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Abstract. The topological derivative gives the sensitivity of the problem when the domain under consideration is perturbed
by the introduction of a hole. This methodology has been recognized as a promising tool to solve topology optimization
problems. Moreover, this concept is wider. In fact, the topological derivative may also be applied to analyze any kind of
sensitivity problem in which discontinuous changes are allowable, for example, discontinuous changes on the shape of
the boundary, on the boundary conditions, on the load system and/or on the parameters of the problem. The information
given by the topological derivative is also very useful in solving problems such as image processing (enhancement and
segmentation), inverse problems (domain,boundary conditions and parameters characterization) and in the mechanical
modeling of problems with changes on the configuration of the domain like fracture mechanics and damage. In particular,
this same idea can also be used to calculate the sensitivity of the problem when, instead of a hole, a small inclusion is
introduced at a point in the domain. Thus, in the present work we apply the Topological-Shape Sensitivity Method to
obtain the topological derivative for inclusions, adopting the total potential energy associated to the plane stress linear
elasticity problem as the cost function. The obtained result is used to devise a topology design algorithm which allows
to simultaneously remove and insert material. This feature is shown through some numerical experiments concerning
structural topology design.
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1. Introduction

As it is understood, the topological derivative furnishes the sensitivity of the problem when the domain under consid-
eration is perturbed by the introduction of a hole (Eschenauer, 1994; Sokolowski & Żochowski, 1999; Céa et al., 2000;
Novotny et al., 2003). This methodology has been recognized as an alternative and at the same time a promising tool to
solve topology optimization problems (see Eschenauer, 1994; Sokolowski & Żochowski, 1999; Garreau et al., 2001; and
references therein). Moreover, this is a broad concept. In fact, the topological derivative may also be applied to analyze
any kind of sensitivity problem in which, instead of a hole, discontinuous changes defined in an infinitesimal region are
allowable; for example, discontinuous changes on the shape of the boundary, on the boundary conditions, on the load
system and/or on the parameters of the problem. In particular when the parameter is related to material property, we can
calculate the topological derivative for inclusion, instead of a hole (Novotny, 2003).

Therefore, the information provided by the topological derivative is also very effective to solve problems such as image
processing (enhancement and segmentation) (Auroux et al., 2006; Belaid et al., 2007; Larrabide et al., 2007; Larrabide,
2007), inverse problems (domain, boundary conditions and parameters characterization) ( Feijóo, 2004; Amstutz et al.,
2005; Bonnet & Constantinescu, 2005; Masmoudi et al., 2005; Bonnet, 2006; Guzina & Bonnet, 2006) and in the
mechanical modeling of problems with changes on the configuration of the domain like fracture mechanics and damage.

Several methods were proposed to calculate the topological derivative (Sokolowski & Żochowski, 1999; Céa et al.,
2000; Amstutz, 2003; Novotny, 2003). In the present work we extend the application of the Topological-Shape Sensitivity
Method developed in (Novotny, 2003) to obtain the topological derivative for inclusion in two-dimensional linear elasticity
problems, adopting the total potential energy as the cost function and the equilibrium equation as the constraint. Next,
we apply this result to devise a topology design algorithm which allows us to simultaneously remove and insert material.
This feature is shown through some numerical experiments concerning structural topology design.

This study is organized in the following manner: in section 2 we present a brief description of the Topological-Shape
Sensitivity Method. In section 3, we calculate the topological derivative for inclusion for the problem under consideration.
Lastly, in section 4, we show some numerical results concerning structural topology design.

2. Topological-Shape Sensitivity Method

Let us consider an open bounded domain Ω ⊂ R2 with a smooth boundary ∂Ω. If the domain Ω is perturbed by
introducing a small inclusion represented by Bε, which is a ball of radius ε centered at point x̂ ∈ Ω, we have a perturbed
domain Ωε ∪Bε, where Ωε = Ω−Bε, as shown in fig. (1). Thus, considering a cost function ψ defined in both domains
Ω and Ωε ∪ Bε, its topological derivative using the Topological-Shape Sensitivity Method (see Feijóo et al., 2003 and
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Novotny et al., 2003), is written as

DT (x̂) = lim
ε→0

1
f ′ (ε)

d

dτ
ψ (Ωτ )

∣∣∣∣
τ=0

, (1)

where f (ε) is a function that decreases monotonically so that f (ε) → 0 with ε → 0+ and τ ∈ R+ is used to parameterize
the domain. That is, for τ small enough, we have

Ωτ :=
{
xτ ∈ R2 : xτ = x + τv, x ∈ Ωε ∪Bε

}
. (2)

Therefore, xτ |τ=0 = x and Ωτ |τ=0 = Ωε ∪Bε. In addition, considering that n is the outward normal unit vector (see
fig. 1), then we can define the shape change velocity v, which is a smooth vector field in Ωε ∪Bε assuming the following
values on the boundary ∂Bε and ∂Ω

{
v = −n on ∂Bε

v = 0 on ∂Ω (3)

and the shape sensitivity of the cost function in relation to the domain perturbation characterized by v is given by

d

dτ
ψ (Ωτ )

∣∣∣∣
τ=0

= lim
τ→0

ψ (Ωτ )− ψ(Ωε ∪Bε)
τ

. (4)
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Figure 1. Topological derivative concept

3. The topological derivative for inclusion

To highlight the potentialities of the Topological-Shape Sensitivity Method, it will be applied to calculate the topo-
logical derivative for inclusion in two-dimensional linear elasticity problems considering the total potential energy as the
cost function and the equilibrium equation in its weak form as the constraint. Therefore, considering the above problem,
initially we perform the shape sensitivity of the adopted cost function with respect to the shape change of the inclusion
and lastly we calculate the associated topological derivative.

3.1 Shape sensitivity analysis

Let us choose the total potential energy stored in the elastic solid under analysis as the cost function. For simplicity,
we assume that the external load remains fixed during the shape change. As it is well-known, different approaches can
be applied to obtain the shape derivative of the cost function. However, in our particular case, as the cost function
is associated with the potential of the state equation, the direct differentiation method will be adopted to calculate its
shape derivative. Therefore, considering the total potential energy already written in the configuration Ωτ , eq. (2), then
ψ(Ωτ ) := JΩτ (uτ ) : Uτ 7→ R can be expressed by

JΩτ (uτ ) =
1
2

∫

Ωτ

Tτ (uτ ) ·Eτ (uτ )dΩτ −
∫

ΓN

q̄ · uτdΓ, (5)

where the admissible displacements set Uτ is given by

Uτ =
{
uτ ∈ H1 (Ωτ ) : uτ = u on ΓD

}
. (6)

The strain and stress tensors Eτ (uτ ) and Tτ (uτ ) are respectively given by
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Eτ (uτ ) = ∇s
τuτ and Tτ (uτ ) = Cδ∇s

τuτ , (7)

where the elasticity tensor Cδ and ∇τ (·) are defined as following

Cδ =
Kδ

1− ν2
[(1− ν) II + ν (I⊗ I)] and ∇τ (·) :=

∂

∂xτ
(·) (8)

where I and II are respectively the second and fourth order identity tensors, ν is the Poisson’s ratio and, for δ ∈ R+, Kδ

is the Young’s modulus given by

Kδ =
{

K if x ∈ Ωε

δK if x ∈ Bε
(9)

In addition, uτ is the solution of the variational problem defined in the configuration Ωτ , that is: find the displacement
vector field uτ ∈ Uτ such that

∫

Ωτ

Tτ (uτ ) ·Eτ (ητ )dΩτ =
∫

ΓN

q̄ · ητdΓ ∀ ητ ∈ Vτ , (10)

where

Vτ =
{
ητ ∈ H1 (Ωτ ) : ητ = 0 on ΓD

}
. (11)

Observe that from the well-known terminology of Continuum Mechanics, the domains Ωτ |τ=0 = Ωε ∪ Bε and Ωτ

can be interpreted as the material and the spatial configurations, respectively. Therefore, in order to calculate the shape
derivative of the cost function JΩτ (uτ ), at τ = 0, we may use the Reynolds’ transport theorem and the concept of material
derivatives of spatial fields (Gurtin, 1981).

Taking into account the cost function defined through eq. (5) and assuming that the parameters K, ν, ū, and q̄ are
constants in relation to the perturbation represented by τ , we have, from eqs. (2,3), that

d

dτ
JΩτ (uτ )

∣∣∣∣
τ=0

=
∫

Ωε∪Bε

[
1
2
Tε(uε) ·Eε(uε) div v −Tε(uε) · (∇uε∇v)s

]
dΩε

+
∫

Ωε∪Bε

Tε(uε) ·Eε(u̇ε)dΩε −
∫

ΓN

q̄ · u̇εdΓ . (12)

Since uε is the solution of the variational problem given by eq. (10) for τ = 0 and considering that the material
derivative u̇ε ∈ Vε, eq. (12) becomes

d

dτ
JΩτ (uτ )

∣∣∣∣
τ=0

=
∫

Ωε∪Bε

Σε · ∇vdΩε , (13)

where Σε is the Eshelby energy-momentum tensor (see, for instance, Eshelby, 1975; Taroco et al., 1998; Gurtin, 2000)
given in this particular case by

Σε =
1
2

(Tε(uε) ·Eε(uε)) I− (∇uε)
T Tε(uε) . (14)

Applying the divergence theorem eq. (13) can be written in the form:

d

dτ
JΩτ (uτ )

∣∣∣∣
τ=0

=
∫

∂Ω

Σεn · vd∂Ω+
∫

∂Bε

[[Σεn]] · vd∂Bε −
∫

Ωε∪Bε

divΣε · vdΩε . (15)

In addition, it is straightforward to verify that, in this particular case, the Eshelby tensor has null divergence, that is
divΣε = 0. Therefore, the shape derivative of the cost function JΩτ (uτ ) defined through eq. (5), at τ = 0, becomes an
integral defined on the boundary ∂Bε since v = 0 on ∂Ω and v = −n on ∂Bε (see eq. 3), that is,

d

dτ
JΩτ (uτ )

∣∣∣∣
τ=0

= −
∫

∂Bε

[[Σεn]] · nd∂Bε . (16)

In other words, the shape sensitivity of the cost functional only depends on the jump of the Eshelby tensor through the
boundary ∂Bε.
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3.2 Topological sensitivity analysis

In order to calculate the topological derivative for inclusion using the Topological-Shape Sensitivity Method, it is
necessary to substitute eq. (16) in (eq. 1) and calculate the boundary integral. Then, considering a curvilinear coordinate
system defined on the boundary ∂Bε, the stress tensor Tε(uε) and the strain tensor Eε(uε), when defined on the boundary
∂Bε, can be decomposed in the following way

Tε(uε)|∂Bε
= Tnn

ε (n⊗ n) + Tnt
ε (n⊗ t) + T tn

ε (t⊗ n) + T tt
ε (t⊗ t) , (17)

Eε(uε)|∂Bε
= Enn

ε (n⊗ n) + Ent
ε (n⊗ t) + Etn

ε (t⊗ n) + Ett
ε (t⊗ t) , (18)

where n and t are respectively the normal and tangential unit vectors (n ·t = 0) defined on ∂Bε. Thus, the jump condition
on the boundary ∂Bε can be written as

[[Tε(uε)n]] = (Tnn
ε |e − Tnn

ε |i)n + (T tn
ε

∣∣
e
− T tn

ε

∣∣
i
)t = 0

⇒ Tnn
ε |e = Tnn

ε |i and T tn
ε

∣∣
e

= T tn
ε

∣∣
i

on ∂Bε . (19)

In the same way, the displacement field uε defined on the boundary ∂Bε can be decomposed as

uε|∂Bε
= un

ε n + ut
εt . (20)

Therefore, its continuity condition results in

[[uε]] = 0 ⇒ uε|e = uε|i and
∂(·)
∂t

∣∣∣∣
e

=
∂(·)
∂t

∣∣∣∣
i

on ∂Bε , (21)

or in terms of the strain tensor components, we have

Ett
ε

∣∣
e

= Ett
ε

∣∣
i

, (22)

where, from a simple manipulation, we obtain

T tt
ε

∣∣
e
− T tt

ε

∣∣
i

= K(1− δ) Ett
ε

∣∣
i

(23)

Enn
ε |e − Enn

ε |i = −(1− δ)
(
Enn

ε |i + ν Ett
ε

∣∣
i

)
(24)

∂ut
ε

∂n

∣∣∣∣
e

− ∂ut
ε

∂n

∣∣∣∣
i

= −2(1− δ) Ent
ε

∣∣
i

. (25)

Thus, the jump of the Eshelby tensor flux in the normal direction is given by

[[Σεn]] · n =
1− δ

2

[
K

(
Ett

ε

∣∣
i

)2 + Tnn
ε |i

(
Enn

ε |i + ν Ett
ε

∣∣
i

)
+ 2 T tn

ε

∣∣
i
Ent

ε

∣∣
i

]
. (26)

Finally, considering this last result (eq. 26) in eq. (16) and substituting it in (eq. 1), the topological derivative written
in terms of the stress components, becomes

DT (x̂) = − 1− δ

2δ2K
lim
ε→0

1
f ′ (ε)

∫

∂Bε

[
δ(1− ν2) (Tnn

ε |i)2 +
(
T tt

ε

∣∣
i
− ν Tnn

ε |i
)2 + 2δ(1 + ν)(T tn

ε

∣∣
i
)2

]
d∂Bε . (27)

Let us introduce a polar coordinate system (r, θ) centered in x̂ ∈ Ω, then we have the following stress distribution
around a circular inclusion in a two-dimensional elastic body (Sadowsky & Sternberg, 1949)

Tnn
ε |∂Bε

=
δ

(1− ν) + δ(1 + ν)
(σ1 (u) + σ2 (u)) +

2δ

(1 + ν)(1 + δα)
(σ1 (u)− σ2 (u)) cos 2θ +O(ε) ,

T tt
ε

∣∣
∂Bε

=
δ

(1− ν) + δ(1 + ν)
(σ1 (u) + σ2 (u))− 2δ

(1 + ν)(1 + δα)
(σ1 (u)− σ2 (u)) cos 2θ +O(ε) ,

T tn
ε

∣∣
∂Bε

= − 2δ

(1 + ν)(1 + δα)
(σ1 (u)− σ2 (u)) sin 2θ +O(ε) , with α =

3− ν

1 + ν
, (28)

where σ1 (u) and σ2 (u) are the principal stress values of the tensor T (u), associated to the original domain without
inclusion Ω (τ = 0 and ε = 0), evaluated in the point x̂ ∈ Ω, that is T (u)|x̂.

Substituting the asymptotic expansion given by eq. (28) in eq. (27) we observe that function f (ε) must be chosen
such that

f ′ (ε) = |∂Bε| = 2πε ⇒ f (ε) = |Bε| = πε2 (29)

in order to take the limit ε → 0 in eq. (27), where |Bε| is used to denote the measure of Bε.
Therefore, from this choice of function f (ε) shown in eq. (29), the final expression for the topological derivative

becomes a scalar function that depends on the solution u associated to the original domain Ω (without inclusion), that is:
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• in terms of the principal stress values σ1 (u) and σ2 (u) of tensor T (u)

DT (x̂) = −1− δ

2K

[
1− ν

1− ν + δ(1 + ν)
(σ1 (u) + σ2 (u))2 +

2
1 + δα

(σ1 (u)− σ2 (u))2
]

; (30)

• in terms of the stress tensor T (u)

DT (x̂) = −1− δ

2K

[
4(1− ν)

1− ν + δ(1 + ν)
T (u) ·T (u)− 1

1 + δα
(trT (u))2

]
; (31)

• in terms of the stress T (u) and strain E (u) tensors

DT (x̂) = −1− δ

4
1 + α

1 + δα

[
2T (u) ·E (u)− (1− δ)(α− 2)

2δ + α− 1
trT (u) trE (u)

]
, (32)

which was obtained from a simple manipulation considering the constitutive relation given by eq. (7) for τ = 0 and ε = 0.
Furthermore from eq. (30) it follows that DT is negative for soft material inclusion in a hard matrix (δ < 1) and vice
versa is positive for hard material inclusion in a soft matrix (δ > 1). This means that the total potencial energy decreases
(increases) whenever inclusions of soft (hard) material are introduced in the configuration.

Remark 1 It is interesting to observe that if we take δ = 0 in eq. (32), the final expression for the topological derivative
for inclusion in terms of T (u) and E (u) becomes

DT (x̂) = −1 + α

4

[
2T (u) ·E (u)− α− 2

α− 1
trT (u) trE (u)

]

= − 2
1 + ν

T (u) ·E (u) +
3ν − 1

2(1− ν2)
trT (u) trE (u) , (33)

which is the result for circular void (see Garreau et al., 2001; Lewiński & Sokolowski, 2003 and Feijóo et al., 2005).

4. Numerical Results

As already mentioned in this paper, the topological derivative allows us to quantify the sensitivity of a given cost
function when the domain under consideration is perturbed by introducing an inclusion. Thus, let us write eq. (1) like a
Taylor series expansion, then

ψ (Ωε ∪Bε) = ψ (Ω) + f (ε)DT (x̂) +O (f (ε)) , (34)

whereO (f (ε)) contains all higher order terms than f (ε) . From analysis of eq. (34), DT (x̂) may be seen as a first order
correction (for high order corrections see Rocha de Faria et al., 2007) of ψ (Ω) to obtain ψ (Ωε ∪Bε), which allow us
to naturally use this derivative as a descent direction in topology design algorithm. In other words, the topological sensi-
tivity gives the information on the opportunity to introduce a non-smooth perturbations, in this particular case inclusion.
Therefore, we may devise a topology design algorithm, based on the topological derivative given by eqs. (30, 31 or 32),
which allows to simultaneously remove and insert material. Thus, let us define the parameters α, β and vj as:

• α rate change of hard to soft material;

• β rate change of soft to hard material;

• vj volume fraction of hard material at iteration j.

Let γ = 1− α− β , then

vj+1 = γvj + β . (35)

Being N the total number of iterations, vN is the volume constraint of hard material, that is

vN = |Ω̂|/|Ω| , (36)

where |Ω̂| is the required volume of hard (bulk) material. The recursive formula (eq. 35) may be written, for 0 < γ < 1,
as

vN = (v0γ + β) γN−1 + β

N−2∑

j=0

γj =
γN [β + v0 (γ − 1)]− β

γ − 1
. (37)
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For practical situation N < ∞ and 0 ≤ v0 ≤ 1. Thus, given the maximum number of iterations N , the volume
constraint vN , the rate α and the initial volume constraint v0, we can solve the non-linear equation given by eq. (37) for
β. Let us propose a very simple fixed-point algorithm,

βk+1 =
γN

k [βk (1− v0)− v0α] + αvN

1− vN
, (38)

with β0 = α and γk = 1 − α − βk. This algorithm converges in a few iterations even without relaxation and it gives an
estimate for β to obtain the volume constraint vN at iteration N .

Then, with the above convergent serie (eq. 37) and the estimate for parameter β (eq. 38), the proposed algorithm may
be summarized in the following steps:

• Provide the initial domain Ω, the required volume of hard material |Ω̂|, the rate change material α (hard to soft),
the maximum number of iterations N and the tolerance tol.

• Compute the rate change material β (soft to hard).

• While |ψ(Ωj+1)− ψ(Ωj)| > tol do:

Compute Dj
T (x̂) in Ω.

Interchange the material property, according to the values of Dj
T (x̂) and the parameters α and β, considering the

following rule:

- K ← δK in Ωj (hard to soft).
- K ← K/δ in Ω− Ωj (soft to hard).

Set Ωj+1 = Ωj and j ← j + 1.

• Ensure |Ωj | ≈ |Ω̂|, where |Ωj | is the volume of the hard material at iteration j.

The topological derivative depends on the solution u and its gradient. In this work, the displacement field u is
calculated via Finite Element Method and its gradient is obtained by a post-processing technique. More specifically, the
three node triangular finite element is adopted for the discretization of the variational problem. For more sophisticated
topology algorithm based on the topological derivative see, for instance, Amstutz & Andrä, 2005 and Guo et al., 2005.

Next, we present some numerical results related to structural topology design using the above methodology. In all the
examples the material properties used are given by K = 210× 103MPa, ν = 1/3 and δ = 0.01.

4.1 Example 1

In this first example, the design of a bar is performed. This bar is submitted to a distributed load q̄ = 250× 103N/m,
acting in the half part of each side. In Fig. 2(a) is shown the initial domain given by a rectangular panel with L = 30mm,
H = 30mm and ρ = 1mm, which is discretized taking into account the symmetry of the problem.

qq

W

(a) Case A

qq

W

(b) Case B

qq

W

(c) Case C

qq

W

(d) Case D

Figure 2. example 1 - models and studied cases.

We consider four different initials guesses. The first one (Case A) has 100% of hard material, as shown in Fig. 2(a).
The second (Case B) has 100% of soft material, Fig. 2(b). The next two have 50% of hard material, where the soft part is
circular for the first case (Case C) and in two equal strips for the last one (Case D), as can be seen in Figs. 2(c) and 2(d),
respectively. The volume constraint used in this example are |Ω̂| = 0.50 |Ω| for Case A and B, and |Ω̂| = |Ω| for the last
two cases (C and D). Then, at the end of the iterative process, all cases have 50% of hard material. Finally, the rate of
material to be changed at each iteration is given for α = 0.01

∣∣Ωj
∣∣.

The final topology shown in Fig. 3, obtained at iteration j = 200, is the same for all cases. Therefore, the proposed
algorithm is able to find global minimum independent of the initial guess, at least for this simple example.
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Figure 3. example 1 - obtained topology at j = 200.

The cost function ψ(Ωj) and the volume of the hard material
∣∣Ωj

∣∣ throughout the iterative process are respectively
shown in Figs. 4(a) and 4(b), where ψ(Ω∗) is the cost function associated to the optimal domain Ω∗.
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Figure 4. example 1 - obtained results

4.2 Example 2

The design of a Mitchell structure is performed. In Fig. 5(a) is shown the initial domain given by a simply supported
rectangular panel with L = 100mm, H = 50mm and ρ = 5mm, submitted to a concentrated load Q̄ = 5000N on the
bottom. Due to the symmetry of the problem, only half of the panel is discretized.

Q

W

(a) initial topology (b) topology at j=74 - point a

(c) topology at j=181 - point b (d) topology at j=200 - point c

Figure 5. example 2 - model and obtained topoligies.

Taking |Ω̂| = 0.25 |Ω| and α = 0.01
∣∣Ωj

∣∣, we have
∣∣Ωj

∣∣ ≈ |Ω̂| for j = 74, whose topology is shown in Fig. 5(b).
Once the volume constraint is reached, we consider α = 0.0025 |Ω̂|. The results obtained at j = 181 and j = 200 are
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respectively shown in Figs. 5(c) and 5(d). The cost function ψ(Ωj) and the volume of the hard material
∣∣Ωj

∣∣ are presented
in Figs. 6(a) and 6(b), respectively.
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Figure 6. example 2 - obtained results

4.3 Example 3

Now, in this third example, we consider the design of two bridges. In both cases the initial domain is represented
by a rectangular panel with L = 180m, H = 60m and ρ = 0.3m, submitted to a uniformly distributed traffic loading
q̄ = 250 × 103N/m2. This load is applied on the black strip of height b = 3m, which is positioned at distance c from
the top of the design domain. Taking into account the symmetry of both problems, only half part of the domain will be
discretized.
Case A: the initial domain is clamped on the region a = 9m and the strip is positioned at c = 30m, as can be seen in Fig.
7(a). Taking |Ω̂| = 0.25 |Ω| and α = 0.01

∣∣Ωj
∣∣ , the topology obtained at iteration j = 94 is shown in Fig. 7(b), where∣∣Ωj

∣∣ ≈ |Ω̂|. Next, we consider α = 0.0025 |Ω̂| and the obtained result are presented in Fig. 7(c) (j = 350).

q

a a

c

b

W

(a) initial topology

(b) topology at j=94 - point a (c) topology at j=350 - point b

Figure 7. example 3 (Case A) - model and obtained topoligies.

Case B: the initial guess is simply supported on the region a = 9m and the parameter c is given by c = 57m, as shown
in Fig.8(a). Considering again |Ω̂| = 0.25 |Ω| and α = 0.01

∣∣Ωj
∣∣ , the topology obtained at iteration j = 83, where∣∣Ωj

∣∣ ≈ |Ω̂|, is presented in Fig. 8(b). Now, we take α = 0.0025 |Ω̂| and the result reached at iteration j = 350 is shown
in Fig. 8(c).
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q
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(a) initial topology

(b) topology at j=83 - point c (c) topology at j=350 - point d

Figure 8. example 3 (Case B) - model and obtained topoligies.

Furthermore, in Fig. 9, we present a comparison between the cost function ψ(Ωj) for both cases obtained throughout
the iterative process.
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Figure 9. example 3 - cost function.

Finally, it is important to note that the final topologies obtained, in both cases, coincide with the classical result of a
tied arch bridge structure, as it was expected (see Figs. 7(c) and 8(c)).

5. Conclusions

In this work, we have calculated the topological derivative for inclusion in two-dimensional linear elasticity problem
taking the total potential energy as the cost function and the state equation in its weak form as the constraint. The explicit
formula for the topological derivative, given by eqs. (30,31,32), was obtained using Topological-Shape Sensitivity Method
and classical asymptotic analysis around circular inclusions. The obtained result was used to devise a topology design
algorithm which allows to simultaneously remove and insert material. This feature is very important to find global or
at least more than one local minimum. In fact, we have shown through the numerical experiments that the proposed
algorithm is able to find global minimum independent of the initial guess (example 1) and also several local minima
(examples 2 and 3).
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