
Procedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

Variational Formulation for Multi-Scale Constitutive Models in
Steady-State Heat Conduction Problem on Rigid Solids

S.M. Giusti, giusti@lncc.br
A.A. Novotny, novotny@lncc.br
R.A. Feijóo, feij@lncc.br
Laboratório Nacional de Computação Científica - LNCC/MCT
Av. Getúlio Vargas 333, 25.651-075 Petrópolis - RJ, Brasil

E.A. de Souza Neto, cgneto@swansea.ac.uk
Civil and Computational Engineering Centre - University of Wales Swansea
Singleton Park, Swansea SA2 8PP, UK

Abstract. Based on the volume averaging of the microscopic temperature and heat flux fields over a local representative
volume element (RVE), in this work we present a general variational formulation for multi-scale constitutive models in
steady-state heat conduction problem on rigid solids. In order to describe the RVE material behaviour, we use local
continuum constitutive theories. This formulation provides an axiomatic framework within which each class of models
is completely defined by a specific choice of kinematical constraints over the RVE. As a consequence of the Hill-Mandel
Principle of Macro-Homogeneity, the system of external heat sources (RVE boundary flux and heat source fields) can
be viewed as a reaction to such constraints and is automatically characterized once the set of kinematically admissible
temperature associated to the RVE is specified. Finally, we derive a class of RVE constitutive models considering different
physical choice for the kinematical constraints.
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1. Introduction

The constitutive modelling of solids by means on so-called multi-scale theories has become the subject of intensive
research in applied and computational mechanics. Probably the growing interest in the modelling of solids by multi-
scale techniques has two important cases, the first is the current need for more accurate constitutive models, and the
second is related to the limit of the descriptive/predictive capability of conventional phenomenological continuum models.
One important example of these facts is the mathematical modelling of biological tissue. The typical microstructure of
biological material can be extremely elaborate, resulting in a macroscopic constitutive response of difficult representation
by means of conventional phenomenological constitutive models. Often, the modelling of such phenomena by purely
macroscopic theories results in important discrepancies between the predicted and observed constitutive response.

In the last years, many contributions have been made to the modelling of constitutive response by means of multi-
scale techniques (see, for instance, Nemat-Nasser, 1999; Michel et al., 1999; Hori & Nemat-Nasser, 1999; Miehe &
Koch, 2002; Matsui et al., 2004; Yang & Becker, 2004; Bilger et al., 2005; Owen & Oñate, 2005; and references therein).
However, this multi-scale models are often presented in a rather ad-hoc manner, making it difficult to distinguish between
the basic assumptions and their consequences. Recently, was proposed a methodology to derive a family of multi-scale
constitutive models based on variational arguments (de Souza Neto & Feijóo, 2006). The formulation presented there,
and applied to small and large strain problem, provides a clearly structured axiomatic framework to derive any class of
constitutive multi-scale models.

Based on the theory proposed in de Souza Neto & Feijóo,2006; the objective of the present work is to develop a
general kinematic variational framework for infinitesimal multi-scale models in steady-state heat conduction problem
on rigid solids. The most important multi-scale techniques used in this work are: the Hill-Mandel principle of Macro-
Homogeneity and homogenization by volume averaging of vector fields (temperature gradient and heat flux).

This work is organized in the following way. In section 2 is presented the general kinematic variational framework for
infinitesimal multi-scale models, based on the volume averaging over the domain. Using the variational framework given
in the previous sections, four well-known classes of multi-scale models are developed in section 3. Ending this article, in
section 4 some final remarks are presented.

2. Infinitesimal multi-scale models

In this section is presented the variational formulation of a family of infinitesimal continuum constitutive models. The
main assumption is that the heat flux and the gradient of temperature at any material point x of the continuum Ω are the
volume average of the heat flux and the gradient of temperature over a local microscopic cell (see Figure 1).

In the next sections a microscopic cell, denoted by Ωµ (with boundary ∂Ωµ), is referred to as the Representative
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Volume Element (RVE). Thus, to assure that this type of multi-scale models are well described is necessary that the
characteristic length of the RVE, lµ, is much smaller than the characteristic length, l, of the macro-continuum. The RVE
domain consist in two parts, one called matrix and denoted with Ωe

µ and the another denominated inclusion and denoted
Ωi

µ, as can see in Figure 1. In addition,

Ωµ = Ωe
µ ∪ Ωi

µ; ∂Ωe
µ = ∂Ωµ ∪ ∂Ωi

µ.

For simplicity, we shall consider only RVEs whose inclusion does not intersect the RVE boundary, i.e., it is assumed
that

∂Ωµ ∩ Ω̄i
µ = ∅,

where Ω̄i
µ denotes the closure of the set Ωi

µ.
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Figure 1. Macro-continuum with a local micro-structure.

2.1 The homogenized temperature gradient and the RVE kinematics

According to mentioned at the beginning of this section, we start the variational formulation of the multi-scale con-
stitutive theories assuming that the gradient of temperature in a point x of the macro-continuum, ∇u (x), is the volume
average of the microscopic temperature gradient, ∇uµ, over the RVE associated with the point x. Then,

∇u (x) =
1
Vµ

∫

Ωµ

∇uµ (y) dV, (1)

where Vµ is a total volume of the RVE, i.e., Vµ = V e
µ + V i

µ, and uµ (y) is a temperature field in the micro-scale corre-
sponding to each point y of the RVE. The procedure given by eq. (1), called homogenization, maps a field over the RVE
(∇uµ (y) in this case) into a corresponding quantity defined in the macro-continuum (∇u (x) in this case).

2.1.1 Minimum RVE kinematical constraints

Due to the used homogenization process defined by eq. (1), all kinematically admissible field for this problem must
satisfy eq. (1). Formally, a necessary condition for a temperature field uµ (y) to be kinematically admissible is that

uµ ∈ Kµ,

where Kµ is the minimally constrained set of kinematically admissible microscopic temperatures, that is

Kµ ≡
{

v ∈ W :
∫

Ωµ

∇vdV = Vµ∇u

}
, (2)

where W is an adequate Sobolev’s space for this problem.
Alternatively, the above expression can be written in terms of an integral over the RVE boundary in the following

manner,

Kµ ≡
{

v ∈ W :
∫

∂Ωµ

vndA = Vµ∇u

}
, (3)
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where the outward unit vector n is normal to the boundary ∂Ωµ. In order to obtain the previous definition eq. (3), is only
necessary to use the tensor relation div (ϕS) = ϕdiv (S) + S∇ϕ (taking into account that S = I and ϕ = v) and the
divergence theorem in the definition of the space Kµ given by eq. (2).

2.1.2 Additive split of the microscopic temperature

Without loss of generality, any microscopic temperature field uµ, can be split into a sum of the following way

uµ (y) = ∇u (x) · y + ũµ (y) , (4)

where the term ∇u (x) · y varies linearly in y, and ũµ (y) is a fluctuation of the temperature field. Based on the decom-
position shown in eq. (4), the microscopic temperature gradient can be written as,

∇uµ (y) = ∇u (x) +∇ũµ (y) , (5)

where we have a homogenous part (constant in y) that coincides with the macroscopic temperature gradient at point x,
and a gradient of microscopic fluctuation temperature, that generally varies in y.

Introducing the previous decomposition (eq. 5) in the definition of space Kµ, we observe that

Vµ∇u =
∫

Ωµ

∇uµdV =
∫

Ωµ

(∇u +∇ũµ) dV = Vµ∇u +
∫

Ωµ

∇ũµdV ⇒
∫

Ωµ

∇ũµdV = 0,

then, the microscopic fluctuation temperature ũµ, satisfies

ũµ ∈ K̃µ,

where the minimally constrained vector space of kinematically admissible temperature fluctuations of the RVE is defined
as

K̃µ ≡
{

v ∈ W :
∫

Ωµ

∇vdV = 0

}
; (6)

or in terms of a boundary integral over ∂Ωµ, as

K̃µ ≡
{

v ∈ W :
∫

∂Ωµ

vndA = 0

}
. (7)

Thus, according to the definition of vector space K̃µ, the minimally constrained set of kinematically admissible tem-
perature in the micro-scale, can alternatively be written as

Kµ ≡
{

vµ ∈ W : vµ = ∇u · y + ṽµ, ṽµ ∈ K̃µ

}
. (8)

Then, for a given macroscopic gradient of temperature, ∇u, the set Kµ is a translation of the space K̃µ (Oden, 1979).
The set of kinematically admissible temperature over the RVE, Kµ, and the associated space of virtual kinematically
admissible temperature of the RVE, denoted by Vµ, have a fundamental role in the definition of the equilibrium of the
RVE. In particular, the space of virtual admissible variation Vµ can be defined as

Vµ ≡
{

η ∈ K̃µ : η = v1 − v2; v1, v2 ∈ Kµ

}
. (9)

From the previous definition and eq. (8), it is straightforward to see that in general Vµ ⊂ K̃µ.
Now, placing eq. 4 in terms of virtual temperatures it is possible to write the additive form of microscopic virtual

temperature in the following way,

δuµ = ∇ (δu) · y + δũµ, (10)

in the same manner, it is possible to establish that any fluctuation of kinematically admissible virtual temperature, δũµ,
satisfies

δũµ ∈ Vµ.
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2.2 Equilibrium of the RVE

Restricted to the purely local constitutive theory, the axioms of Constitutive Determinism and Local Action (Truesdell,
1999) establish that, in general form, a heat flux q at any point x of he continuum is uniquely determined by the gradient
of temperature at this point x. That is, there exists a constitutive functional F such that,

q (x) = F (∇u (x)) , ∀x ∈ Ω. (11)

In the same way that the macroscopic case, the microscopic heat flux in the RVE, qµ, satisfies the following relation

qµ (y) = Fy (∇uµ (y)) , ∀y ∈ Ωµ. (12)

For the particular case of an isotropic, homogenous and linear material, the functional Fy assumes the classical form

Fy (∇uµ (y)) = −k∇uµ (y) ∀y ∈ Ωµ, (13)

where k = k (y) is a thermal conductivity of the RVE represented by Ωµ.
Assuming that the RVE is subjected, in general, to a internal heat sources be = be (y) in Ωe

µ, bi = bi (y) in Ωi
µ, and a

external heat flux t = t (y) acting over the exterior boundary ∂Ωµ, the Principle of Virtual Work establishes that the RVE
is in equilibrium if and only if the following variational equation holds,

∫

Ωe
µ

qµ · ∇ηdV +
∫

Ωi
µ

qµ · ∇ηdV +
∫

Ωe
µ

beηdV +
∫

Ωi
µ

biηdV −
∫

∂Ωµ

tηdA = 0 ∀η ∈ Vµ, (14)

where Vµ is an appropriate space of kinematically admissible variations over the RVE.
For sufficiently regular vector field qµ (y) in the domain Ωµ, the Euler-Lagrange equation, associated to the variational

equilibrium given by eq. (14), may be written in the differential form as,




divqµ = be in Ωe
µ

divqµ = bi in Ωi
µ

qµ · n = t on ∂Ωµ

[[qµ · n]] = 0 on ∂Ωi
µ

, (15)

where the outward unit vector n is normal to the boundary ∂Ωµ and the symbol [[¦]] is used to denote a jump condition
over the boundary of the inclusion, i.e.,

[[¦]] := (¦) |e − (¦) |i,

being (¦) |e associated to the matrix, represented by Ωe
µ, and (¦) |i associated to the inclusion, represented by Ωi

µ.
Particularizing equation (15) for the case given by eq. (13) and considering that k (y) is piecewise constant, we have

the classical form of the heat conduction on rigid solid based on laplacian operator,




−k̃e∆uµ = be in Ωe
µ

−k̃i∆uµ = bi in Ωi
µ

−k̃e ∂uµ

∂n = t on ∂Ωµ

[[k̃ ∂uµ

∂n ]] = 0 on ∂Ωi
µ

,

where k̃e and k̃i are the (constant) thermal conductivity in each part of the domain Ωµ, i.e.,

k (y) =
{

k̃e, ∀y ∈ Ωe
µ

k̃i, ∀y ∈ Ωi
µ

.

2.3 The homogenized heat flux

In the same manner to the shown early in this section, it is necessary establish a relation between the microscopic heat
flux, qµ (y), and the macroscopic heat flux associated to material point x, q (x). This association is made with the same
principle shown in section 2.1, called homogenization. Thus, the homogenized heat flux is obtained through the following
expression,

q (x) =
1
Vµ

∫

Ωµ

qµ (y) dV, (16)
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or in terms of integrals over RVE decomposition (matrix and inclusion),

q (x) =
1
Vµ

[∫

Ωe
µ

qµ (y) dV +
∫

Ωi
µ

qµ (y) dV

]
. (17)

It is important to note that, from previously expression, the RVE is described as a continuum, then it is necessary that
the RVE must be sufficiently large for its continuum representation to make sense.

Now, using the following tensorial relationship
∫

Ω

(∇v)wdV =
∫

∂Ω

v (w · n) dA−
∫

Ω

vdiv (w) dV,

in eq. (17), with w = qµ, v = y ⇒ ∇v = I, we get

q (x) =
1
Vµ

[∫

∂Ωe
µ

(
qµ·n

)
ydA−

∫

Ωe
µ

div
(
qµ

)
ydV +

∫

∂Ωi
µ

(
qµ·n

)
ydA−

∫

Ωi
µ

div
(
qµ

)
ydV

]

=
1
Vµ

[∫

∂Ωµ

(
qµ·n

)
ydA−

∫

Ωe
µ

div
(
qµ

)
ydV +

∫

∂Ωi
µ

[[qµ · n]]ydA−
∫

Ωi
µ

div
(
qµ

)
ydV

]
,

then, with the introduction of the strong form of equilibrium eq. (15) in above equation, we obtain the following expres-
sion,

q (x) =
1
Vµ

[∫

∂Ωµ

tydA−
∫

Ωe
µ

beydV −
∫

Ωi
µ

biydV

]
.

Finally, in above equation is established the homogenized heat flux, exclusively in terms of RVE boundary flux and
heat source.

2.4 The Hill-Mandel Principle

Based on physical arguments, Hill, 1965; and Mandel, 1971; established that “the macroscopic stress power must
equal the volume average of the microscopic stress power over the RVE”. Then to apply the previously statement on the
context of this work, it is necessary to write the Hill-Mandel Principle in terms of the work generated by macroscopic and
microscopic virtual temperatures, δu and δuµ, respectively. That is, at any state of the RVE characterized by a vector field
qµ in equilibrium, the identity

q · ∇ (δu) =
1
Vµ

∫

Ωµ

qµ · ∇ (δuµ) dV, (18)

must holds for any kinematically admissible microscopic field ∇ (δuµ). Within the present scheme, a microscopic gradi-
ent of virtual temperature is said to be kinematically admissible if the following representation is satisfied,

∇ (δuµ) = ∇ (δu) +∇ (δũµ) , ∀δũµ ∈ Vµ, (19)

where Vµ is the space of kinematically admissible variation of the virtual temperature fluctuation over the RVE, given by
eq. (9). Then, with the Hill-Mandel principle established in the previous expression, eq. (18), it is possible to write the
following proposition:

Proposition 1 : The Hill-Mandel principle is satisfied if and only if the virtual works of external flux, t, and internal
heat sources, be and bi, on the RVE vanish. That is, the Hill-Mandel Principle is equivalent to the following variational
equations:

∫

∂Ωµ

tηdA = 0;
∫

Ωe
µ

beηdV = 0;
∫

Ωi
µ

biηdV = 0, ∀η ∈ Vµ, (20)

Proof. Introducing eq. (19) into eq. (18), we obtain

1
Vµ

∫

Ωµ

qµ · ∇ (δuµ) dV =
1
Vµ

∫

Ωµ

qµ · [∇ (δu) +∇ (δũµ)] dV

=

(
1
Vµ

∫

Ωµ

qµdV

)
· ∇ (δu) +

1
Vµ

∫

Ωµ

qµ · ∇ (δũµ) dV

= q · ∇ (δu) +
1
Vµ

∫

Ωµ

qµ · ∇ (δũµ) dV.
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Then the identity given by eq. (18) holds if and only if,
∫

Ωµ

qµ · ∇ (δũµ) dV = 0, ∀δũµ ∈ Vµ.

Next, integrating by parts in the previous equation, gives∫

Ωµ

qµ · ∇ (δũµ) dV =
∫

∂Ωµ

(
qµ·n

)
δũµdA−

∫

Ωe
µ

div
(
qµ

)
δũµdV +

∫

∂Ωi
µ

[[qµ · n]]δũµdA

−
∫

Ωi
µ

div
(
qµ

)
δũµdV.

Taking into account the strong form of equilibrium over the RVE, given by eq. (15), we have
∫

Ωµ

qµ · ∇ (δũµ) dV =
∫

∂Ωµ

tδũµdA−
∫

Ωe
µ

beδũµdV −
∫

Ωi
µ

biδũµdV.

From the previous expression, the Hill-Mandel principle is equivalent to the following variational equation,
∫

∂Ωµ

tδũµdA−
∫

Ωe
µ

beδũµdV −
∫

Ωi
µ

biδũµdV = 0, ∀δũµ ∈ Vµ.

Further, since Vµ has the structure of a vector space (see eqs. (8) and (9)), the above variational equation holds if and
only if each of its integrals vanish individually. Finally, with this statement the Proposition 1 is proved.

Remark 1 : The equation (20) establish that the Hill-Mandel principle is equivalent to require that the external flux t
and the internal heat sources be and bi of the RVE be purely reactive. That is, the external flux t and the internal heat
sources be and bi are reactions to the kinematical constraint (involved in the choice of space Vµ) imposed upon the RVE
and cannot be prescribed independently. Thus, t, be and bi belong to the functional space orthogonal to Vµ, i.e.

(
t, be and bi

) ∈ V⊥µ .

Then, once Vµ is chosen, the space to which t, be and bi belong is defined in an automatic way.

3. Classes of Multi-Scale Models

Based on the variational approach presented in the above sections, in this one we obtain four classes of multi-scale
constitutive models, which are:

(a) Taylor model, or homogeneous micro-cell temperature gradient;

(b) Linear RVE boundary temperature model;

(c) Periodic RVE boundary temperature fluctuation model;

(d) Uniform RVE boundary flux, or the minimum kinematical constraint model.

It is important to note that each model is only a consequence of the choice made for the space of kinematically
admissible variation Vµ ⊂ K̃µ.

3.1 Taylor Model

The Taylor model is based on adopting the null space for the space of kinematically admissible variation, i.e.,

Vµ = VT
µ ≡ {0} ,

consequently the kinematical constraint over the RVE is given by,

ũµ (y) = 0, ∀y ∈ Ω̄µ.

This choise for the space implies that the microscopic temperature field is linear in the variable y,

uµ (y) = ∇u (x) · y, ∀y ∈ Ω̄µ,

and the micro-cell temperature gradient is homogeneous,

∇uµ (y) = ∇u (x) , ∀y ∈ Ω̄µ, (21)

moreover, it coincides with the macroscopic temperature gradient at the corresponding point x of the domain Ω.
Then, for this kind of model the internal heat sources be and bi, and the external flux t, are reactions to be determinated.

Therefore the orthogonal space V⊥µ can be any space that has sufficient regularity.
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3.1.1 The rule of mixture

Taking into account the expression (12) and the result given by eq. (21), the microscopic heat flux satisfies,

qµ (y) = Fy (∇uµ (y)) = Fy (∇u (x)) .

A case of practical interest arise when the constitutive response functional F is independent of y. In this particular
case, the homogenized heat flux (eq. (17)) for the Taylor-based model can be written as,

q (x) =
1
Vµ

[∫

Ωe
µ

F (∇u (x)) dV +
∫

Ωi
µ

F (∇u (x)) dV

]
= veqe

µ + viqi
µ , (22)

where qe
µ and qi

µ are the (uniform) heat flux resulting, respectively, in the matrix and inclusion of the RVE; and the matrix
and inclusion volume fraction are, respectively, given by

ve ≡ V e
µ

Vµ
and vi ≡ V i

µ

Vµ
,

with V e
µ and V i

µ denoting the matrix and inclusion volume of the RVE.
Now, considering multiple inclusions, for example M non-overlapping inclusions, and supposing that each subdomain

j can be modelled by a constitutive functional Fj (∇u), i.e., the microscopic constitutive response functional Fj is
independent of y, we can write the expression (22) in the following way,

q (x) = veqe
µ +

M∑

j=1

vi
jq

i
µj , (23)

where

vi
j ≡

V i
µj

Vµ
and qi

µj = Fj (∇u) ,

are, respectively, the volume fraction and the (uniform) heat flux of phase j. Thus, with the previous definition we still
have,

Ωi
µ =

M∪
j=1

Ωi
µj , V i

µ =
M∑

j=1

V i
µj , Ωe

µ = Ωµ\Ωi
µ and V e

µ = Vµ − V i
µ .

where Ωi
µj and V i

µj are the subdomain and the volume of the phase j of the inclusion. That is, the macroscopic heat flux,
for this Taylor-based model given by eq. (23), is the weighted average of the heat flux acting at the different microscopic
phases. This rule is commonly known as the rule of mixtures.

3.2 Linear boundary temperature model

This class of model is derived by assuming that the temperature fluctuation is null on the RVE boundary. Thus, the
space Vµ is chosen as,

Vµ = VL
µ ≡

{
ũµ ∈ K̃µ : ũµ (y) = 0, ∀y ∈ ∂Ωµ

}
.

This choice for the space of kinematically admissible variation assures that the distribution of temperature on the RVE
boundary is linear in y, i.e.,

uµ (y) = ∇u (x) · y, ∀y ∈ ∂Ωµ.

In the same way that it happens in the Taylor model, the external flux t belongs to the space of all sufficiently regular
functions over RVE boundary ∂Ωµ. Then, it is necessary to determine this external flux in a posteriori calculus. Due to
the definition of space Vµ, the only internal heat sources that satisfies the variational equations (20) are the identically
null, i.e.,

be (y) = 0 ∀y ∈ Ωe
µ, and bi (y) = 0 ∀y ∈ Ωi

µ.
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3.3 Periodic boundary temperature fluctuations model

This class of constitutive models is appropriated to represent the behavior of materials with periodic microstructure
(Michel et al., 1999). So that this periodic representation makes sense, it is necessary that the RVE boundary be composed
for N pairs of equal sets of sides

∂Ωµ =
N∪

j=1

(
Γ+

j ,Γ−j
)
,

such that, each point y+ ∈ Γ+
j has its correspondent point y− ∈ Γ−j , and that the normal vectors to the sides

(
Γ+

j , Γ−j
)

in the points (y+, y−) satisfy

n+
j = −n−j .

The typical examples of shape for periodic RVE boundary are square and hexagonal (see Figure 2).

macro-scale

micro-scale micro-scale

macro-scale

x x

W W

W Wm m

Figure 2. continuum macro-scale with different locals periodic micro-scales

Taking into account the geometric considerations established previously for the RVE boundary, the space Vµ for this
periodic boundary temperature fluctuations model is defined as,

Vµ = VP
µ ≡

{
ũµ ∈ K̃µ : ũµ

(
y+

)
= ũµ

(
y−

)
, ∀ pair

(
y+,y−

) ∈ ∂Ωµ

}
.

With the above definition for the space Vµ, it is simple to verify if the condition Vµ ⊂ K̃µ is satisfied. In fact, it is
only necessary to verify that the equation (7) is fulfilled. Then, having assumed the above geometric partition for the RVE
boundary, the constraint of set K̃µ can be written as,

∫

∂Ωµ

ũµndA =
N∑

j=0

[∫

Γ+
j

ũµ

(
y+

)
n+

j dA +
∫

Γ−j

ũµ

(
y−

)
n−j dA

]
=

=
N∑

j=0

[∫

Γ+
j

ũµ

(
y+

)
n+

j dA−
∫

Γ+
j

ũµ

(
y+

)
n+

j dA

]
= 0.

Remembering that the external heat flux applied to RVE boundary t is orthogonal to VP
µ , t ∈ (VP

µ

)⊥, in order to
satisfies the variational equation

∫

∂Ωµ

tηdA = 0 ∀η ∈ VP
µ ,

it is necessary that the external heat flux be anti-periodic on ∂Ωµ, i.e.,

t
(
y+

)
= −t

(
y−

) ∀ pair
(
y+, y−

) ∈ ∂Ωµ.

Finally, the internal heat sources, be and bi, orthogonal to VP
µ are,

be (y) = 0 ∀y ∈ Ωe
µ, and bi (y) = 0 ∀y ∈ Ωi

µ.
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3.4 Uniform RVE boundary flux model

For this last model, the choice for the space Vµ is the minimum kinematical constraint on the RVE. Thus, the space of
kinematically admissible variation is chosen as,

Vµ = VU
µ ≡ K̃µ =

{
ũµ ∈ W :

∫

∂Ωµ

ũµndA = 0

}
,

where W is a Sobolev’s space defined in section 2.1.
In the same manner that in the models presented in the previous sections 3.2 and 3.3, the internal heat sources that

satisfy the variational equations (20) are identically null, i.e.,

be (y) = 0 ∀y ∈ Ωe
µ, and bi (y) = 0 ∀y ∈ Ωi

µ.

For a constitutive multi-scale model based on the minimum kinematical constraint over the RVE, the compatible
external heat flux is given by (de Souza Neto & Feijóo, 2006),

t (y) = qµ (y) · n (y) = q (x) · n (y) , ∀y ∈ ∂Ωµ, (24)

where q (x) is the macroscopic heat flux associated with material point x of the domain Ω.
Note that with the present variational construction of minimum kinematical constraint model, the external flux con-

dition given by eq. (24) is not imposed a priori. In fact, it is a consequence of the choice of kinematically admissible
fluctuations space VU

µ . Due to the condition given by eq. (24), this kind of models is known as uniform boundary flux
model.

4. Final remarks

In this work, we have applied the variational theory proposed by de Souza Neto & Feijóo (2006) to develop a general
kinematic variational framework for infinitesimal multi-scale models in the steady-state heat conduction problem on rigid
solids. Several models were presented in section 3. Each one of these models differs in the definition of the kinematically
admissible variations space Vµ. From the choices made for the kinematically admissible variations space Vµ, we have that
each one produces a different estimate for the microscopic temperature uµ. Generating, as consequence, that the response
in macro-scale be different for each model.

With the models developed in the previous sections, the following summary can be constructed:

(a) Taylor model

VT
µ ≡ {0} ;

(b) Linear RVE boundary temperature model

VL
µ ≡

{
ũµ ∈ K̃µ : ũµ (y) = 0, ∀y ∈ ∂Ωµ

}
;

(c) Periodic RVE boundary temperature fluctuation model

VP
µ ≡

{
ũµ ∈ K̃µ : ũµ

(
y+

)
= ũµ

(
y−

)
, ∀ par

(
y+,y−

) ∈ ∂Ωµ

}
;

(d) Uniform RVE boundary flux model

VU
µ ≡ K̃µ =

{
ũµ ∈ W :

∫

∂Ωµ

ũµndA = 0

}
.

From the above box, it is simple to see the following relation between the obtained models,

VT
µ ⊂ VL

µ ⊂ VP
µ ⊂ VU

µ .

That is, the Taylor model and uniform RVE boundary flux model are the upper and lower limits, respectively, for all
possible choices of kinematical constraint for the admissible variation space Vµ.
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