be obtained in terms of an optimization problem involving the Maximum a 
Posteriori Objective Function (Kaipio and Somersalo, 2004, Tan et al, 2006, Lee, 2004, Beck and Arnold, 1977). 
Results are presented for an experiment dealing with the heating of a sample material with an oxyacetylene torch (Mota 
et al, 2004), as described below. 
  
2. PHYSICAL PROBLEM AND MATHEMATICAL FORMULATION 
 

The physical problem considered in this work involves the heating of a slab of thickness L, with an imposed heat 
flux q(t) at the boundary x=L, as illustrated in figure 1. The slab is initially at the uniform temperature Tini, while the 
non-heated boundary temperature is T0(t). The slab is supposed to be made of a homogeneous, isotropic and thermally 
stable material, but its thermophysical properties may vary with temperature.  

The mathematical formulation of such physical problem is given by: 
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Figure 1. Physical problem 

 
For the mathematical formulation of the physical problem given by Eqs. (1.a-d), we can devise a direct problem for 

which the thermophysical properties, initial and boundary conditions are known. The objective of the direct problem is 
to determine the transient temperature field T(x,t) within the slab. However, we can also devise an inverse problem in 
which the imposed boundary heat flux q(t), the volumetric heat capacity C(T) and the thermal conductivity k(T) are 
unknown, but transient temperature measurements taken at S selected positions within the slab are available.  

The vector containing the measured temperatures is written as: 
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where Y contains the measured temperatures for each of the S sensors at time ti
G

i, i = 1, …, I, that is,  
 

    
for i=1,…,I   (2.b) ( )1 2, , ... ,i i i iSY Y Y Y=

G

 
Inverse problems are mathematically classified as ill-posed, whereas standard heat transfer problems are well-posed 

(Alifanov, 1994, Ozisik and Orlande, 2000, Kaipio and Somersalo, 2004, Tan et al, 2006).  The solution of a well-posed 
problem must satisfy the conditions of existence, uniqueness and stability with respect to the input data. The existence 
of a solution for an inverse problem such as the one under picture in this work may be assured by physical reasoning. 
On the other hand, the uniqueness of the solution of inverse problems can be mathematically proved only for some 
special cases. Also, the inverse problem is very sensitive to random errors in the measured input data, thus requiring 
special techniques for its solution in order to satisfy the stability condition, as discussed next.  
 
3. BAYESIAN TECHNIQUE FOR THE SOLUTION OF INVERSE PROBLEMS 
 

A variety of techniques is nowadays available for the solution of inverse problems. However, one common approach 
relies on the minimization of an objective function that generally involves the squared differences between measured 
and estimated variables, like the least-squares norm, as well as some kind of regularization (stabilization) term. Despite 
the fact that the minimization of the least-squares norm is indiscriminately used, it only yields maximum likelihood 
estimates if the following statistical hypotheses are valid (Beck and Arnold, 1977, Kaipio and Somersalo, 2004): the 
errors in the measured variables are additive, uncorrelated, normally distributed, with zero mean and known constant 
standard-deviation; only the measured variables appearing in the objective function contain errors; and there is no prior 
information regarding the values and uncertainties of the unknown parameters.  

Although very popular and useful in many situations, the minimization of the least-squares norm is a non-Bayesian 
estimator. A Bayesian estimator is basically concerned with the analysis of the posterior probability density, which is 
the conditional probability of the parameters given the measurements, while the likelihood is the conditional probability 
of the measurements given the parameters (Kaipio and Somersalo, 2004, Tan et al, 2006). In the Bayesian approach to 
statistics, an attempt is made to utilize all available information in order to reduce the amount of uncertainty present in 
an inferential or decision-making problem. As new information is obtained, it is combined with any previous 
information to form the basis for statistical procedures. The formal mechanism used to combine the new information 
with the previously available information is known as Bayes’ theorem (Winkler, 2003). Therefore, the term Bayesian is 
often used to describe the so-called statistical inversion approach, which is based on the principles enumerated above in 
the Introduction of this paper. 

Consider the vector of parameters appearing in the physical model formulation as 
 

PT [P≡ 1,P2,...,PN]       (3) 
 
where N is the number of parameters. Bayes’ theorem can then be stated as (Beck and Arnold, 1977, Kaipio and 
Somersalo, 2004, Tan et al, 2006, Lee, 2004, Winkler, 2003): 
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where πposterior(P) is the posterior probability density, that is, the conditional probability of the parameters P given the 
measurements Y; πprior(P) is the prior density, that is, the coded information about the parameters prior to the 
measurements;  π(Y|P) is the likelihood function, which  expresses the likelihood of different measurement outcomes Y 
with P given; and π(Y) is the marginal probability density of the measurements, which plays the role of a normalizing 
constant. 
 
4. MAXIMUM A POSTERIORI OBJECTIVE FUNCTION 
 

If we assume the parameters and the measurement errors to be independent Gaussian random variables, with known 
means and covariance matrices, and that the measurement errors are additive, a closed form expression can be derived 
for the posterior probability density. In this case, the likelihood function can be expressed as (Kaipio and Somersalo, 
2004, Beck and Arnold, 1977): 
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where M = SI is the number of measurements and W is the inverse of the covariance matrix of the measurement errors.  
For uncorrelated measurements: 
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where σi is the standard-deviation of the measurement Yi, i = 1, …, M. 

Similarly, for the case involving a prior normal distribution for the parameters we can write: 
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where µ and V are the known mean and covariance matrix for P, respectively.  

By substituting equations (5) and (7) into Bayes’ theorem, except for the normalizing constant in the denominator 
we obtain: 
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Equation (8) reveals that the maximization of the posterior distribution function can obtained with the minimization 
of the objective function given by equation (9), denoted as the maximum a posteriori objective function (Kaipio and 
Somersalo, 2004, Beck and Arnold, 1977). Equation (9) clearly shows the contributions of the likelihood and of the 
prior distributions in the objective function, given by the first and second terms on the right-hand side, respectively. 

For nonlinear estimation problems, where the sensitivity matrix is a function of the unknown parameters, the 
iterative procedure of the Gauss-Newton method for the minimization of the maximum a posteriori objective function is 
given by (Beck and Arnold, 1977):  
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where the superscript k denotes the number of iterations and J is the sensitivity matrix defined by: 
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We note in equation (10) that the inverse of the covariance matrix for the parameters, V-1, has a regularization effect 

mathematically analogous to that obtained with Tikhonov’s regularization. While traditional regularization techniques 
produce smooth solutions by removing the ill-posed character of the inverse problem with empirical techniques, the 
statistical inversion approach permits that prior information be used for the sake of regularization of the inverse problem 
solution (Kaipio and Somersalo, 2004). On the other hand, the minimization of the maximum a posteriori objective 
function results on biased estimates (Beck and Arnold, 1977), which clearly shows the importance of selecting the 
appropriate prior distributions for the parameters. If the prior probability densities for the parameters cannot be assumed 
as normal distributions, the posterior probability distribution does not allow an analytical treatment such as presented 
above. In this case, Markov Chain Monte Carlo (MCMC) methods are used to draw samples of all possible parameters, 
so that inference on the posterior probability becomes inference on the samples (Kaipio and Somersalo, 2004, Tan et al, 
2006, Lee, 2004). 
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5. EXPERIMENTAL SETUP 
 

The experimental setup used in this work is based on that specified in the ASTM standard E285-80 (1996). This 
standard specifies the experimental procedure for a qualitative comparison of ablating materials used as heat shields. 
The setup makes use of an oxyacetylene torch (Soldox-201) to heat a cylindrical specimen  (20 mm of diameter and 20 
mm of length). The torch type and the specimen diameter were selected so that the heat flux imposed on the specimen 
was practically uniform, in order to model the heat conduction through the specimen as one-dimensional, as described 
in section 2 above (Mota et al, 2004). 

The temperature measurements were performed with thermocouples type K, with 30 gauge (0.25 mm diameter) 
wires. The thermocouples were calibrated against the readings of a standard PT-100 in a dry TECAL 650S bath. The 
maximum standard deviation of the temperature measurements is 1 oC, from ambient temperature to 600 oC. During the 
experiments, temperatures were recorded with an AGILENT 34970A data acquisition system with a frequency of 1 
measurement per second. The specimen was instrumented with three thermocouples located at the depths of 2mm, 5mm 
and 10 mm below the heated surface and with another thermocouple at the non-heated surface, as illustrated in figure 2.  
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Figure 2. Sensors’ locations 

 
A high quality graphite was selected as the material for the specimen because of its thermal stability at high 

temperatures. Experimental data were available from the manufacturer of this material for its thermophysical properties 
at temperatures above 400 oC. From room temperature up to 200 oC, the thermal diffusivity and the specific heat of such 
material was determined with the Flash method, in the Laboratory of Heat Transmission and Technology of COPPE 
(ASTM, 2001). Figure 3 shows the thermal conductivity and thermal diffusivity for the sample material at different 
temperatures. This figure also shows functions used to fit the thermophysical properties (continuous lines), which were 
taken as exponentials in the form: 

( ) 3
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with the adjusted parameters given by table 1. Parameters A1, A2, A3, B1, B2 and B3 were supposed normally distributed 
with mean and standard-deviation values given by table 1. 
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Figure 3. Thermophysical properties 

 



Table 1. Parameters of the functions fitted for the thermal properties 
Parameter Mean Standard-deviation  

A1 (Jm-3 ºC-1) 5,681,006 63,378 
A2 (Jm-3 ºC-1) − 4,813,057 66,750 

A3  (ºC) 547.00 71.42 
B1 (Wm-1 ºC-1) 24.52 1.08 
B2 (Wm-1 ºC-1) 183.05 2.02 

B3 (ºC) 277.00 7.85 
 

During assembly, the specimen was inserted into its holder, which is made of a refractory brick. The torch and the 
holder were assembled on a structure that permits an accurate centralization of the torch with respect to the specimen 
axis. Such structure also permits the control of the distance between the torch and the specimen. The experiments were 
conducted with oxygen and acetylene static pressures of 1.2 bar and 1.1 bar, respectively, and flow rates of 20 scfh for 
oxygen and for acetylene. The torch was located at a specified distance from the specimen and then lighted. During the 
period that the torch flame was adjusted, the direct heating of the specimen was avoided by a shield made of a 
refractory brick and a stainless-steel plate. The steel plate was used as the radiation shield between the brick and the 
specimen. The exact instant when the shield was removed, and the torch heated the specimen directly, was carefully 
recorded. Figure 4 depicts one of the experiments performed. 

 

 
Figure 4. Experiment 

 
 
6. RESULTS AND DISCUSSIONS 
 

We now present the results obtained for the simultaneous estimation of the heat flux imposed by the oxyacetylene 
torch, as well as of the volumetric heat capacity and the thermal conductivity of the graphite specimen. For the 
estimation of such quantities, the heat flux was parameterized in the form 

 

1

( ) ( )i
i

q t q t tδ
=

= ∑
I

i−

( )t t

        (13) 

 
where I is the number of transient measurements and i is the Dirac delta function. The volumetric heat capacity 
and the thermal conductivity were parameterized in the form given by equations (12.a,b), respectively. Therefore, the 
vector of unknown parameters is given by 

δ −
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For the solution of the inverse problem, the prior information for the parameters was assumed to be in the form of 
normal distributions. In addition, the parameters were supposed uncorrelated. Mean and standard-deviation values for 
the heat flux parameters, 1 2 Iq q q… , were taken from previous estimations obtained by the conjugate gradient method 
with adjoint problem (Mota et al, 2004). Meanwhile, the values shown in table 1 were used for the mean and standard-
deviation values for the parameters in the functions describing the variation of the thermophysical properties with 
temperature, that is, A1, A2, A3, B1, B2 and B3.  

Figure 5 presents the temperature measurements obtained with the sensor located 2 mm below the heated surface, 
for three different experiments and their repetitions. The different experiments involve distances of 200 mm, 150 mm 
and 100 mm between the torch and the specimen. This figure clearly shows a larger rate of temperature increase for 
smaller distances, caused by larger heat fluxes imposed by the torch. In addition, figure 5 shows a quite good 
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repeatability of the experimental conditions; except for the experiment with the distance of 150 mm between the torch 
and the specimen, the temperatures obtained with the two experimental runs are practically identical within the graphic 
scale. 
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Figure 5. Temperatures measured by the sensor 2 mm below the heated surface  

on three experiments and their repetitions 
 

The temperature measurements obtained with the sensors 2 mm and 5 mm below the heated surface were used for 
the inverse analysis, while the measurements of the sensor located 10 mm below the heated surface were used as 
boundary condition in equation (1.b). 

Estimations obtained for the volumetric heat capacity, thermal conductivity and boundary heat flux, for a distance of 
200 mm between the torch and the specimen, are presented in figures 6.a-c. The 99% confidence intervals for each of 
these quantities are also presented in figures 6.a-c. We note in figures 6.a,b that the experimental points used to obtain 
the prior information for the volumetric heat capacity and thermal conductivity (see figure 3) generally fell within the 
99% confidence intervals for these properties. However, discrepancies between the prior information and the estimated 
properties can be attributed to thermal degradation of the graphite as it was heated. The estimated heat flux presented in 
figure 6.c was quite stable and shows a reduction as time increased, due to the larger heat losses by radiation as the 
specimen was heated. The residuals obtained in this case are shown in figure 7, for the thermocouples located 2mm 
(sensor 1) and 5 mm (sensor 2) below the heated surface. Except for times near the begin and end of the specimen 
heating, when the heat flux function underwent a step change, the residuals were of the order of 1 oC, that is, very small 
as compared to the magnitude of the measurements. The correlation observed in the residuals can be resultant from the 
effects of the prior information on the estimation procedure, which is apparent from the analysis of the maximum a 
posteriori objective function given by equation (9). 
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Figure 6.a. Estimated volumetric heat capacity for a distance of 200 mm between the torch and the specimen 
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Figure 6.b. Estimated thermal conductivity for a distance of 200 mm between the torch and the specimen 
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Figure 6.c. Estimated heat flux for a distance of 200 mm between the torch and the specimen 
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Figure 7. Residuals for a distance of 200 mm between the torch and the specimen 

 
 

Figure 8 presents the heat flux estimated for a distance of 100 mm between the torch and the specimen. A 
comparison of figures 6.c and 8 reveals a large increase in the magnitude of the heat flux as such distance is reduced 
from 200 mm to 100 mm. The larger heat flux results on a larger rate of temperature increase, as shown by figure 5. The 
estimated volumetric heat capacity and thermal conductivity for this case are identical to those estimated with the 
distance of 200 mm between the torch and the sample (see figures 6.a,b). This result reveals the robustness of the 
statistical inversion methodology utilized in this paper. The residuals for the case involving the distance of 100 mm 
between the torch and the specimen are also of the order of 1 oC, except in the neighborhood of the begin and end of the 
heating. 
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Figure 8. Estimated heat flux for a distance of 100 mm between the torch and the specimen 

 
7. CONCLUSIONS 
 

In this paper we solved the inverse problem of simultaneously estimating the applied heat flux and the thermal 
properties of a material, in a one-dimensional nonlinear heat conduction problem. The inverse problem was solved with 
the statistical inversion approach, based on the minimization of the maximum a posteriori objective function. Prior 
information for the unknown parameters was taken in the form of normal distributions. 

Actual experimental data, obtained from the heating of a graphite cylindrical specimen with an oxyacetylene torch, 
were used in the inverse analysis. The present solution approach was stable, robust and resulted on estimates with very 
small residuals. Although the magnitude of the heat flux was very sensitive to the distance between the torch and the 
specimen, the estimated properties were not affected by such quantity. 
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