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Abstract. This study deals with the onset of thermal natural convection in a system consisting of a fluid layer overlying
a homogeneous porous medium. One of the fundamental open questions concerning two-layer systems is the modelling
of the interface and its consequences on transport phenomena. Two different formulations are generally adopted. In the
one-domain approach, a unique set of conservation equations is written for the entire domain, thus avoiding the explicit
formulation of boundary conditions at the interface. In the two-domain approach, conservation equations in the fluid and
in the porous region are coupled by the appropriate set of interfacial conditions. One-domain results are compared with
those obtained with the Darcy and the Darcy-Brinkman formulations of the two-domain approach. Important discrepan-
cies are observed between one- and two-domain models. It is shown that, when the transition between the two regions is
characterized by discontinuous spacial variations of the macroscopic properties, the one-domain approach formulation
has to be modified by taking the derivatives in the sens of distributions. In this way, one- and two-domain formulations
lead to the same stability thresholds.
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1. INTRODUCTION

Convective heat and species transport at the interface between a fluid and a porous region can be encountered in numer-
ous industrial processes (solidification, filtration, catalytic reactor, drying, etc) or environmental situations (geothermal
systems, ground water pollution, etc) and therefore, transport phenomena analysis in such configurations has been the
subject of particular attention in the last decades (Nield and Bejan, 2006). Nevertheless, one of the fundamental open
questions concerns the modelling of the fluid/porous interface and its consequences on transport phenomena.

Two different formulations are generally adopted. In the one-domain approach, the porous layer is considered as a
pseudo fluid and the whole cavity as a continuum (Arquis and Caltagirone, 1984). In that case, heat and mass transfer are
governed by a unique set of conservation equations valid in both the fluid and porous regions thus avoiding the explicit
formulation of boundary conditions at the interface. The momentum conservation equation is a modified Navier-Stokes
equation, which naturally incorporates the viscous diffusion contribution (Brinkman term) in the porous medium.

In the two-domain approach, conservation equations in the fluid and in the porous region are coupled by the appropriate
set of interfacial conditions. For momentum transport, these conditions mainly depend on the order of the momentum
equation in the porous medium which choice has been widely commented since the pioneering study by Beavers and
Joseph (1967). In this study, Beavers and Joseph considered a one dimensional flow parallel to the fluid/porous interface.
Since the flows in the fluid and porous layers are described by the Stokes and Darcy equations, respectively, a semi-
empirical slip boundary condition was proposed at the interface
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where uint is the fluid velocity at the interface, U is the seepage velocity, K is the permeability of the homogeneous porous
material and α is an empirical dimensionless slip coefficient. The agreement between the experimental data provided in
the work by Beavers and Joseph (1967) and the analytical solution is obtained by adjusting the values of α between 0.1
and 4, depending on the nature of the porous layer. This parameter has been found to be strongly dependent on the
structure of the porous interface, but not on the nature of the fluid. Nield (1977) was the first to use the slip condition
in the stability analysis of superposed fluid and porous layers. Poulikakos et al. (1986) also reported a numerical study
of high Rayleigh number convection in superposed layers, using the Beavers and Joseph condition. A generalization of
the slip condition for multidirectional flows was proposed by Jones (1973). An interesting comparison between the linear
stability results obtained using both the Beavers and Joseph and the generalized Jones condition is shown in the work by
Taslim and Narusawa (1989).



An alternative solution to the problem of matching the flow equations in the two regions is to use the Brinkman
correction to the Darcy law (Brinkman, 1947). Therefore, momentum equations in both regions are of the same differential
order and continuity of both velocity and shear stress can be satisfied. In this case, Neale and Nader (1974) have shown
that the analytical solution is equivalent to the solution of Beavers and Joseph (1967) if α =

√
µeff/µ (µeff being the

effective viscosity involved in the Brinkman term). Finally, when important spatial variations of the porous structure are
present at the fluid/porous inter-region, a macroscopic stress jump boundary condition has been derived in the context
of volume averaging (Ochoa-Tapia and Whitaker, 1995a, 1995b). This representation, based on the Darcy-Brinkman
momentum equation, involves an adjustable stress jump coefficient which has been found to be explicitly dependent on
the continuous spatial variations of the effective properties at the inter-region (Goyeau et al., 2003; Chandesris and Jamet,
2006). The influence of the stress jump coefficient on the stability of natural convection in superposed fluid and porous
layers was investigated in Hirata et al. (2007a).

A large majority of studies on linear stability analysis for the onset of thermal convection in superposed fluid and
porous layers has been performed using a two-domain approach with the Darcy equation for the momentum transport in
the porous region (Nield, 1977; Chen and Chen, 1988; Carr and Straughan, 2003). The first stability analysis based on
the one-domain modelling in this stratified configuration has been proposed by Zhao and Chen (2001). The comparison
between their results and those obtained with the two-domain approach (Chen and Chen, 1988) shows a qualitative
agreement of the marginal stability curves, while the critical values of the Rayleigh number may significantly differ (up
to 40%).

Recently, a systematic comparison was provided (Hirata et al., 2007b) between linear stability results of the one-
domain approach (1Ω) and the Brinkman-extended two-domain model (2ΩDB). The results were also compared with
those obtained using the classical Darcy’s formulation of the two-domain model (2ΩD) (Carr and Straughan, 2003). As
in the work of Zhao and Chen (2001), important discrepancies were observed between results of one and two-domain
approaches. The marginal stability curves of the 2ΩDB model presented better agreement with the 2ΩD curves than
with those of the 1Ω approach, indicating that the mathematical formulation was responsible for the discrepancies, while
the inclusion of the Brinkman term played a secondary role. In this paper, it is shown that when the transition between
the fluid and the porous regions is characterized by discontinuous spacial variations of the macroscopic properties, the
one-domain approach formulation has to be modified by taking the derivatives in the sense of distributions. In this way,
one and two-domain formulations lead to the same stability thresholds.

This paper is organized as follows. After presenting the geometrical configuration of the problem, the governing equa-
tions of the Brinkman-extended two-domain approach (2ΩDB) are presented. Then, the formulation of the one-domain
approach (1Ω) used by Zhao and Chen (2001) and Hirata et al. (2006) is presented. For conciseness, the linear stability
analisys and the application of the Generalized Integral Transfom Technique (Cotta, 1993) to the resulting eigenvalue
problem will not be described in the present paper. The details concerning its applications to one- and two-domain ap-
proaches can be found in Hirata et al. (2006) and (2007b), respectively. In section 3., the numerical results of models
2ΩDB and 1Ω are compared with those obtained with the classical Darcy formulation of the two-domain approach (2ΩD)
(Carr and Straughan, 2003). It is shown that the marginal stability curves of 2ΩDB present a good agreement with those
obtained using 2ΩD, especially for high α values. Nevertheless, important discrepancies are found with the 1Ω model.
This is due to the fact that the one-domain approach formulation has to be modified by taking the derivatives in the sense
of distributions. The corrected formulation of the one-domain approach (1ΩNEW ) is then presented. The results ob-
tained with the corrected formulation are compared with those obtained with the Brinkman-extended formulation of the
two-domain approach.

2. GOVERNING EQUATIONS

The system under consideration consists of a horizontal porous layer of thickness d∗m underlying a fluid layer of
thickness d∗f , with a total thickness d∗ = d∗m + d∗f , as shown in Fig. (1). The upper and lower walls are impermeable and
are kept at temperatures T ∗u and T ∗b , respectively. The porous medium is saturated by the same fluid which fills the rest
of the domain, and is supposed to be in thermal equilibrium with the fluid. The fluid is assumed to be Newtonian and to
satisfy the Boussinesq approximation:

ρ(T ∗) = ρ0(1− βT (T ∗ − T ∗0 )). (2)

2.1 The two-domain approach (2ΩDB)

In this section, we briefly recall the two-domain Brinkman-extended formulation presented by Hirata et al. (2007b).
This formulation is different from the classical Darcyt’s formulation of the two-domain approach (Chen and Chen, 1988;
Carr and Straughan, 2003), since viscous diffusion is included in the momentum equation for the porous medium.
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Figure 1. Geometric configuration of the problem.

The dimensionless conservation equations for the fluid layer are given by:

∇.u = 0 (3)

∂u
∂t

+ u.∇u = −∇P +∇2u + GrT Tez (4)
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While assuming that the porous medium is isotropic and homogeneous, the dimensionless equations for the porous layer
can be written as:

∇.um = 0 (6)
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The reduced viscosity in eq. (7) was taken as η = µeff/µ = 1/φ (Whitaker, 1998). The Darcy number Da = K/d∗2 is
the dimensionless permeability, and the other dimensionless parameters are the Grashof and the Prandtl numbers, defined
as: GrT = gβT ∆T ∗d∗3/ν2, Prf = ν/αTf , Prm = ν/αTm, where αTf = kf/(ρ0 Cp)f , and αTm = km/(ρ0 Cp)f .

The nondimensional boundary conditions at the the top and bottom walls are:

T (1) =
T ∗u − T ∗0

∆T ∗
, u(1) = 0, and Tm(0) =

T∗l − T∗0
∆T∗

, um(0) = 0. (9)

At the interface, z = d∗m/d∗ = dm = 1/(1 + d̂ ), where d̂ is the depth ratio defined as d̂ = df/dm. The dimensionless
conditions of continuity of temperature, heat flux, velocity, normal stress and tangential stress across the interface take the
form:

T = Tm (10)
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where εT = αTf/αTm stands for the thermal diffusivity ratio.
It is important to remark that, when using the Darcy formulation of the two-domain approach, the continuity of normal

stress does not include the viscous contribution in the porous region, and the continuity of tangential stress is substituted
by the Beavers and Joseph boundary condition (eq. (1)).

2.2 The one-domain approach (1Ω)

The one-domain formulation presented by Hirata et al. (2006) is now recalled. This description consists of combining
the governing equations for the two regions into a unique set of equations, valid for the entire domain. The momentum
conservation equation is a modified Navier-Stokes equation, and thus incorporates the Brinkman extension of Darcy law
in the porous medium. As shown in Hirata et al. (2006), the dimensionless governing equations valid in the two regions
are:

∇.u = 0 (15)
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where αT = αTf in the fluid region and αT = αTm in the porous medium. The momentum equation (16) con-
tinuously evolves from the Darcy-Brinkman equation (φ 6= 1) in the porous region, to the Navier-Stokes equation
(φ = 1, Da →∞) in the fluid region.

The nondimensional boundary conditions at the external walls are:

u(1) = 0, T (1) =
T ∗u − T ∗0

∆T ∗
(18)

u(0) = 0, T (0) =
T ∗l − T ∗0

∆T ∗
(19)

Systems (3)-(14) and (15)-(19) were linearized in the usual way. The eigenvalue problems resulting from the stability
analysis of models 1Ω and 2ΩDB were solved using the Generalized Integral Transform Technique (GITT) (Cotta, 1993).
The basic concept of this hybrid numerical-analytical approach consists of finding auxiliary problems that will form a
basis for the proposed eigenfunction expansion. Upon integral transformation of the original partial differential system, a
coupled system of ordinary differential equations for the transformed potentials then results, which is numerically solved
to yield the expansion coefficients.

Auxiliary eigenvalue problems were chosen for the temperature and velocity fields of 1Ω and 2ΩDB models. Contrary
to the 1Ω model, the auxiliary problems of the 2ΩDB system presented different eigenfunctions for each layer, coupled
by interfacial conditions, as proposed by Mikhailov and Ozisik (1984) for the treatment of composite media. The com-
putational costs for the numerical resolution of the final 2ΩDB system were much higher than for the resolution of the
trasformed 1Ω system. In some cases, the computational time required for a 2ΩDB run could be twice the time used for
the same run with the 1Ω model. The details concerning the application of the GITT to one- and two-domain approaches
can be found in Hirata et al. (2006) and (2007b), respectively.

3. RESULTS AND DISCUSSION

The porous medium is supposed to be isotropic and homogeneous, and as in Chen and Chen (1988), Carr and
Straughan (2003), Zhao and Chen (2001), Hirata et al. (2006), Prf = 10, εT = 0.7, and η = (1/0.39). Let us re-
call that the characteristic parameters obtained with our formulation are the thermal Grashof number GrT , and the Darcy
number Da. Nevertheless, for the sake of comparison with previous works, the marginal stability curves are presented in
terms of the Rayleigh number RaT = GrT Prf Da, and according to Chen and Chen (1988), the parameter δ is fixed at
0.003. This parameter is actually a combination of Da and the depth ratio (δ2 = (1 + d̂)2 Da).

As already observed by previous authors, the stability curves can present a bimodal behaviour depending on the values
of the characteristic parameters. Fig. (2a) shows the bimodal nature of the stability curve obtained with the two-domain
Darcy-Brinkman model, for d̂ = 0.12. The critical values for the first minimum are −RaTcr,1 = 34.03 and κcr,1 = 2.5;
and for the second one,−RaTcr,2 = 53.87 and κcr,2 = 25.5. Each minimum of the curve corresponds to a different mode
of natural convection. A “fluid mode" (corresponding to perturbations of large wave numbers), where the convective flow
is mainly confined in the fluid layer; and a “porous mode" (corresponding to perturbations of small wave numbers), where
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the convective flow occurs in the entire porous region. In order to illustrate these two modes, the streamline patterns
obtained for κ = 25.5 and κ = 2.5 are shown in Figs. (2b) and (2c), respectively. In Fig. (2b), a perturbation of large
wave number is introduced, resulting in convection cells mainly confined in the fluid layer with some flow penetration in
the upper region of the porous layer. Fig. (2c) shows the convection pattern obtained for a perturbation of small wave
number, corresponding to a large wavelength. In this case, fluid motion is present in the entire porous layer.
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Figure 2. (a) Bimodal nature of the stability curve obtained with the 2ΩDB model, for d̂ = 0.12 and δ = 0.003. The
corresponding streamline patterns for the two minima are shown in (b) κ = 2.5 (Ψmax = ±0.4386; ∆Ψ = 0.0627) and

(c) κ = 25.5 (Ψmax = ±0.166; ∆Ψ = 0.02). The thick horizontal line represents the fluid/porous interface.

Figs. (3a)-(3d) show a comparison of the marginal stability curves for four values of d̂ at a fixed value of δ = 0.003,
obtained with the different models, namely: the one-domain approach (1Ω) (Hirata et al., 2006); the two-domain approach
using Darcy’s formulation (2ΩD) for different values of the adjustable slip coefficient α (Carr and Straughan, 2003); and
the two-domain approach using Brinkman’s formulation (2ΩDB). Let us remark that the 2ΩD curves were obtained by
Carr and Straughan (2003), who adopted a equation of state which expresses the fluid density as a quadratic function of
temperature. For all values of d̂, it may be noticed that the 2ΩDB curves are located between the curves obtained using
the 2ΩD model, for α = 1 and α = 4. The stability curves obtained using the 1Ω model present a quite different behavior.
These results show that the Brinkman term does not play a crucial role in the stability of the system for the adopted values
of the Darcy number (Da ≈ 10−5). As a consequence, it may be induced that the discrepancies are due to the different
mathematical formulation used in one- and two-domain approaches.

As shown in Hirata et al. (2006), our 1Ω curves present a good agreement with the results of Zhao and Chen (2001).
These authors claim a qualitative agreement for the one- and two-domain approaches. Nevertheless, the comparison only
concerns the critical values, and not the entire stability curves. They do not mention such important discrepancies as
those displayed in Figs. (3a)-(3d) for large values of κ. The critical Rayleigh numbers and the associated wave numbers
for the stability curves in Figs. (3a)-(3d) are shown in Table 1. For all values of d̂ studied, the 2ΩDB and 2ΩD curves
are bimodal. If one now considers the curves obtained using the 1Ω approach, they also present a bimodal behavior for
d̂ = 0.08 and d̂ = 0.10, but not for d̂ = 0.12 and d̂ = 0.14, which present only one minimum (Figs. (3c) and (3d)). We
can observe an important change in the critical wave number of the 1Ω curves between d̂ = 0.10 and d̂ = 0.12 (see Table
1), which corresponds to the change of the critical convection mode. For the 2ΩDB and 2ΩD curves, the mode switching
occurs between d̂ = 0.12 and d̂ = 0.14.

The 2ΩD model requires the specification of the empirical slip parameter α in the Beavers and Joseph boundary
condition (eq. (1)). Contrarily to the findings of Carr and Straughan (2003), Chen and Chen (1988) mention that their
solution “is quite insensitive to α". As shown in Figs. (3a)-(3d), this remark is relevant only for small values of the wave
number κ, corresponding to the first minimum of the curves. In the 2ΩDB model, on the contrary, there is no adjustable
parameter, and therefore only one stability curve is provided. For the porous mode of instability (first minimum of the
curves), all the two-domain curves predict the same critical conditions. This means that when the onset of convective
motion occurs within the porous layer, the upper interfacial condition does not play an important role. Concerning the
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Figure 3. Marginal stability curves obtained with models 1Ω (Hirata et al., 2006), 2ΩD (Carr and Straughan, 2003), and
2ΩDB , for δ = 0.003 and (a) d̂ = 0.08, (b) d̂ = 0.10, (c) d̂ = 0.12, and (d) d̂ = 0.14.

fluid mode of instability, the 2ΩDB curve is systematically located between the 2ΩD curves for α = 1 and α = 4. A
possible explanation for this fact can be found in the value adopted for the reduced viscosity η. It has been shown that, for
one-dimensional flows, the 2ΩDB analytical solution is similar to the 2ΩD solution by Beavers and Joseph provided that
α =

√
η (Neale and Nader, 1974). This is consistent with our results since the porosity of the porous medium (φ = 0.39)

is such that
√

η ∼= 1.6 lies between 1 and 4.
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Table 1. Critical Rayleigh numbers and corresponding wave numbers for the stability curves in Figs. (3a)-(3d).

d̂ = 0.08 d̂ = 0.10 d̂ = 0.12 d̂ = 0.14
Model κcr −RaTcr κcr −RaTcr κcr −RaTcr κcr −RaTcr

1Ω 3.0 54.42 3.5 46.55 13.5 22.19 12.0 12.73
2ΩDB 2.5 36.55 2.5 35.15 2.5 34.03 22.0 31.09

2ΩD, α = 0.1 2.4 35.91 2.3 34.81 2.4 33.82 20.5 23.96
2ΩD, α = 1 2.4 36.30 2.4 34.91 2.4 33.81 22.5 30.45
2ΩD, α = 4 2.4 36.37 2.4 34.93 2.4 33.91 22.5 31.96

The corrected formulation of the one-domain approach (1ΩNEW)

As shown in the previous section, one- and two-domain approaches lead to different stability thresholds when the
transition between the fluid and the porous regions is characterized by a discontinuous variation of the physical properties.
This is due to the fact that discontinuous functions can not be differentiated in the ordinary sense of a function. The results
presented in this section show that in taking the derivatives in the sense of distributions (Schwartz, 1965), the one-domain
approach leads to the same stability results as two-domain approaches. The corrected formulation of the one-domain
approach is now presented.

Supposing that the porous medium is homogeneous, the reduced viscosity η, the thermal diffusivity αT , and the
porosity φ are represented by step functions. In the corrected formulation of the one-domain approach, these functions
should be kept inside the divergence operator as follows:

∇.u = 0 (20)
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1
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where the derivatives of all discontinuous functions should be taken in the sense of distributions.
The first results obtained with the corrected formulation of the one-domain approach (1ΩNEW) are now compared

with those of the two-domain extended-Brinkman formulation (2ΩDB). The marginal stability curves obtained with the
four values of the depth ratio previously analysed are shown in Figs. (4a)-(4d). In all figures, a very good agreement is
observed between the 1ΩNEW and 2ΩDB results, for the entire range of wave numbers analyzed.

4. CONCLUSIONS

A comparison between the linear stability results of thermal natural convection in superposed fluid and porous layers
has been carried out, using one- and two-domain approaches.

The marginal stability curves of the Brinkman-extended two-domain model presented a good agreement with the
classical Darcy two-domain curves, indicating that the inclusion of the Brinkman term plays a secondary role for the
values of the Darcy number used in this work. However, the one-domain curves presented a rather different behavior. It
has been shown that, when the transition between regions is characterized by discontinuous variations of the macroscopic
physical properties, the derivatives of the discontinuous functions must be taken in the sense of distributions. The one-
domain formulation was then corrected, and the results obtained with the new formulation presented a good agreement
with those of the Brinkman-extended two-domain approach. It is important to remark that, when the spatial variations of
the physical properties are continuous, the terms derived from the distribution theory are null, and therefore, the corrected
one-domain formulation is the same as the one presented in section 2.2.
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Figure 4. Marginal stability curves obtained with the 2ΩDB model and the corrected formulation of the one-domain
approach 1ΩNEW, for δ = 0.003 and (a) d̂ = 0.08, (b) d̂ = 0.10, (c) d̂ = 0.12, and (d) d̂ = 0.14.

5. ACKNOWLEDGEMENTS

This work has been done within the framework of the International Program of Scientific Cooperation (PICS) CNRS-
CNPq “Ecoulements et Transferts en Milieux Poreux". SCH gratefully acknowledges the CNPq fellowship grant ]150075/2007-
3 (Brazil).



Proceedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

6. REFERENCES

Arquis, E. and Caltagirone, J.P. , 1984, "Sur les conditions hydrodynamiques au voisinage d’une interface milieu fluide -
milieu poreux: application à la convection naturelle", C. R. Acad. Sci. Paris, vol. 299.

Beavers, G. S. and Joseph, D. D., 1967, "Boundary Conditions at a Naturally Permeable Wall", J. Fluid Mech., vol. 30,
pp. 197-207.

Brinkman, H.C., 1947, "A Calculation of the Viscous Force Exerted by a Flowing Fluid on a Dense Swarm of Particles",
App. Sci. Res., vol. A1, pp. 27-34.

Carr, M. and Straughan, B., 2003, "Penetrative Convection in a Fluid Overlying a Porous Layer", Advances in Water Res.,
vol. 26, pp. 263-276.

Chandesris, M. and Jamet, D., 2006, "Boundary Conditions at a Planar Fluid-Porous Interface for a Poiseuille Flow",Int.
J. Heat and Mass Transfer,vol. 49, pp. 2137-2150.

Chen, F. and Chen, C. F., 1988, "Onset of Finger Convection in a Horizontal Porous Layer Underlying a Fluid Layer", J.
Heat Transfer, vol. 110, pp. 403-409.

Cotta, R. M., 1993, "Integral Transforms in Computational Heat and Fluid Flow", CRC Press, Boca Raton, FL.
Goyeau, B., Lhuillier, D., Gobin, D. and Velarde, M.G., 2003, "Momentum Transport at a Fluid-Porous Interface", Int. J.

Heat and Mass Transfer, vol. 46, pp. 4071-4081.
Hirata, S. C., 2007, "Stabilité de la Convection Thermique et/ou Solutale en Couches Fluide et Poreuse Superposées",

Ph.D. Dissertation, Université Pierre et Marie Curie - Paris 6, France.
Hirata, S.C., Goyeau, B. and Gobin, D., 2007a, "Stability analisys of natural convection in adjacent fluid and porous

layers: influence of the jump boundary condition", Physics of Fluids, vol. 19, paper 058102.
Hirata, S.C., Goyeau, B., Gobin, D., Carr, M. and Cotta, R.M., 2007b, "Linear stability of natural convection in superposed

fluid and porous layers: influence of the interfacial modelling", Int. J. Heat and Mass Transfer, vol. 50, pp. 1356-1367.
Hirata, S.C., Goyeau, B., Gobin, D. and Cotta, R.M., 2006, "Stability of natural convection in superposed fluid and porous

layers using integral transforms", Numerical Heat Transfer Part B: Fundamentals, vol. 50, pp. 409-424.
Jones, I.P., 1973, "Low Reynolds Number Flow Past a Porous Spherical Shell", Proc. Camb. Phil. Soc., vol. 73, pp.

231-238.
Mikhailov, M.D. and Ozisik, M.N., 1984, "Unified Analysis & Solutions of Heat and Mass Diffusion", John Wiley &

Sons, New York.
Neale, G. and Nader, W., 1974, "Practical Significance of Brinkman Extention of Darcy’s Law: Coupled Parallel Flows

Within a Channel and a Boundary Porous Medium", Can. J. Chem. Eng., vol. 52, pp. 472-478.
Nield, D. A., 1977, "Onset of Convection in a Fluid Layer Overlying a Layer of a Porous Medium", J. Fluid Mech., vol.

81, pp. 513-522.
Nield, D.A. and Bejan, A., 2006, "Convection in Porous Media", Springer-Verlag, New York, 3rd Edition.
Ochoa-Tapia, J.A. and Whitaker, S., 1995a, "Momentum Transfer at the Boundary Between a Porous Medium and a

Homogeneous Fluid - I. Theoretical Development", Int. J. Heat and Mass Transfer, vol. 38, pp. 2635-2646.
Ochoa-Tapia, J.A. and Whitaker, S., 1995b, "Momentum Transfer at the Boundary Between a Porous Medium and a

Homogeneous Fluid - II. Comparison with Experiment", Int. J. Heat and Mass Transfer, vol. 38, pp. 2647-2655.
Poulikakos, D., Bejan, A., Selimos, B. and Blake, K.R., 1986, "High Rayleigh Number in a Fluid Overlying a Porous

Bed", Int. J. Heat and Fluid Flow, vol. 7, pp.109-116.
Schwartz, L., 1965, "Méthodes mathématiques pour les sciences physiques", Hermann, Paris.
Taslim, M.E. and Narusawa, U., 1989, "Thermal Stability of Horizontally Superposed Porous and Fluid Layers", J. Heat

Transfer, vol. 111,pp. 357-362.
Whitaker, S., 1998, "The Method of Volume Averaging (Theory and Applications of Transport in Porous Media)",

Springer.
Zhao, P. and Chen,C. F., 2001, "Stability analisys of Double-Diffusive Convection in Superposed Fluid and Porous Layers

Using a One-Equation Model", Int. J. Heat and Mass Transfer, vol. 44, pp. 4625-4633.

7. Responsibility notice

The authors are the only responsible for the printed material included in this paper


