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Abstract. The motion of an artificial satellite considering geopotential perturbations and resonances between the 

frequencies of the mean orbital motion and the Earth rotational motion is studied. The behavior of the motion of the 

satellite is analyzed in the neighborhood of the 2:1 resonances. A suitable sequence of canonical transformations 

reduces the system of differential equations describing the orbital motion to an integrable kernel. The phase space of 

the resulting system is studied considering that one resonant angle is fixed. Simulations are presented showing the 

variations of the semi-major axis of artificial satellites. 
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1. INTRODUCTION  
 

Synchronous satellites on circular orbits are extensively used for communication and navigation purposes. This fact 

justifies the great attention that was given in the literature to orbital resonance which affects these satellites: (i) 

resonance of the rotation motion of a planet with the translational motion of the satellite (Lima Junior, 1998; Formiga, 

2005); (ii) sun-synchronous resonance (Hughes,1980); (iii) spin-orbit resonance (Beletskii,1975; Hamill e Blitzer,1974; 

Vilhena de Moraes et al,1990), (iv) resonances between the frequencies of the rotational motion of the satellite (Hamill 

e Blitzer,1974); (v) resonance including solar radiation pressure perturbation (Ferraz-Mello,1979). 

In this work, the type of resonance considered is the commensurability between the frequencies of the satellite mean 

orbital motion and the Earth rotational motion. This case of resonance occurs frequently in real cases. In fact, in a 

survey from a sample of 1818 artificial satellites, chosen in a random choice from the NORAD 2-line elements 

(Celestrak, 2004), about 85% of them are orbiting near some a resonance’s region.  

The system of differential equations describing the orbital motion of an artificial satellite under the influence of 

perturbations due to the geopotential, can be described in a canonical form. In order to study the effects of resonances, a 

suitable sequence of canonical transformations can be performed reducing the system of differential equations to an 

integrable kernel (Lima Jr. P. H. C. L., 1998). This system is here integrated numerically. Simulations can show the 

behaviour of motion in the neighbourhood of the exact resonance. Some results considering the 2:1 resonances were 

already known but here, new results are presented.  
   

2. EQUATIONS OF MOTION AND THE CONSIDERED POTENTIAL 
 

Using the classical set of Delaunay variables (L,G,H,l,g,h), the sideral time Θ=ωet, where ωe is the angular speed of 

the Earth, and geopotential perturbations, the equations of motion can be written as (Osório, 1973): 
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and the argument is given by: 
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     Also µ=GM ≈3,986009x10
5
 Km

3
/s

2
 is the gaussian constant; λlm is the longitude of the semi major axis of symmetry 

for the spherical harmonic (l,m); Hq
(l+1),( l-2p)(e) are the Hansen’s functions and Flmp(i) are the Kaula’s inclination 

functions. 

 

3.   METHODOLOGY 

 

Let us represent by n the mean motion of the satellite and by α=q/m the commensurability from resonance condition  

 

0mqn e =− ω  (5) 

were q and m are integers. 

The influence of the resonance on the orbital motion can be analyzed integrating a system of differential equations 

of the following type (Lima Jr. P. H. C. L., 1998; Formiga, 2005):  
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Explicit functions relating B(2p+k)mp(άm)(X1, C1, C2) and Flmpq(X1, C1, C2),  with the keplerian elements can be found in  

Lima Jr. P. H. C. L.(1998) and Formiga (2005). 

 

4. NUMERICAL SIMULATIONS 

 

Since Hansen’s coefficients have been used this theory can be applied for orbits of any eccentricity below one. In 

this section we present simulations considering a few initial conditions arbitrarily chosen.  

In what follows, it will be show some examples of the influence of a resonance on the metric orbital elements of 

orbits whose periods are near to the 2:1 resonances with respect the period of the Earth’s rotation. Several resonant 

harmonics can be considered. Here, for the resonance 2:1 it was considered first the simultaneous influence of the 

harmonics J2, J2,2 and thus the simultaneous influence of the harmonics J2, J3,2 
Let us consider the case e=0,01, i=4°, ϕ*

=0 (critical angle) and the harmonics J2 and J2,2. Numerical values for the 

Harmonics coefficients J2 and J2,2 are given by JGM3. 

Figure 1 represents the temporary variation of the semi-major axis in the neighbourhood of the resonance 2:1. For 

several values considered for the semi-major axes, it can be observed distinct behaviors for their temporary variations. 

The more the satellites approaches the region that we defined as a resonant region, the more the variations increases. It 

is remarkable the oscillation in the region between by a= 26560,0 km and a=26562,48 km, that characterizes paths for 

which the effect of the resonance is maximum for the case where e=0,01 and i=4°. For instance, a small variation in the 

semi-axis, of about 10 m (a = 26562,49 km) an abrupt decrease for a is observed. 
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Figure1- Variation of orbits in the time: e=0,01, i=4° 

 
Table1 contains the amplitude and period of the variations of orbital elements for hypothetical satellites considering 

low eccentricity, small and high inclination and the influence of the harmonics J2 and J2,2. Table 2 considers the 

influence of the harmonics J2 and J3,2.  

For several values of semi-major axes considered, it can be observed distinct behaviors of temporary variations. The 

more the satellites approach the region that was defined as a resonant region, the more the variations increases. For the 

case e=0.01 and 4° it is remarkable the oscillation in the region between by a= 26560.00 km and a=26562.50 km. For 

instance, a variation of about 10m in the initial semi-major axis, a = 26562.48 km, brings up a variation of about more 

than 12 km in its amplitude in a period of about 7000 days.  

For the considered cases and for the same regions, the influence of the harmonic J3,2 is smaller than the influence of 

the harmonic J2,2 as can be seen by Table 2.   

Also, when the inclination increases the resonance’s effect decreases but is still noticeable.  This can be observed 

considering, for instance, e = 0.01 and i=55°. 

 

Table 1.Amplitude and period of perturbations due to the 2:1 resonance: J2+J2,2 

Orbital elements Amplitude Period 

ao=26561,770 km e i  ∆∆∆∆amax T (days) 

ao +0.430 0,01 4°  12 km 2500 

ao +0.718 0,01 4°  12,5 km 7000 

ao +0.290 0,01 4°  4,5 km 2000 

ao +0.500 0,01 4°  3 km 1000 

ao –2,5 0,01 4°  6,5 km 1700 

ao –5 0,01 4°  1,4 km 500 

ao 0,05 55°  1,8 km 3200 

ao +0.718 0,005 55°  2,75 km 3900 

ao –1,770 0,005 55°  1,2 km 2000 

ao +5,129 0,005 55°  900 m 1500 

ao +3,729 0,005 55°  1,8 km 2500 

ao 0,05 63,4°  7,5 km 1000 

ao –2 0,05 63,4°  4 km 1000 

ao 0,05 87°  7 km 2000 

ao –2 0,05 87°  3,5 km 1900 

 

The temporary variations, due to the 2:1 resonance, of the semi-major axis of hypothetical satellites with high orbital 

eccentricity (e = 0.7) and inclination i=55° are shown in “Fig. 2” (considered harmonics J2 and J3,2). It is also 

remarkable here that for an initial semi-major axis of 26560.0 the resonance causes a variation of about 10 km in semi-



 

major axis with a period of about 500 days but if we shift 10km in the initial condition (a= 26550.0) the amplitude 

increases to about 30km with the same period. 

 

Table 2.Amplitude and period of perturbations due to the 2:1 resonance: J2+J3,2 

 

Orbital elements Amplitude 

ao=26561.770 km e i  ∆∆∆∆amáx 
Period t(days) 

ao –3.77  0,01 4°  120 m 500 

ao +0.718 0,01 4°  245 m 1000 

ao +0.929  0,01 4°  110 m 500 

ao +5  0,01 4°  100 m 250 

ao –2,5  0,005 4°  100 m 500 

ao +0.429  0,005 4°  700 m 1500 

ao +0.929 0,005 55°  1,9 km 16000 

ao +1,73  0,005 55°  250 m 16000 

ao +5  0,005 55°  30 m 1500 

ao –3,77  0,005 55°  47 m 500 

ao –0.429  0,005 87°  110 m 1800 

ao –2,23 0,005 87°  45 m 800 

ao –3,77  0,005 87°  20 m 500 
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                                        Figure 2- Ressonance effects on the semi-major axis (J2+J2,2), e= 0.7 and  i=55° 

 

 Figure 3 shows the variation of the semi-major axis for the same previous case but now considering the influence of 

the harmonics J2 and J3,2.  
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                                       Figure 3- Ressonance effects on the semi-major axis (J2+J3,2) e= 0.7 and  i=55° 
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Figure 4- Temporal evolution of the resonant phase angle j  (J2+J2,2) e= 0.01 and  i=4° 

 
The temporal evolution of the resonant angle j is shown in “Fig. 4”. The resonance area, shown “Fig. 1”, is 

characterized here by a mean value of the resonant phase angle equal to zero, and corresponds to initial semi-major in 

the region between by a= 26560.00 km and a=26562.50 km 

 

5. CONCLUSIONS 

 

In this work, based on Lima Junior's theory a integrable kernel was found. The theory, valid for any type resonance 

p/q, and was here applied for 2:1 resonant case. 

The motion near the region of the exact resonance, is extremely sensitive to the small alterations considered. This 

can be and indicative that these regions are chaotic.  

The preliminary results indicate that orbits lifetimes for orbits near orbits resonant can be significantly changed due 

resonant effects.     



 

This work provides a good approach for long period orbital evolution studies for satellites orbiting in regions where 

the influence of the resonance is more pronounced. 
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