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Abstract. A lattice Boltzmann model for binary mixtures is formally derived from a two-fluid kinetic model for Maxwell
molecules by discretizing the Boltzmann equation. In this model, collisions among the same and different species are
treated separately, as non-linear BGK terms, enabling the independent management of the species viscosities and thermal
conductivities from the binary diffusion coefficient. The velocity space is discretized in accordance with a quadrature
method with prescribed abscissas. A Chapman-Enskog analysis is performed for deriving the macroscopic mass, momen-
tum end energy transport equations. The model is verified against the analytical solutions of the diffusion equation for
several concentration, velocity and temperature initial conditions.
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1. INTRODUCTION

The mass, momentum and heat transfer in binary fluid systems are of great interest in many engineering applications.
Due to the success of new numerical methods on simulating thermohydrodinamics through the solution of the Boltzmann
transport equation, e. g. the Lattice Boltzmann Method, in contrast to the traditional methods of Computational Fluid
Dynamics, aimed to solve the Navier-Stokes equations, considerably efforts are made to apply this methods to the transport
phenomena in gas mixtures.

The most of the first LB models for mixtures were based on a one-fluid theory, where the effects of all encounters were
included in a single BGK term. This feature limited their applications to symmetric systems and introduced a heuristic
artificial equilibrium velocity (Shan and Doolen, 1995).

Recently, Lattice Boltzmann models, based on the kinetic models of Sirovich and Hamel, were developed (Luo and
Girimaji, 2003; Asinari, 2005; Xu, 2005). In these models, a more rigorous connection with the continuous kinetic theory
was established but, they lack of a consistent treatment of internal energy transport in system with different molecular
masses. Furthermore, the use of constant relaxation times leads to collision terms without the proper symmetries and a
constant collision frequency where concentration is spatially non-homogeneous.

In this work a formal procedure is proposed for linking the lattice Boltzmann equation with the kinetic theory. For this
purpose the velocity distribution function is developed in series of Hermite polynomial tensors and the discretization of the
velocity space is performed using a quadrature method with prescribed abscissas (Philippi et al., 2006). The kinetic model
proposed by Hamel (1965) and Morse (1964) was used to account the effect of self and cross collision separately. This
approach is similar to the early proposed athermal model by Facin (2004). In addition to the obvious advantages of having
a closed relation with existing theories, the present method allows the consistent treatment of the energy transport and the
use of a single lattice for systems with components of different molecular masses, without interpolation or reallocation
rules. The proposed discretization procedure can be easily extended for the construction of Lattice Boltzmann models for
the Boltzmann equation with BGK collision operator, and its linearizations, in multicomponent and reacting systems.

2. TWO-FLUID BGK MODELS

The Boltzmann transport equation for a binary mixture of species a and b, is

∂fa

∂t
+ c · ∇fa = Jaa + Jab, (1)

where Jaa and Jab represent the rate at which the velocity distribution function of species a is modified by self and
cross collisions, respectively (Chapman and Cowling, 1970; Ferziger and Kaper, 1972). Roughly speaking, the evolution
of a mixture towards the equilibrium is conceived as composed by two processes: the approximation of the velocity
distribution function to a local Maxwellian and the equilibrium process of the velocities and temperatures of all species to
the same values. These processes could take place simultaneously and involving different time scales.

To avoid the complexity of the full collisional integrals, they are replaced by models that preserve some of its elemen-
tary properties. The first simple heuristic model was proposed for single component gases and later extended to a binary
plasma (Bathnagar et al., 1954; Gross and Krook, 1956). This model, known as BGK, assumes that the collisions relax
the distribution function to a local Maxwellian f (M), at a rate proportional to the collision frequency nν. In this manner,
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the collision integrals in Eq. (1) can be approximated by

Jaa
BGK = naνaa

(
faa(M) − fa

)
and Jab

BGK = nbνab
(
fab(M) − fa

)
, (2)

where

fab(M) = nab

(
ma

2πkT ab

)D/2

exp

(
−

ma
(
c− uab

)2
2kT ab

)
, (3)

and νab = νba are constants. The parameters naa/ab, uaa/ab and T aa/ab into the Maxwellian distribution functions were
constructed as linear combinations of the local properties of both species, constrained by the collisional symmetries and
the conservation laws. A more detailed model, for molecules with inverse fifth-power force law (Maxwell molecules),
was proposed in Hamel (1965) and Morse (1964). The Maxwellian distribution functions were adjusted to reproduce the
collisional transfer of momentum and energy or the relaxation processes in a spatially homogeneous system of Maxwell
molecules, in a D-dimensional space. For the self collision model, faa(M) is a function of the local properties of species
a and, for the cross collision model, the parameters in fab(M) are

nab = na, (4)

uab = µaua + µbub (5)

and

T ab = T a + µaµb

[
2
(
T b − T a

)
+

µb
(
ma + mb

)
Dk

(
ua − ub

)2]
, (6)

where µa = ma/
(
ma + mb

)
. In circumstances where it is possible to assume that the velocity distribution function has a

small deviation from the local equilibrium distribution function of the mixture, the collision operator model can be written
as

Jab
BGKL = nbνab

(
f (M) (na,u, T )− fa

)
+nbνab

[
∂f(M)(na,u,T )

∂u ·
(
uab − u

)
+ ∂f(M)(na,u,T )

∂T

(
T ab − T

)]
(7)

where u is the mixture velocity and T is the mixture temperature. With this linearization, the model becomes amenable for
a conventional Chapman-Enskog analysis (Chapman and Cowling, 1970; Facin et al., 2004). As shown in Hamel (1965),
other linearizations are possible. Particularly, the linearization of the BGK model about a local Maxwellian distribution
function of each species corresponds to the model proposed in Sirovich (1962).

Equation (2) is a exact representation of the homogeneous relaxation process and a qualitative approximation of the
Maxwellization process. Despite the fact that it have drawbacks, as the relaxation of higher order moments at the same
rate, non-indifferentiability of identical molecules and lack of thermal diffusion, it is adequate to be used for the simulation
of hydrodynamics and diffusion in moderate conditions.

3. LATTICE BOLTZMANN BGK MODEL FOR BINARY MIXTURES

It was pointed out that the Lattice Boltzmann Equation derived from the lattice gas cellular automata have a close
relation with kinetic theory and can be considered as particular discretization of the Boltzmann BGK equation (He and
Luo, 1997; Shan and He, 1998; Philippi et al., 2006).

Following Grad’s work, the velocity distribution function can be expressed in a infinite series of Hermite polynomial
tensors in the molecular velocity (Grad, 1949). The Hermite tensors are an orthonormal basis of the Hilbert space of

functions. Choosing a reference speed, defined as c0 ≡
√

kT0
m0

, and the factor n0c
−D
0 , for scaling the molecular velocity

and the distribution function, respectively, the dimensionless velocity distribution function can be written as

f(x, c, t) = ω(c)
∞∑

n=0

1
n!

a(n)(x, t)H (n)(c), (8)

where n is the order of the tensor and

ω(c) =
e−

c2
2

(2π)D/2
(9)
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is the weight function of the inner product in Hilbert space. The coefficients of the series are the velocity moments of the
distribution function, calculated as

a(n)
rn

=
∫

fH (n)
rn

(c)dc, (10)

and the product of the Hermite tensor H
(n)

rn and the coefficient of the series a
(n)
rn is a contraction over all the n indexes.

After the polynomial series development of the velocity distribution function, the discretization procedure begins with
the proper calculation of a set of dimensionless velocity vectors provided that the velocity moments have the same value
of the continuous distribution function, up to a order consistent with a Chapman-Enskog analysis (McNamara and Alder,
1993).

Hydrodynamics description requires exact representation of only the first velocity moments of the distribution func-
tion, allowing for a series truncation at the representation order N . Replacing f in Eq. (10) by the truncated expansion and
considering that the coefficients of the Hermite polynomials are only functions of macroscopic variables and independent
of the integration, a sufficient condition for the correct representation of hydrodynamics is the exact calculation of the
inner product of Hermite tensors, with orders up to N , by a quadrature formula with wi weights∫

ω(c)H (n)
rn

(c)H (m)
sm

(c)dc =
b∑
i

WiH
(n)

rn
(ci)H (m)

sm
(ci), (11)

where b is the number of velocities and Wi = wiω(ci).
The purpose in the velocity discretization by a quadrature method is to find the minimal number of vectors and weights

that satisfies Eq. (11). Some well known quadrature methods could be used but, only a few provide a solution set whose
elements could be written as integer factors of the generating vectors of a space filling regular lattice (He and Luo, 1997).
To circumvent this problem, a formal procedure to solve the Eq. (11) for a set of prescribed abscissas was proposed by
Philippi et al. (2006). The choice of the abscissas allows the use of those solutions in the Lattice Boltzmann Equation
framework, where the space and velocity must be coupled, through the relation ci = ∆xi/∆t, to allow a exact collision
and stream sequence.

As a particular case of f , the Maxwellian distribution function, written in dimensionless variables,

fab(M) =
nab

(2π)D/2

(
1

θab + 1

)D/2

exp

(
−1

2

(
c− uab

)2
(θab + 1)

)
, (12)

where θab =
(

T ab

T0

m0
ma − 1

)
is a mass-temperature deviation from the references values, can be put in the form of Eq. (8).

Then, the calculation of its corresponding velocity moments concludes the construction of the discrete velocity Boltzmann
BGK equation for fa

i = Wif
a (x, ci, t). Solutions for several truncation representation orders are shown in Philippi et al.

(2006).
The advection term in the discrete velocity Boltzmann equation could be discretized with several finite-difference

schemes for the time and space derivatives. The Lattice Boltzmann Equation is a particular explicit first order upwind
scheme, with unitary CFL number, for uniform cartesian grids. The application of this discretization scheme to Eq. (1)
gives

fa
i (x + ci, t + 1) = fa

i (x, t) + naνaa
(
f

aa(M)
i − fa

i

)
+ nbνab

(
f

ab(M)
i − fa

i

)
. (13)

The special conditions of the former LBE allow the absorption of the first order time and space errors into the transport
coefficients, attaining second order accuracy on the solution of thermohydrodinamics (Cao et al., 1997).

4. THERMOHYDRODYNAMICS AND DIFFUSION

A Chapman-Enskog analysis of the Lattice Boltzmann Equation with the linearized collision model, in the form of
Eq. (7), was developed, introducing the expansions in the small parameter ε (Knudsen number)

fa
i = f

a(0)
i + εf

a(1)
i + ε2f

a(2)
i + · · · , (14)

∂t = ∂0 + ε∂1 + · · · (15)

The deviations from local equilibrium were considered as Knudsen first order terms. Then, the zero order solution
fa(0) is the Maxwellian distribution function with the local velocity and temperature of the mixture. The Knudsen first
and second order equations, in the usual notation, are

∂0f
a(0)
i + ci,α∂αf

a(0)
i = J

aa(1)
i + J

ab(1)
i , (16)
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∂0f
a(1)
i + ∂1f

a(0)
i + ci,α∂αf

a(1)
i + 1

2∂0

(
∂0f

a(0)
i + ci,α∂αf

a(0)
i

)
+ 1

2ci,α∂α

(
∂0f

a(0)
i + ci,β∂βf

a(0)
i

)
= J

aa(2)
i + J

ab(2)
i , (17)

constrained by

ρa = ma
∑

i f
a(0)
i ,

∑
i f

a(l)
i = 0 ∀l ≥ 1,

j
a(l)
α = ρa

(
u

a(l)
α − uα

)
= ma

∑
i f

a(l)
i ciα,

ρaεa = 1
2ma

∑
i f

a(0)
i (Ca

i )2,
∑

i f
a(l)
i (Ca

i )2 = 0 ∀l ≥ 1, (18)

where εa is the internal energy and Ca
i = ci − ua is the peculiar velocity of species a.

With a set of velocity vectors and a proper Maxwellian function, up to a third truncation order N = 3, the ma moment
of Eq. (16) and Eq. (17) leads, exactly, to the mass diffusion equation

∂tρ
a + ∂αρauα = −∂αja

α, (19)

ja
α = −n2

ρ
mambDabda

α, (20)

where the diffusive force is

da
α = ∇na

n
+
(

na

n
− ρa

ρ

)
∇ log p, (21)

the pressure is p = nkT , and the effective binary diffusion coefficient is

Dab =
pρ

n2mamb

(
ma + mb

ρνab
− 1

2

)
. (22)

In a similar way, the maciα moment of the Knudsen first and second order equations, with a fourth truncation order
in the polynomial expansion of fa, recovers the momentum transport equation for species a. Adding the two momentum
equations of species a and b the momentum conservation equation for the mixture is obtained

∂tρuβ + ∂αρuαuβ = −∂αΠαβ , (23)

with the pressure tensor

Παβ = pδαβ − η

(
∂αuβ + ∂βuα −

2
D

∂γuγδαβ

)
(24)

and the effective dynamic viscosity

η = kT

(
na

Γa
− na

2
+

nb

Γb
− nb

2

)
, (25)

where Γa = naνaa + nbνab and Γb = nbνbb + naνba. Mixture viscosity is a function of the local particle densities na

and nb, the three parameters νaa, νab, νab = νba and the local mixture temperature. In circumstances when nb → 0,
n → na, T → T a and we recover the expression for the viscosity of the single component a,

ηa = p

(
1

naνaa
− 1

2

)
. (26)

Excluding the spurious terms, the binary diffusion coefficient and mixture viscosity are equals to those reported
for Maxwell molecules and for the non-linear BGK model (Chapman and Cowling, 1970; Hamel, 1965; Goldman and
Sirovich, 1967).

An analogous procedure, using a fifth truncation order velocity distribution function, gives the energy conservation
equation for the mixture

∂t

(
D

2
nkT +

u2

2
ρ

)
+ ∂α

(
D

2
nkTuα +

u2

2
ρuα + uβΠαβ + qα

)
= 0, (27)
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where the non-convective energy flux vector is

qα = −κ∂αT +
(D + 2)

2
kT

(
ja
α

ma
+

jb
α

mb

)
. (28)

The first term in the above expression is the thermal conduction, with effective thermal conductivity

κ =
(D + 2)

2
k2T

(
na

maΓa
− na

2ma
∆t +

nb

mbΓb
− na

2mb
∆t

)
, (29)

and the second is the effective transport of enthalpy by the species diffusive currents. In the limit condition nb → 0, the
effective thermal conductivity of a single component gas is recovered,

κa =
(D + 2)

2
pk

ma

(
1

naνaa
− ∆t

2

)
. (30)

5. NUMERICAL RESULTS

Simulation of the convection diffusion equation in a step problem were performed to verify the results of the multiscale
analysis, Eqs. (22), (25) and (29). Under special conditions, the mass diffusion, the momentum and the energy equations
can be written in the form of the diffusion equation

∂φ

∂t
+ ux

∂φ

∂x
= D∂2φ

∂x2
, (31)

assuming constant transport coefficients. The analytical solution of the Eq. (31) for a step into the φ property,

φ (x, t = 0) =
{

φ0 + ∆φ for x < 0
φ0 otherwise , (32)

in an infinite medium at rest, is

φ (x, t) = φ0 +
1
2
∆φ erfc

(
x

2
√
Dt

)
. (33)

For a sinusoidal initial distribution with uniform velocity ux the analitical solution is

φ (x, t) =
1
2
∆φ

(
e−K2Dt sin(Kx−Kuxt) + 1

)
, (34)

where K is the wave number.
The former equations were used to verify the expression of the transport coefficients by comparing the evolution

of these simplified configurations with the simulations of the concentration, velocity and temperature steps in a one-
dimensional domain with periodic boundary conditions in all directions.

For a system of identical particles, at rest, and with initial conditions in mass concentration, in the form of Eq.
(32), the binary diffusion coefficient could be considered essentially constant if the total particle density is the same
in all sites and fluid pressure and temperature are homogeneous and constant. The evolution of this system is given
by the solution of the diffusion equation mentioned above. Several simulations with different relaxation parameters
combinations and different initial temperatures were carried out with excellent agreement with the theoretical solutions
with the diffusion coefficient D calculated using initial values of the fluid properties. In the same way, simulations with
the second kind of inital conditions were carried out with excellent agreement with the analytical solutions. Figure 1
shows the decaying of a sinusoidal concentration distribution in a system of equal masses every 180 time steps, from
the initial configuration to a stage when the wave was travel a half of the computatonal domain, in a simulation with the
D2V 53 lattice. The concentration step problems were simulated also for systems with different molecular masses. In
these cases, the assumptions made to obtain the diffusion equation are not valid.

Similar experiments were accomplished for the verification of the mixture viscosity and thermal conductivity. In a
system with homogeneous composition and temperature, but different molecular masses and concentrations, the mixture
velocity component was set as ux = 0 in all domain, uy0 = 0 and ∆uy = 0.05. For small deviations in pressure and
concentration, the momentum equation Eq. (23) take the form of the diffusion equation (31). Figure 2 shows a comparison
of the evolution of this system with analytical solution, every 200 steps, in a computational domain of 200× 1 sites with
a D2V 37 lattice (Philippi et al., 2006). In a system of equal molecular masses, initially at rest and with homogeneous
composition, a step in the mixture temperature is also approximately described by Eq. (31). The Figure (3) shown an
example of this process in a system with molecular mass ratio µa/µb = 1.5, using the D2V 37 lattice at every 200
time steps. Simulations were carried out using Maxwellian distribution function of several approximation orders and the
D2V 17, D2V 37, and D2V 53 lattices.
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Figure 1. Sinusoidal concentration profile decaying. νaa = 1.0, νbb = 0.7, νab = νba = 1.9, n = 0.5, θa = θb = 0.0,
ux = 0.1. (•) t = [0 - 900]. Solid lines are the analytical solution.
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Figure 2. Velocity profile for the step problem. νaa = 1.5, νbb = 1.0, νab = νba = 0.8, na = 0.5, nb = 1.0, µa = 0.6,
µb = 0.4, θa = −0.2, θb = 0.2. (+) t = [0 - 1000]. Solid lines are the analytical solution.

The simulation results of the three kind of problems are in excellent agreement with the theoretical predictions and,
for all the parameters combinations tested, the differences are below 0.1%.

Numerical instabilities appear when high mass ratios or high temperature deviation are used, particularly at low values
of the transport coefficients.

6. CONCLUSIONS

In this work, a lattice Boltzmann model for binary mixtures was derived from the Boltzmann equation and kinetic
models, through a formal procedure of discretization.

The two-fluid theory with a BGK approximation of the collision operator allows to set the binary diffusion coefficient
and the species viscosities and thermal conductivities independently. The discretization used also allows simulating
diffusion of gases with different molecular weights using the same lattice vectors. A Chapman-Enskog analysis of the
linearized model reveals that it reproduces the correct macroscopic hydrodynamic equations and transport coefficients.
To verify the results of the multiscale analysis, numerical simulations were carried out for the one-dimensional step in
concentration, velocity and temperature. The simulations are in excellent agreement with the analytical solution of the
diffusion equation.

Numerical instabilities appear for configurations with large temperature deviation, particularly for high molecular
mass ratios.
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Figure 3. Internal energy profile for the step problem. νaa = 0.7, νbb = 0.5, νab = νba = 0.9, na = 0.2, nb = 0.3,
µa = 0.6, µb = 0.4, ∆θ = 0.02. (•) t = [0 - 1000]. Solid lines are the analytical solution.
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