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Abstract. The area of aircraft dynamics has reached a high level of development and due to the increasing availability 
of computers continuously faster and with bigger processing capacity, the application of numerical identification 
techniques in this area also had great advance. This work presents two methodologies, one for identification of aircraft 
responses within a pre-established flight envelope using recurrent neural networks and another one for estimation of 
its aerodynamic derivatives using feedforward neural networks. To get data sets to train the neural networks, a combat 
aircraft flight dynamics non-linear model was implemented and simulated in nine points of the flight envelope to obtain 
its behavior. The simulated responses corresponding to a four points of the flight envelope were used to train the 
neural network and after that, it was possible to verify that this net satisfactorily captured the dynamics of the aircraft, 
identifying with great success the longitudinal motion responses of the aircraft at all the considered flight envelope 
positions. After the simulation and identification of the aircraft responses inside the flight envelope, the solution of the 
inverse problem is presented, i.e., using scalar and angular aircraft velocities together with its geometric data as input 
to the feedforward neural network, a neural estimator model of aerodynamic derivatives is obtained. In order to show 
the capacity of this neural estimator model, this model is applied to the estimation of the derivatives of the simulated 
aircraft. These proposed methodologies reduce the cost of obtaining the aerodynamic derivatives and show the 
estimation effectiveness of the neural networks to estimate the responses of an aircraft inside a pre-defined flight 
envelope. 
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1. INTRODUCTION  
 

With the use of new materials and new technologies, aircraft have normally operated with a high performance index 
and maneuverability in flight regimes in which the aerodynamics is highly non linear. The flight envelope increased in 
such a way that the variations in ram pressure started to become significant; the aerodynamic coefficients are affected 
by compressibility (mach number) and by the orientation of the aircraft in relation to the speed vector and obviously the 
properties of mass also are modified during flight, in accordance with the shipment or with the fuel consumption. That 
is, the modern aircraft are susceptible to a variety of complex limits in the flight envelopes and these, normally are 
difficult for the pilot to discover. In practice it is common to impose operational limits in order not to run risks, thus 
restricting the true performance and maneuverability of the aircraft (Horn et al., 1998). All of this, in one form or 
another, affects the dynamic behavior of the aircraft. All these reasons make the expansion of the flight envelope of an 
aircraft an extremely important question, but for the expansion of the flight envelope to be possible, it is necessary that 
it is completely know and identified. 

Identification of systems is one technique that establishes a mathematical model of a dynamic system from 
measurements of the input and output data of the same (Klein, 1989). The application of identification techniques in the 
area of aircraft dynamics reached a high level of development with the increasing availability of faster and faster 
computers and with bigger processing capacity. 

Hamel and Jategaonkar (1996) presented a brief revision of some modern methods of parameter estimation and a 
little of the history of identification of systems in aeronautics. They also showed the success of identification 
methodology applied systems to a wide field of problems in the modeling of flight vehicles. 

Iliff and Wang (1997) applied the output error method to study the characteristics of stability and control of the F-
18 aircraft, this being considered for flights at high angles of attack. Maneuvers were performed and analyzed. The 
main objective of this work was the attainment of the derivatives of lateral-directional stability and control. These were 
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estimated and compared with values found in tests made in the wind tunnel and with results gotten in flight. The results 
obtained, were reasonable and located in graphs showing the tolerance interval of error for each one of the derivatives. 

Morelli (1999) presented a method for parameters estimation using the equation of error in the frequency domain 
and the Fourier transformaior for the analysis of real time data. To demonstrate that the technique produces good 
results, they used linear and non linear simulated examples for the above mentioned flights of the F-18. It was 
concluded that the method has a low computational requirement, it filters the noise automatically and it can be 
implemented on board. In Morelli (2002) a collection of programs for aircraft identification can be found. Jategaonkar 
et al. (2003) used another approach to create methods and criteria of aircraft parameter estimation. They supplied a 
general vision of some activities of identification systems made during the last decade in a German aerospace center. 

In Mendonça and Góes (2003) an application of a method in the frequency domain, the output error method, and 
the parameter identification of a linear model of the longitudinal dynamics of a regional aircraft of the Embraer was 
described. They used “3-2-1-1” input data of maneuver and identified the aircraft angle of attack, the aircraft 
acceleration and the pitch-up speed. The assumption of a linear model showed to be reasonable, since the results of the 
model and the data of the test in flight if had presented coherent. 

In this context of system identification, the aim of this work is to use simulated answers for an attack aircraft, 
referring to certain flight conditions for the training of recurrent artificial neural networks to identify their dynamic 
behavior. The simulated model is non linear and is presented in SOUZA et. al. (2005). After the simulation and 
identification of the aircraft answers within of the flight envelope, the inverse problem will be decided: Answers for 
obtained angular and scalar velocities of the aircraft through the identification, at varied points of the flight envelope 
together with geometric data will be supplied as entry data to other neural network aiming at the attainment of a neural 
model to estimate of stability aerodynamic derivatives. This proposed technique reduces cost of attainment of the 
aerodynamic derivatives and shows the effectiveness of the neural networks in estimative esteem the aircraft answers to 
of daily pay-define flight envelope. 
 
2. ARTIFICIAL NEURAL NETWORKS 

 
Artificial neural networks (ANN’s) are information processing systems with learning capability through examples 

(Haykin, 1994). Based on concepts derived from neuro-biology, ANN’s are composed by a set of processing 
interconnected units, called neurons. The neurons process the signals presented to the neural network by accumulating 
each stimulus and by transforming the total value using a function; that is, the activation function. The stimulus to and 
from a neuron are modified by the real value called synaptic weight, which characterises the respective connection 
between neurons. Artificial Neural Networks have shown efficient in problems of identification systems and parameters 
estimation applied to aircraft, as is shown in some works cited in this article. In SOUZA (2002), the basic theory of 
RNA's is described and the algorithms used for training is shown.  

Horn et al. (1998) presented a neural network model to supply information on flight envelope limits. They applied 
the method to provide information on normal load factors and limit attack angles of the aircraft V-22 tilt-rotor. The 
ANN they used was first trained off-line using simulated data and after that some tests were done simulating the 
responses in order to know if it could be used to predict, in real-time, which deflection of the longitudinal control would 
make the aircraft exceed the safe flight limit. The results have shown that the aircraft could be maneuvered throughout 
the flight envelope without exceeding the limits. They concluded that ANNs have great potential for limits prediction of 
a complex flight envelope. 

Raisinghani and Ghosh (2000) have shown an ANN’s application on aeroelastic aircraft modeling problem and 
parameters estimation without measuring elastic deflections or derivatives. Specifically, an feedforward ANN 
associated with two developed methods called method Zero and method Delta was proposed to predict coefficients of 
force and moment using simply measurements of the movement and control variables. They found and have shown in 
the paper sufficiently coherent results for different conditions of aircraft flexibility, making clear the applicability of 
ANN’s in parameters estimation. 

Allen & Dibley (2003) successfully used an ANN to identify bending moments, torsion loads and hinge moments 
of control surfaces of the active wing of the aeroelastic airplane (AAW). 

Neto et. al. (2005) presented an adaptable algorithm for training an ANN known as Functional Link Network 
applied to parameters estimation problems. To show the results of the proposed technique, they studied a case of the 
longitudinal dynamics of the F-16 aircraft using simulated data, to estimate the aerodynamic derivatives. The results 
had been sufficiently satisfactory and had shown that this method can be applied to control and identification problems. 
They had also concluded that this algorithm can easily be implanted in the computer of an aircraft for identification of 
its derivatives in flight. 
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2.1. Identification of flight envelope using recurrent neural networks 
 
The aircraft data used in simulation was obtained of McRUER et al. (1973) and of SCHIMIDT (1998). The 

simulated aircraft is of the military and of combat type and its geometric data, important for simulation are presented in 
Table 1. 

Table 1 – Geometric data of simulated aircraft (SCHIMIDT, 1998). 
 

Weight Airplane mass Wing area Airplane span Semi-chord 
W = 78186.9 [N] m = 8512.1 [kg] S = 24.1548 [ 2m ] b = 8.3820 [m]; c = 3.2918 [m]. 

 
Nine cases will be analyzed, whose parameters are shown in Table .2. The corresponding data to cases 1, 2, 3, 4, 8 

and 9 had been removed of SCHIMIDT (1998) and the corresponding data to cases 5, 6 and 7 of McRUER et al. (1973), 
being all duly converted for SI units. 

 
Table 2 – Altitudes, velocities, Mach number, pitching moment of inertia, dynamic pressure, air density data used for 

aircraft simulation (McRUER et al., 1973; SCHIMIDT, 1998). 
 

Data case 1 case 2 case 3 case 4 case 5 case 6 case 7 case 8 case 9 
Altitude h [m] 0 4572 4572 10668 0 10668 4572 4572 10668 

Mach number M 0.4 0.4 0.6 0.6 0.2 0.5 0.4 0.9 0.9 
V [m/s] 136 129 193 178 68 148 129 290 267 

Q [N/m2] 11347 6416 14411 6033 2834.4 4165.4 6415.6 32413 13549 
Iy [kg/m2] 35106 35106 35106 35106 39715 35106 35106 35106 35106 

trimα [degree] 4.7 8.9 3.4 8.8 19.5 13 8.9 0.7 2.9 

ρ [kg/m3] 1.22500 0.77082 0.77082 0.37960 1.22500 0.37960 0.77082 0.77082 0.37960 

 
As it can be observed in Table 2, there are two flight conditions in transonic regime (Mach number = 0.9) and two 

conditions with zero altitudes, not meaning that the aircraft is flying at exactly this level. It can be flying slightly above 
the sea. In Table 3, the aircraft dimensional longitudinal derivatives used are shown correspondingly to each case under 
study. As the implemented mathematical model was based on the one presented by Etkin and Reid (1996), it is 
necessary to do some conversions of units. 

 
Table 3 – Longitudinal derivatives (dimensional) (McRUER et al., 1973; SCHIMIDT, 1998). 
 
Derivatives case 1 case 2 case 3 case 4 case 5 case 6 case 7 case 8 case 9 

uX  [s-1] -0.0160 -0.0148 -0.0129 -0.0128 -0.0826 -0.01687 -0.01482 -0.0635 -0.0353 

αX  [m/s2] -0.5310 -3.7978 -1.1342 -6.2819 -2.1207 -5.0172 -4.7833 -13.8013 -14.3378 

uZ  [s-1] -0.156 -0.160 -0.104 -0.114 -0.26 -0.1291 -0.1518 -0.135 -0.120 

αZ  [m/s2] -121.462 -66.9341 -158.160 -66.5378 -20.8669 -5.0172 -67.0438 -428.0916 -178.8262 

uM  [m . s]-1 0.0013 0.0016 0.0013 0.0013 0.0095 0.0017 0.0015 -1094.2 -575.8858 

αM  [s-2] -10.233 -5.639 -12.97 -5.402 -2.2746 -3.6963 -5.6597 -35.96 -14.99 

α&M  [s-1] -0.342 -0.204 -0.353 -0.160 -0.1441 -0.1232 -0.2039 -0.858 -0.389 

qM  [s-1] -1.151 -0.670 -1.071 -0.484 -0.48 -0.389 -0.670 -1.934 -0.876 

e
X δ  [m/s2] 1.2619 0.7772 1.2253 0.8199 0 0 0 -50976 -14700 

e
Z δ  [m/s2] -12.9723 -6.9921 -17.3797 -7.2329 -2.1549 -4.8189 -6.9921 -31.3883 -13.07592 

e
M δ  [s-2] -13.73 -7.40 -19.46 -8.10 -2.21 -5.26 -7.40 -33.81 -14.8 

 
2.2. Presentation of the flight envelope 
 

A flight envelope scheme to be identified can be observed in Figure 1, where the red points correspond to the 
referring altitudes and Mach number of each one of the known flight conditions. To simulate the behavior of the aircraft 
in these points, the mathematical model presented in SOUZA et al (2005) is used. Some of these sets of answers, 
specifically 4 of them, will be used for training the ANN and the others will be used in the generalization tests 
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Figure 1. Scheme of flight envelope. 

 
2.3 Identification of longitudinal dynamics 

 
To obtain the data sets to train the ANN, three simulations using data of case 5, three simulations using data of case 

6, three simulations using data of case 8 and other three simulations using data of case 9 were done, using only elevators 
step inputs with different values. Cases 5, 6, 8 and 9 were chosen for training, therefore these represented all the known 
flight altitudes of the aircraft. Also, since relatively large elevator step inputs provoke highly non linear responses, if the 
ANN was able to identify the corresponding responses it would identify the response to any another input. 

Firstly a feedforward neural network was implemented to identify the horizontal velocity of the aircraft. To 
compose the input matrix for the ANN, 3 data sets obtained in simulations with data referred to cases 5, 6, 8 and 9 were 
used, all using input steps with different values in the elevators and applied at the time 20s. These inputs had been 
associated to the Mach number and to the corresponding altitudes of the flight envelope thus forming a dynamic input 
composed by the step input signals applied to the elevator and two static inputs that were Mach number and the 
corresponding air density of the simulated case. 

The ANN that better presented results had 3 layers of neurons, with 2 delays in each input, 10 neurons in the hidden 
layer and 1 neuron in the output layer. They produced little reasonable results in generalization tests, since it did not 
identify the speed for case 4. These first results were obtained with a smaller flight envelope, without the two conditions 
at Mach number 0.9, are shown in SOUZA et al. (2005).  

After that, already with the two flight conditions Mach number of 0.9, a recurrent neural network (RNN) was used, 
placing a feedback of the output layer to the input one, resulting on small improvements, concluding then that the RNN 
did not still captured correctly the dynamics of the aircraft. 

The idea then was to mount only one representative neural network of the aircraft, that is, with elevator angle input 
and containing the 3 outputs u, w and q. The neural network implemented continued being recurrent with 3 neurons 
layers. Some tests were then carried out, being that in a first one, 4 delays in each input and each output, 12 neurons in 
the hidden layer and 3 neurons in the output layer were placed. Then, the results obtained in the training had been 
sufficiently satisfactory. After, as a test, the number of delays was diminished to 3 and later diminished to 1 and still, 
one could observe many good results. To verify the results of the training, tests with other results of simulation had 
been carried through, confirming that the neural network had exactly captured the dynamics of the system, concluding 
then that, for this problem, it was not necessary more than one delay. 

Then, a RNN with three neurons layers, 2 delays in the inputs and 2 delays for each output, 9 neurons in the hidden 
layer and 3 neurons in the output layer was adopted. Figures 2 (a) and 2 (b) respectively present the representative 
blocks diagram of the RNN used in the identification and the performance curve of the error during the training process. 

In the previous blocks diagram (Figure 2 (a)), the applied elevator dynamic input is presented together with its 
respective delays, the fixed inputs altitude (h) and Mach number(M) associated to the dynamic input, ,  and 

 representing the outputs horizontal velocity u, vertical velocity w and pitch velocity q, all with its respective 
delays. The ANN was trained during 500 epochs after which the variation of the error it stabilized and, as it can be 
observed in Figure 2 (b), the training result was sufficiently satisfactory, reaching an order of 10

)t(y1 )t(y2

)t(y3

-6 . 
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Figure 2. (a) Representative scheme of the RNN used and (b) Error performance of the ANN training process. 
 

One can therefore conclude that the step input associated with each output separately, was not representative of the 
problem, while the input applied to the elevator associated with all the outputs together represent the dynamic behavior 
of the aircraft since the resulting RNN identified its states in any point of the envelope under consideration. As said 
previously, the RNN was trained simultaneously with the data of cases 5, 6, 8 and 9, using as fixed inputs the values of 
altitude and Mach number and the dynamic ones the elevator step input. 
 
2.4 Results of the identification of the aircraft responses in the flight envelope 
 

To train the ANN, the backpropagation algorithm was used with the Levenberg-Marquardt optimization technique 
which are presented in SOUZA et al. (2005). After being verified that the ANN had been adequately trained, the set of 
weights and bias were saved in an archive to be used in the generalization tests. To show the good training attained, the 
generalization of the ANN was tested at points of the flight envelope where it wasn’t trained. It is observed that there 
have been used, during training, elevator inputs varying from 0,5o up to 3o and, during generalization, inputs up to 12o 

and the results obtained were sufficiently satisfactory. In Figures 3 (a) and (b), results of the identification of the aircraft 
at point 1 are presented, where the aircraft if found flying at an altitude of 10,800 meters and Mach number 0.4 and in 
the Figures 4 (a) and (b) two responses at point 3, where the aircraft flies at Mach number 0.2 and altitude of 4,572 
meters. As it can be verify, in both the cases the results of the identification of u, w and q had been sufficiently 
satisfactory. Various other tests had been carried out but, in order to not extend much the text, only two results for each 
one of the points of the envelope that were not used during the training process will be presented. 

Figures 5 (a) and (b) present some results of the identification of the aircraft responses at point 2 of the flight 
envelope. One can observe in Figure 1 that the corresponding altitude to Case 2 is 4,572 meters and Mach number 0.4. 
The results obtained, corresponding to this point, had shown that the RNA captured the dynamics of the aircraft. 

Analogously, Figure 6 (a) shows results of the identification after application of an elevator pulse train, with period 
of 50 seconds and amplitude of 0.5 degrees for the aircraft at point 7 of the flight envelope and Figure 6 (b) presents the 
results of the identification, also at this point, using elevator sine type input, with frequency of 1 rad/s and amplitude of 
0.5 degrees. Finally the results of some tests carried out for the flight envelope case 4 will be presented. The results 
obtained, as it can be observed in Figures 7 (a) and (b), had also been sufficiently satisfactory. 
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Figure 3. (a) Identification in the point 1 after application of 3-2-1-1 input. (b) Identification after signal slope 
together with noise in the elevator. 

Figure 4. (a) Identification in point 3 of the flight envelope after application 3-2-1-1 input (b) Identification after 
application step. 
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Figure 5. (a) Identification of the answers of the aircraft flying in corresponding conditions to point 2 of the flight 
envelope after application of pulse train in the elevators. (b) Identification after application of sine input. 
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Figure 6. (a) Identification of the answers of the aircraft in point 7 of the flight envelope after application pulse train 
input in the elevators. (b) Identification of the answers after sine type input in the elevators. 
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Figure 7. (a) Identification of the answers of the aircraft in point 4 of the flight envelope after application of step 
input of 1,8o in the elevators. (b) Identification after application of 3-2-2-1 input in the elevators. 

 
2.5 Resolution of the inverse problem: estimation of aerodynamic derivatives using simulated results of an 
aircraft in an flight envelope using ANN. 
 

A methodology for resolution of the inverse problem of the shown will be presented, that is, from the answers of 
velocities and aircraft data the the derivatives of stability of this will be esteem using static neural networks. To obtain 
the data set of training for the neural network, some corresponding flight conditions to each one of the cases of the 
flight envelope had been simulated using different inputs in the elevator. They had been used the type pulse train, sine 
and random step inputs. Three data sets for each one of the conditions of the flight envelope had been simulated. 

First it was thought about implementing only one ANN to esteem the aircraft longitudinal aerodynamic derivatives, 
but had to the very great number of inputs, that is, had to the high computational cost, he was determined to implement 
separate ANN to esteem the derivatives. They had been implemented a net esteem the derivatives in u, the case,  , 

 e , other to esteem the derivatives in w, ,  e  e one other esteem the derivatives M  e . 
uX

uZ uM wX wZ wM w& qM
For the attainment of all these derivatives, static neural networks had been used, that is, of the type feedforward, 

with two intermediate layers of neurons and to train them was used the backpropagation algorithm. In all the neural 
networks had been used also two types of inputs: dynamic, in the case aircraft velocities answers the and input static, 
that are aircraft data and air density. These signals in the time domain had been discretized and thus considered 1 point 
to each 50 of the total of 10000 points, forming themselves with these signals two vectors of size 200 to supply as 
inputs. It could be verified that making this discretization the signal continued characterized. Specifically, the static 



inputs used had been aircraft mass (m), inertia moment , air density yI ρ , initial velocity U  e Mach number 0 M . It is 
observed that Matlab software was used to work with the ANN. Figure 8 (a), (b) and (c) show architectures schemes. 
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Figure 8. Blocks diagrams showing ANN schems used to steem respectively: (a) ,  e (b) ,  e (c) .e 
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wX wZ wM
 

2.5.1 Results of longitudinal aerodynamics derivatives ,  e uX uZ uM  

 
First the identification results of the derivatives Xu, Zu e Mu will be presented. As said previously, beyond the static 

inputs, dynamic inputs had been used also, in this in case that, answers in the time of variations of linear u and angular q 
velocities. Some tests had been made and the joined results had been sufficiently next. The results to follow presented 
are referring to a RNA with 12-11-13 neurons. The training error reached 10-5 order and after 3000 epochs it stabilized. 
Presenting to the ANN, values for it unknown correspondents to cases 1, 2, 3, 4 and 7 respectively to verify its capacity 
of estimation parameters, that is, to verify if the RNA had acquired generalization capacity. The results obtained are 
presented in Tables 4, 5 and 6. 

 
Table 4. Comparison of the estimated and theoretical derivatives. 

 
uX  (  )s/Kg case 1 case 2 case 3 case 4 case 7 

Real -108.9 -109.8 -126.1 -125.9 -127.5 
Estimated -1109 -111.1 -127.01 -177.3 -128.4 

 
Table 5. Comparison of the estimated and theoretical derivatives. 

 
uZ s/Kg( )  case 1 case 2 case 3 case 4 case 7 

Real -970.4 -885.3 -1292.1 -1361.9 -1243.6 
Estimated -975.7 -886.4 -1161.4 -1264.5 -1064.5 

 
Table 6. Comparison of the estimated and theoretical derivatives. 

 
u (M s/m.Kg )  case 1 case 2 case 3 case 4 case 7 

Real 46.07 46.07 53.9 57.5 46.07 
Estimated 45.7 43.7 52.6 63.1 55.2 

 
Analogous to the fact with the results desired and the data obtained by ANN, the averages of correlation between 

the desired and the estimates derivatives had been calculated, getting themselves to ,  e  derivatives 
respectively 0.68, 0.95 and 0.78 that they show that the derivatives has great correlation and and strong are 
correlated. 

uX uZ uM

uX

 
2.5.2 Results of longitudinal aerodynamic derivatives M  e  w& qM

 
Again the answers of the aircraft in points 5, 6, 8 and 9 of the flight envelope will be used for training and will be 

verified the answers for Cases 1, 2, 3, 4 and 7 respectively. As inputs for the ANN to get the derivatives and, the 
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answers of variations of w and q also discrete in the time will be used, represented for vectors with 200 points and the 
static data, representing characteristic of the aircraft in each point of the used envelope during training. The first tested 
architecture presented 11-8-2 respectively neurons in the intermediate layers and of exit. Some tests had been carried 
through and analyzed and all they had presented resulted sufficiently satisfactory, adopting then this first model to 
esteem  e . The performance error he also reached 10wM & qM -5 order and stabilized after 3000 epochs. To verify the 
train results, they had been presented inputs corresponding to 1, 2, 3, 4 and 7 cases respectively, that they are unknown 
values by the ANN. As they show Tables 7 and 8 the generalization results had been sufficiently satisfactory  

The average values of correlation coefficients and the respective values to  e  they had been 0.994 e 0.813 
showing that for both  e , estimated and desired values were strong correlated. 

wM & qM

wM & qM
 

Table 7. Comparison of the estimated and theoretical derivatives. 
 

wM & )m.Kg(  case 1 case 2 case 3 case 4 case 7 
Real -31.6 -64.1 -55.5 -55.5 -88.1 
Estimated -31.7 -63.8 -50.6 -54.8 -90.3 

 
Tabela 8. Comparison of the estimated and theoretical derivatives. 

 

q (M s/m.Kg 2 )  case 1 case 2 case 3 case 4 case 7 

Real -16991 -37599 -23521 -23521 -40407 
Estimated -16998 -30600 -25549 -29728 -31621 

 
2.5.3 Results of longitudinal aerodynamic derivatives ,  e  wX wZ wM
 

To esteem ,  e  derivatives, in a first test, was implemented a ANN using as dynamic input variations of 
w and q and as static inputs same the used ones in other RNA' s previously presented. The results obtained had not been 
satisfactory. After that these inputs cited previously together with vector u had been supplied to all, as it showed the 
diagram of blocks in the Figure 5 (c), and the results had improved significantly. 

wX wZ wM

Again a feedforward neural network without delays in the time was used. Will be presented the results of a 
topology with respectively 30-18-3 in the hidden layers and output layer. The tax of learning was 0.02. The error 
performance reached 10-4 order and stabilized after 2000 epochs. The corresponding results of generalization to Cases 1, 
2, 3, 4 and 5 are shown in Tables, 9, 10 and 11 respectively. 
 

Table 9. Comparison of the estimated and theoretical derivatives. 
 

wX s/Kg( )  case 1 case 2 case 3 case 4 case 7 
Real -49.9585 -300.4027 -315.8004 -250.7358 -31.0660 
Estimated -209.5821 -247.7830 -221.3919 -285.5244 -25.5142 

 
Table 10. Resultados das derivadas estimadas e teóricas. 

 
wZ s/Kg( )  case 1 case 2 case 3 case 4 case 7 

Real -6966.8 -3181.8 -4426.3 -4419.1 -7106.7 
Estimated -5137.0 -2907.1 -4835.9 -4487.9 -7098.4 

 
Table 11. Comparison of the estimated and theoretical derivatives. 

 
wM s/m.Kg( )  case 1 case 2 case 3 case 4 case 7 

Real -2356.2 -1065.4 -1541.1 -1535.4 -2636.7 
Estimated -2048.5 -1365.9 -1841.8 -1509.6 -2599.7 

 



Again aiming at a quantitative analysis of the proximity it enters the stability derivatives desired and estimates, had 
been calculated the average factors of correlation getting itself 0.71, desired 0.86 and 0.94 that they had shown to the 
high correlation between the derivatives and estimates and.  
 
3. CONCLUSIONS 
 

This work presented a specific application of ANN for fast and efficient identification of the fixed wing aircraft 
answers inside. an flight envelope pay-established. Specifically, RNN with delays in the time had been assigned to 
identify the states of the aircraft. For the case study an attack aircraft model was simulated using data obtained in 
literature. The aircraft was simulated in 9 distinct points of an flight envelope with distinct Mach number and altitude. A 
recurrent neural network was trained in 4 of these points using dynamic input, that were the signal given in the elevator 
and static input that had been the data of Mach number and the aircraft altitude. To train the RNN only results of 
simulation using step input in the elevators had been used. After duly trained, the RNN identified with great precision 
the answers of q, w and u of the aircraft in the others 5 points of the flight envelope. Some tests had been presented 
using some inputs types in the elevators. The resolution of the inverse problem was also presented, that is, using the 
geometric data, corresponding answers of the aircraft and its data the 4 different points of the flight envelope to train a 
feedforward neural network, had been identified to the aerodynamic derivatives of this in the others 5 points of the 
envelope. The results obtained had been sufficiently satisfactory as it was shown. One concluded then that the neural 
models, since that duly trained they are capable to identify the behavior of an aircraft inside of an flight envelope, in any 
point of this. One also concluded that, using the answers identified together with aircraft geometric data, it is possible 
esteem the aircraft stability derivatives in any point of a flight envelope and in any situation of flight. 
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