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Abstract. In this work an algorithm for Fault Diagnosis of Attitude and Orbit Control Systems (AOCS) in the presence of
uncertainties is presented. This includes: Fault Models, Residuals Generation, Signal Detection by means of Sequential
Tests, and Diagnosis using Structured Hypothesis Tests. The faulty environment was simulated with abrupt, incipient and
intermittent fault behaviors. Adaptive Thresholds were necessary to achieve robustness due to uncertainties in sensors,
actuators and plant. Some tests conducted so far have shown the correctness of the algorithm in generating speculative
Diagnosis Statements. After validating it, we intend to extend the algorithm to the AOCS of the MultiMission Platform
(MMP) Satellite at the nominal operation mode. This is an excellent example of the engineering required to promote the
interaction between universities and enterprises in the future.

Keywords: Fault Detection, Fault Diagnosis, Attitude and Orbit Control, Structured Hypothesis Tests, Sequential Proba-
bility Ratio Test.

1. INTRODUCTION

The MMP was designed to have compatibility with small launchers. His total nominal mass is approximately 250
kilograms and its volume 2.81 cubic meters, including all subsystems. This work presents the design strategy used to
develop a supervisor for the Attitude and Orbit Control System (AOCS) of the MMP Satellite. The focus of the supervisor
is on Fault Detection and Diagnosis (FDD), but not yet reaching Fault Accommodation (FA) and Fault-Tolerant Control
(FTC) - the handling of faults by means of redundancy and control law reconfiguration.

A previous work, [3], presented a new approach to examine faults in control systems in a systematic manner. But this
previous work concerned itself with a general design strategy covering from fault detection to fault-tolerant control.

The problem consists in detecting and diagnosing faults in actuators and sensors of the MMP AOCS during a pointing
maneuver around the pitch angle axis, in its Nominal Operating Mode. The achievement of the maneuver specifications
is not of concern here.

Given this problem statement, the design strategy described in [3] is applied with some simplifications. The proposed
algorithm is illustrated by application to the AOCS of the MMP Satellite. The concept, is however, suitable to other AOCS
FDDS.

2. FDDS Design Methodology

The algorithms that realize FDD are a source of risk for faults (in the software) according to [2]. It implies that the
overall reliability can only be improved if the FDD System (FDDS) is absolutely trustworthy. A search of an absolutely
trustworthy FDDS could lead to a case of Russell’s Paradox. But [3] introduces a seven-step design procedure that leads
to an improved FDDS compared to what is obtainable by conventional ad-hoc methods.

A short summary of these design steps follows below:

1. A Failure Modes, Effects and Criticality Analysis (FMECA) of all involved sub-systems is performed and combined
into a complete analysis of the entire satellite.

2. The top-level end-effects are judged for severity, and the ones with significant influence on the control performance
are selected to be handled by the supervisor.

3. The possibilities of fault accommodation are considered.

4. A reverse deduction of FMECA rule base is performed down to the point of reconfiguration (step 3) to locate the
faults that cause the considered end-effects.

5. FDD algorithms are designed based on measurements and control signals.

6. Fault accommodation actions are designed.
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7. The most appropriate action is determined for fault accommodation.

Figure 1 shows this seven-step design procedure and relationship among all seven steps.

Figure 1. Systematic supervisor design approach adopted. Figure adapted from [3]

The purpose of this work, as mentioned, is on FDDS development only. Due to this specific purpose, the seven-step
procedure will be reduced to a three-step procedure (dark gray boxes in figure 1), using only the steps 1, 2 and 5 above.

The main idea is to detect and diagnose faults in the AOCS of the MMP based on the information available in the
measurements. This new three-step procedure compiles steps 1 and 2 of Figure 1 on a single new 1st step, and divides
step 5 onto two new 2nd and 3rd steps. The whole three-step procedure for systematic fault diagnosis system design can
be summarized as follows:

Input: The input is a 4-tuple 〈Ξ,M,Φm,∆〉, where Ξ is a set of measurement data, M is a mathematical model which
describes the nominal mode behavior present in Ξ, Φm is a set of fault modes candidates, and ∆ is a set of hypothesis
test candidates.

Step 1: Choice of a set Φ containing the most important fault modes to diagnose:

1. By consulting the manufacturers’ FMECA, select a suitable set of fault modes Φm including probable fault
modes of each component.

2. Develop mathematical and/or simulation models to evaluate fault mode severity by injection in the AOCS via
simulation.

3. Collect simulation results and select a reduced set Φ of the most critical mission fault modes contained in Φm.

Step 2: Design of the Residual Generators and Robust Decision Functions for Fault Detection:

1. Design some residual generators which considers presence of uncertainty (disturbances and noises) in the
model M.

2. Test, via simulation, the residues’ sensitivity to faults.

3. Select the Residual Generator(s) which returns the most fault sensible residues.

4. Select some Decision Function(s) to emphasize the fault information and test it in several fault scenarios.

5. If disturbances, control actions and/or noise affects the Decision Function(s) response to fault and non-fault
modes, design an Adaptive Threshold with robustness features. Otherwise, define a simple constant threshold.

6. Normalize the Decision Function(s) with the designed threshold.

Step 3: Design of a Structured Hypothesis Test for Fault Diagnosis:

1. Based on simulation results of the faulty AOCS, mount a binary symptom representation. Called here as
unified symptom representation.

2. Generate a pattern for each scenario using some Decision Structure γ ∈ Γ.

3. Create S1
n sets capable to explain each fault scenario.
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4. Perform a SHT, δi, having S1
n and Γ as parameters.

5. The SHT δi ∈ ∆ will be chosen if it can provide results with acceptable statistics compared with some spec-
ification (in terms of wrong diagnosis statements rate, normal mode declaration delay, conclusive diagnosis
statements and etc).

6. This step is performed recursively, until obtain an acceptable δi.

Output: The output is the SHT δ adequate to the Fault Detection Scheme selected.

3. FDDS Design Methodology Applied to the MMP AOCS

The linear mathematical model of the nominal operating mode is in equation 1, whereKTELDIX = 7.5×10−3 Nm/V
is the reaction wheel gain and Isx = 295.71 kg ×m2, Isy = 501.37 kg ×m2 and Isz = 364.82 kg ×m2 are the satellite
moments of inertia around the roll, pitch and yaw axis, respectively.
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This model is used to simulate an off pointing maneuver by 30o in 180s. For this purpose, a suboptimal Linear
Quadratic Tracking control law is used. The initial conditions are in equation 2.

φ0
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 (2)

Uncertainties are present in sensors (noise in star sensors and gyros), actuators (noise in control signal sent to the re-
action wheels), and plant (external torques due to gravity gradient, parasite currents, aerodynamic drag and solar radiation
pressure). Information about these uncertainties is summarized in Table 1.

Table 1. Components and its Fault Modes

Uncertainty Component corrupted in three axis Mathematical Model
Noise Gyroscopes White gaussian noise (µ = 0 and σ = 10−5 rad/s)
Noise Reaction Wheels White gaussian noise (µ = 0 and σ = 10−3 V olts)

Disturbance Plant Step (amplitude = 10−4 Nm)

Since the scenario was described, the following three subsections will detail the application of the design methodology.

3.1 Step 1 (Fault Modes Selection by severity judgement)

Based on the manufacturers’ manual, [11], and on the AOCS Specifications Manual, [7], the following single fault
modes in Table 2 were selected:

Table 2. Components and its Fault Modes

Index i Component Name Component Fault Modes Component Type
g Gyroscope NF, CV, LV, OD, SD Sensor
r Reaction Wheel NF, RA, RZ, HC, IV Actuator

where the meanings are: NF = no fault, CV = constant value, LV = last value, OD = offset drift, SD = scale factor
drift, RA = RPM above the limit, RZ = RPM near zero during a long period of time, HC = high armature current, and
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IV = increasing velocity. Each component has four single fault modes, but the AOCS contains three reaction wheels and
three gyroscopes in its nominal mode, summing twenty four single fault modes.

When prior knowledge or historical data is not available, fault models can be used to analyze each component fault
mode and judge severity of the end-effects for the AOCS.

The fault models for each fault mode of the gyroscopes are in eqs. 3 to 7:

NF → y(t) = ωn(t) (3)

CV → yF1(t) =

 θYo(t) + f1,1(t)Yo(t), if tf1,1 ≤ t ≤ tf1,1 + df1,1

f1,2(t), if tf1,2 ≤ t ≤ tf1,2 + df1,2

f1,3(t), if tf1,3 ≤ t ≤ tf1,3 + df1,3

(4)

LV → yF2(t) = θYo(t)− p(df2)θYo(t) + p(df2)
∫ tf2+df2

tf2

ε−1p(ε)Yo(t)dt : ε � 1 (5)

OD → yF3(t) = Yo(t) {θ +Ko(t) [1(t− tf3)− 1(t− tf3 − df3)]} (6)

SD → yF4(t) = {[1(t− tf4)− 1(t− tf4 − df4)]Ke(t) + 1}Yo(t) : Ke(t, tf4) =
{

0, if t < tf4
(t− tf4)β, if t ≥ tf4

(7)

where p(ρ) = [1(t− tf2)− 1(t− tf2 − ρ)], tfi is the time of occurrence of the fault i, dfi is the duration of the fault
i, f1,1 = −θ, f1,2 = maximum_scale_value, f1,3 = random_value, Yo(t) is the true input value, θ is a measurement
degradation parameter, ωn(t) is the noise corrupted angular velocity measurement, and CV has three different modes for
the same fault.

The fault models for the gyro were developed in the time domain. Note that the fault models for the gyro expresses
only effects on measurements, but not changes in dynamic relations inside the sensor itself.

The fault models for each fault mode of the reaction wheels are in eqs. 8 to 12:

NF → T (s) =
K

1 + Tis
Ue(s) (8)

RA→ T (s) = K

[
Ue(s)

1− e−tf5s + e−(tf5+df5 )s

s
+
e−tf5s − e−(tf5+df5 )s

s
f5

]
and Ω(s) = T (s) · 1

Ir
· 1
s

(9)

RZ → T (s) = K

[
Ue(s)

1− e−tf5s + e−(tf5+df5 )s

s

]
(10)

HC → T (s) = KUe(s)−
e−tf7s − e−(tf7+df7 )s

s
αUe(s) (11)

IV → T (s) = KUe(s) +
e−tf8s − e−(tf8+df8 )s

s
f8 and Ω(s) = T (s) · 1

K
· 1
s

(12)

where T (s) is the reaction wheel torque, K is the gain, Ti is the time constant, Ω(s) is the velocity, Ir is the reaction
wheel moment of inertia, α is a degradation factor, Ue(s) the input voltage, and fi is the amplitude of the ith fault.

The fault models for the reaction wheel were developed in frequency domain. Note that the fault models for the
reaction wheel consider changes in dynamic relations inside the actuator itself.

The total model of the system to be diagnosed (the AOCS) is the union of all relations describing the components
(equations 3 to 12). As done for defining fault modes for the components, we can define system fault modes by selecting
them by severity judgement. This procedure is based on an analysis of the system behavior by simulating the faulty
scenarios (modeled in equations 3 to 12). The single fault modes are injected on an environment with noise corrupted
gyros, reaction wheel control signals, and disturbances on the plant.

The simulations showed that all twenty four fault modes are harmful to the system: in certain cases these scenarios
do not caused instability, but matching of specifications was not possible. In general, this behavior depends on fault in
amplitude, the highest ones caused instability. All faults could cause instability; then they were judged as having the same
severity and necessity to be detected and diagnosed. Then all single fault modes in Table 1 have to be promptly detected
and diagnosed.
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3.2 Step 2 (Design of the Residual Generators and Robust Decision Functions for Fault Detection)

This step is contained on the step 5 of Figure 1. The overall structure of the FDD method can be subdivided in two
parts: Fault Detection and Fault Diagnosis. In this step 2, Fault Detection is of concern.

In the field of control theory, the literature on fault detection has mostly been focused on the problem of residual
generation, which leads to the structure illustrated in Figure 2.

Where the information provided by the measurements are combined with previous knowledge (mathematical model)
to generate residuals, a decision function is applied to evidence the fault presence subsequently. The output of this fault
detection scheme is mostly affected by noise, disturbances and modeling errors. It implies that the application of the
threshold logic can generate erroneous symptoms when uncertainty is present.

Figure 2. General structure for Fault Detection.

The techniques used to detect faults in gyros are: Kalman filter innovations (Residual Generator, equation 13) and
Sequential Probability Ratio Test (Decision Function, equation 14).

rg (k) = K [y (k)− ω̂ (k|k − 1)] (13)

Tg(k) =
∑k0+N

k=k0
r2(k) (14)

On the other hand, the techniques used to detect faults in reaction wheels are: structured residuals (Residual Generator,
equation 15) and Absolute Value Calculation (Decision Function, equation 16). R1r(s)

R2r(s)
R3r(s)

 =

 Km

J In(s)− sKIa
Ωn(s)

−Km

J U(s) + sΩn(s)
−sU(s) + s

KIa
In(s)

 1
Tis+ 1

(15)

 T1r(k)
T2r(k)
T3r(k)

 =

 |r1r(k)|
|r2r(k)|
|r3r(k)|

 (16)

Note that the techniques are different but the architecture is the same, Residual Generator followed by a Decision
Function. Only one residual is evaluated for each gyro, and three other residues are evaluated for each reaction wheel.
Equation 15 shows that the reaction wheel residues are filtered by a low pass filter with the time constant equals to that of
the reaction wheel motor.

To avoid missed and false alarms propagation since detection, some robustness questions arise in FDD. The robustness
issue is hardly integrated as a part of the design process for the Decision Functions. Methods to achieve and analyze
robustness have been extensively studied, see [4] and [5]. There are experimental results showing the advantage of this
robustness approach as an additional design step in adjusting and compensating the original Decision Function designed,
see [6].

Specially in this work, robustness is achieved via normalization. It mainly consists in designing an adaptive threshold,
according to [10] described by the more general form in equation 17.

Jadp = c1W (u, y) + c2 (17)

SinceW (u, y) is some measure of the model uncertainty present, to set an adaptive threshold is equivalent to normalize
the Decision Function. After some Decision Function (T (k)) calculation, it will be compared with a threshold to generate
some symptom. Equation 18 shows the normalization reasoning due to [10].

T (k) ≥ Jadp →
T (k)

c1W (u, y) + c2
≥ 1 (18)

The suitable adaptive thresholds for the gyros and reaction wheel Decision Functions are of the general form given in
Table 3.
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Table 3. Adaptive thresholds’ general form parameters

Component c1W (u, y) c2
g J1

1 |Vrx(k)|+ J1
2 |Vry(k)|+ J1

3 |Vrz(k)| J1
r

r 0 J1
g

Where J i are constants, and Vr(k) are reaction wheel voltage control signals.
Now, it is possible to evaluate the normalized Decision Function to generate unified symptoms representation. Unified

symptoms representation consists in a technique to group information available from fault detection and prepare it for
diagnostics. As can be seen, different techniques are used to detect faults in different components; in other words,
different Fault Detection Systems had been applied.

But the diagnostics consider system fault modes, not single component fault modes; then it is necessary to apply some
technique capable of unifying information coming from the two Fault Detection Systems; and interface it with the Fault
Diagnosis System.

Each normalized Decision Function generates a corresponding unified symptom, but it could be different too. This
unified symptom representation is generated by threshold evaluation like equation 19.

si =
{

0, if Tnormi (k) < 1
1, if Tnormi (k) ≥ 1 (19)

These binary variables (unified symptoms) are used directly in Structured Hypothesis Testing (SHT). A tool to design
the SHT is the Decision Structure, which relates some possible symptoms with the most probable system fault modes.

3.3 Step 3 (Design of a Structured Hypothesis Test for Fault Diagnosis)

The Fault Detection is interfaced with the Fault Diagnosis through a Decision Structure. It happens because the
evaluation of the Decision Functions generate symptoms. These symptoms are used to construct a Decision Structure.
Once a Decision Structure is constructed, some logic is applied in order to classify the fault mode present at the system.
This last step is the Fault Diagnosis. An example of a Decision Structure is the Table 4.

Table 4. FDDS Decision Structure

NF CV LV OD SD RA RZ HC IV Decision Function related to
s1 0 × × × × 0 0 0 0 roll gyro
s2 0 × × × × 0 0 0 0 pitch gyro
s3 0 0 0 0 0 0 0 0 0 yaw gyro
s4 × 0 × 0 0 0 0 0 0 pitch star sensor
s5 0 0 0 0 0 × × × × pitch reaction wheel (residue 1)
s6 0 0 0 0 0 × × 0 × pitch reaction wheel (residue 2)
s7 0 0 0 0 0 × × 0 0 pitch reaction wheel (residue 3)

In Table 4, a 0 at the ith row and jth column signifies that the ith symptom do not manifests itself for the jth fault
mode. A × at the ith row and jth column signifies that the ith symptom could or not manifest itself for the jth fault
mode. A 1 at the ith row and jth column signifies that the ith symptom manifest itself for the jth fault mode. The
decision structure at Table 3 do not uses 1’s, only ×’s to denote a possible symptom manifestation. This is a characteristic
which could improve robustness in a speculative Fault Diagnosis System, concept which will be clarified in the following.

Based on symptoms manifestation and Decision Structure relations, a SHT is employed. Each individual hypothesis
test will be named as δi(x) and returns an individual diagnosis statement. Then a diagnosis system consists on a set of
hypothesis tests, δ1(x) to δn(x), and a decision logic specified by the Decision Structure from which diagnosis statements
are generated.

The test δi(x) is a function of the measurements y and the control signals u, i.e. δi (x) = δi
([

u y
])

. The null
hypothesis to the ith hypothesis test, called H0

i , says that the fault mode present at the system belongs to the set S0
i of

fault modes. An alternative hypothesis H1
i says that the present fault mode do not belongs to S0

i . If the hypothesis H0
i is

rejected, then H1
i is accepted. In other words, the present fault mode cannot belong to S0

i , it may belong to another set,
S1
i .

Consider Fa as the actual system fault mode. At the ith hypothesis test, the null hypothesis and the alternative
hypothesis can be written as follows:
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• H0
i : Fa ∈ S0

i −→ "some fault mode in S0
i can explain the measured data"

• H1
i : Fa /∈ S0

i −→ "no fault mode in S0
i can explain the measured data"

All the single diagnosis statements have information about which system fault mode can explain the data. To obtain
the final diagnosis statement S, we have to combine information contained inside each single diagnosis statement, Si.
The S1

i sets for evaluation during SHT where defined as follows in Table 5.

Table 5. Sets to form a diagnosis statement at each single hypothesis test

i S1
i

δgx {VCY,UVY,DOY,DEY}
δgy {VCY,UVY,DOY,DEY}
δgz {}
δey {SF,UVY}
δrx {RLY,RZY,CAY,VAY}
δry {RLY,RZY,VAY}
δrz {RLY,RZY}

Through the set representation, this combination is done by means of intersection operation, i.e., the final diagnosis
statement, S, is formed according to eq. 20:

S =
n⋂
i=1

Si (20)

The decision logic of the diagnosis system can be viewed as a simple intersection algorithm. And this is the third and
last step performed to design the FDDS. The next section describes the FDD algorithm, focus of this work.

4. The Algorithm

Previously, the methods and techniques were described. Figure 3 offers an FDDS scheme overview, which shows the
relations of the entire procedure.

Figure 3. FDDS scheme overview.

Note that the main source of information is the AOCS: This information is acquired from the attitude sensors (gyros
and star sensors), controller (control signals) and actuators (reaction wheel sensors of current and velocity). These signals
are processed within a Fault Detection Scheme by different techniques following the same method. The information
coming from this Fault Detection Scheme is unified to be treated in a common structure; this unification is a result of a
threshold evaluation to generate unified symptoms representation. Each threshold evaluation gives a specific symptom
value; all the symptoms can be stored into a vector which is called fault signature. This fault signature can be explained
by one or more fault modes, but this is a task employed by the SHT. The SHT offers a set of the possible fault modes
which can explain the measured data from de AOCS. This result is called diagnosis statement.
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The procedure has to be executed continuously by the ACDH (Attitude Control and Data Handling) Subsystem. An
algorithm is proposed in this work aiming to execute this task. Figure 4 shows a flowchart which illustrates the functioning
of this algorithm.

Figure 4. Flowchart of the FDD algorithm
.

In the algorithm (see Figure 4), some variables are firstly initialized. These variables are the Diagnosis Sets S0
i and

S1
i which are vector valued, Decision Functions’ parameters like width of the moving window of the SPRT (Sequential

Probability Ratio Test), gains of Residual Generators like Kalman Filter Gain K and parameters of the equation 17, gains
of Adaptive Thresholds like those in Table 3 and other variables related to implementation issues in some programming
language.

Subsequently, a single sample of each signal is taken, over these information a residual calculation is applied followed
by decision functions calculation, adaptive threshold calculation and normalization. Now the information is ready to be
used in SHT, which used the result of threshold evaluation of each normalized decision function to mount a diagnosis
statement and show it to the monitor.

This monitor could be a ground operator or an automatic reconfiguration system. Once developed, this algorithm can
be used for virtual time simulation, real time simulation and hardware-in-the loop simulation before code embedding for
the ACDH. These first steps were employed for verification and validation and described in previous works, [9] and [1].
However, some tests must be made before extending and adapting the algorithm to the AOCS of the engineering model
of the MMP Satellite at the nominal operation mode.

Section 5 shows some results of the application of the methods, techniques and algorithm to the case under study.

5. Some Results

When some fault mode Fa is applied to the pitch gyro, this fault is called FaY , and the same form for reaction wheels
and another gyros. Then the fault LV applied to the pitch gyro is called LV Y , etc. This nomenclature is adopted to show
some results. See, for example, Table 6.

The results shown at Table 6 explicitly can lead to the conclusion of fault in sensors, not in actuators. It is true,
but the isolation is not perfect, since nine different fault modes could explain the data measured. This results could be
improved, but the FDDS concerns with other 15 faults. Adjustments in the Decision Functions, Adaptive Thresholds,
Decision Structure, etc. could lead to better results in detection and diagnosis of this fault mode (LV Y ); but it could not
be the better choice for the other 23 fault modes. Note that the fault modes neglected at Table 6 achieved 0% of diagnosis
occurrence. Another results for the algorithm with the same tuned parameters are in Table 7.

The results in Table 7 are better than those in Table 6 under the point of view of correct diagnosis occurrence. But
detection delays and NF mode declaration are completely different, see Table 8. This is a multi-purpose problem.
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Table 6. FDDS results in presence of fault mode LV Y

Mode Correct diagnosis occurrence Mode Correct diagnosis occurrence
NF 35.56% SDY 64.30%
CV X 64.30% CV Z 64.30%
CV Y 64.30% LV Z 64.44%
LV Y 64.30% ODZ 64.44%
ODY 64.30% SDZ 64.30%

Table 7. FDDS results in presence of fault mode CV Z

Mode Correct diagnosis occurrence Mode Correct diagnosis occurrence
NF 05.47% LV Z 94.28%
CV X 05.22% ODZ 94.28%
ODX 05.22% SDZ 05.22%
CV Z 94.28%

Table 8. Other parameter to compare results in tables 6 and 7.

Detection delay NF mode declaration delay
Table 6 results 15.6s 1.9s
Table 7 results 0.2s 275.3s

The same problem occurs when FDDS is applied to the case of fault in reaction wheels. Table 9 shows results when
fault mode IV X is injected, when detection delay was 3.4s and NF mode declaration delay was 0s.

Table 9. FDDS results in presence of fault mode IV X

Mode Correct diagnosis occurrence Mode Correct diagnosis occurrence
NF 33.90% HCX 66.10%
RAX 66.10% IV X 66.10%
RZX 66.10%

All results for FDDS applied to the reaction wheel achieved perfect isolation, but conclusive diagnostics for better
identification are rare.

As said before, faults applied to actuators and sensors affect stability of the entire AOCS. But the detection delays are
sufficient in such a way that reconfiguration of control law is feasible.

6. Concluding Remarks

Robustness, promptness in detection, correctness in diagnosis statements and thresholds selection are always of special
interest in FDD. This work is not different in concerning with these aspects.

Results in Table 6 and 7 shown problems due to coupling, which can be seen as predictable when we look at the
equation 21. φ̇

θ̇

ψ̇

 =

 ωsx + (sinφ×sin θ×ωsy+cosφ×sin θ×ωsz+ω0 sinψ)
cos θ

cosφ× ωsy − sinφ× ωsz + ω0 cosψ
(sinφ×ωsy+cosφ×ωsz+ω0 sin θ×sinψ)

cos θ

 (21)

Threshold selection affect enormously on the FDDS’ performance, see Figure 5, where θ is the fault amplitude, J is
the threshold and R(θ, J) is the missed alarm rate.

The exponential behavior is present when relating delays (detection and NF declaration) and missed alarms rate; i.e.,
big detection delays corresponds to very small missed alarm rates and mutatis mutandis for the NF declaration case.

Robustness was achieved here using normalization. This is a good alternative, but systematic methods have to be
studied to design an adaptive threshold which improves FDDS robustness.
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Figure 5. Missed alarm rate for CV X
.

Finally, we can conclude that the results were satisfactory because many faults were considered in the presence of
uncertainties.
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