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Abstract. The ability to accomplish precise measurements is vitally important to the mechanical industry, where the 
knowledge of dimensions is essential to guarantee conformity of parts and to control the production processes. The 
application of automatic systems in tasks formerly made only by the human operator has expanded in the last two 
decades, to some extent due to the growing market of CNC machines. Such scenario requires the project and 
construction of automated measuring systems to be integrated to the manufacturing processes. Automatic measuring 
instruments are especially useful for measurement of large lots of parts aiming at selective assembly and can be faster 
when compared to conventional techniques. For workpieces that were machined within tight tolerances, automatic 
measurement offers the advantage of eliminating the influence of the human operator upon measurement. However, 
automatic equipment always presents reference errors. In order to make measurements independent from reference 
errors, the application of some error separation technique becomes necessary to allow decoupling artefact errors from 
those originated in the measuring system. Error separation techniques are especially desired when errors of the 
measuring system are not negligible when compared to part errors. In these cases, it is wrong to consider the reference 
given by the instrument. This work presents an automated and dedicated measuring system developed to use a new 
error separation mathematical model. The measuring system is basically composed of a reference base, a probing 
device and an error separation mathematical model. Simulations and experimental tests were performed and proved 
the efficiency of the proposed technique. 
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1. INTRODUCTION 
 

One of the main interests of the mechanical industry nowadays is the ability to perform fast and accurate 
measurements. However, almost all shop-floor measuring processes rely even today on manual instruments and 
conventional techniques, in spite of the widespread growth of the automatic machines market for the last 25 years. An 
existing automated manufacturing processes can be enhanced if it is integrated to an also automated measuring system, 
in the production line. Automatic measuring instruments are especially suited for full-lot inspection aiming selective 
assembly and interchangeability. Automatic measurement can be quickly achieved if compared to conventional 
techniques and is free from the influence of the human operator. A relatively simple manner to develop an automated 
instrument is to utilize an industrial robot as a base. 

Industrial robots can easily perform repetitive low-accuracy tasks, such as loading/unloading, welding and painting. 
Relatively lower initial and lifetime costs, easy programming and fast execution of programmed tasks make robots an 
attractive investment. However, concerning accuracy requirements, the direct application of industrial robots as 
measuring instruments is not recommended. Currently available accuracy levels of industrial robot technology, in 
general, are not enough to allow reliable measurements when taking the robot coordinate system as reference. Factors 
such as tolerances of robot parts, elasticity at joints, resolvers resolution and control system limitations produce a 
unique behaviour in each robot, which even limits the application of error compensation techniques. 

It should be observed that, in theory, adapting a piece of measuring equipment to the wrist of a robot in order to 
make measurements will produce results only as accurate as the robot positioning (Greenway, 2000). Therefore, the 
robot coordinate system cannot be used as a reference. One manner of making measurements independent from robot 
accuracy is the application of error separation techniques. Then, errors of the artefact can be decoupled from those 
originated from the robotic measuring system, especially, although not necessarily, when errors from the measuring 
system are not negligible if compared to measured magnitude. Reversal methods are renowned error separation 
techniques and are applicable to a wide range of common situations in the mechanical industry. Evans et al. (1996) 
presents a very comprehensive review of various reversal techniques. Compared to reversal, multi-probe error 
separation techniques present the advantage of avoiding artefact manipulation, although requiring the acquisition of 
redundant data and besides, depending upon the type of the measured error, a specific probe arrangement is needed. A 
description of the theory behind both multi-orientation and multi-probe methods can be found in Whitehouse (1976). 

Three-probe methods applied to straightness error measurement are allegedly able to separate part error from both 
translational and angular errors of the scanning stage (Gao and Kiyono, 1996). However, the three-probe method is very 
sensitive to the presence of zero-adjustment errors of the probes. The difference between the zero-readings of the probes 
introduces a parabolic error term in the measured profile, which entirely deteriorates the result (Gao et al. 2002). 
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In this work, an innovative error separation model for form errors measurement is presented. The new model is used 

to decouple form errors of workpieces from errors originated in the measuring system. The latter is basically composed 
of an industrial robot, specifically arranged displacement sensors and a multi-probe error separation mathematical 
model. A self-calibration procedure was developed to minimize the influence of zero-adjustment errors between probes. 
Experimental straightness error measurements were performed and proved the efficiency of the proposed technique. 
 
2. MULTI-PROBE ERROR SEPARATION METHODS 
 

All multi-probe error separation techniques require the manipulation of a chosen degree-of-freedom of the system 
other than the sensing direction of the sensor. This operation changes the phase of one component of the error (Evans et 
al. 1996). The Three-Probe Method is capable of eliminating the influence of probing system rotational and 
translational errors, allowing detection of part straightness profile free from the deterioration caused by the measuring 
system. Figure 1 shows the operational principle of the three-probe method. 

Sensor readings A, B and C, represented by SA, SB and SC, can be expressed as a function of system errors at position 
i: Let RPi be the straightness error of the artefact to be measured, RRi the probing system translational error motion and δi 
and – δi respective displacement at tips of probes A and C due to probing device pitch error on the scanning direction. 
When scanning step is equal to the distance between sensors (L), the three-probe method is referred to as the S3P 
method (Sequential Three Points) (Tanaka and Sato, 1986). Otherwise, when scanning step is smaller than L, the three-
probe method is referred to as the G3P method (Generalized Three Points) (Gao and Kiyono, 1997). In the absence of 
probe calibration errors, both three-point methods allow profile identification from the collected data. In the S3P 
method, sensor readings can be expressed as: 
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The main error source in the three-probe method consists of the impossibility of providing a global reference for 

zero-value of all probes, known as zero-adjustment error. 
 

3. AN INNOVATIVE ERROR MODEL FOR STRAIGHTNESS MEASUREMENT  
 
The presence of zero-adjustment errors originates a parabolic error term in the measured profile. In addition, probe 

position cannot be easily adjusted even with the help of a sufficiently accurate reference flat surface (Gao et al. 2002).  
Figure 2 shows zero-adjustment errors of sensors in the probing device. Constants kA, kB and kC correspond to the 

adjustment errors over sensors A, B and C readings, respectively. 
 

  
 

Figure 1. Three-Point Method operational principle 
 

Figure 2. Zero-adjustment errors 
 
The proposed multi-probe method for straightness measurement is described next. As well as the S3P method, the 

proposed technique requires the acquisition of experimental data at steps corresponding to the distance between sensors. 
A mathematical model can be developed assuming the hypothesis that four error sources are superimposed at probes 

output signals: 1) Errors due to workpiece straightness profile; 2) Errors due to probing device translational error 
motion along the measuring path; 3) Errors due to probing device pitch and 4) Zero-adjustment errors. 

Hence, each sensor output signal can be expressed as the superposition of the four already referred error sources: 
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where: 
iii CBA S,S,S  are the ith readings of sensors A, B and C, respectively; 
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S,S,S : workpiece straightness errors at the ith measuring point, detected by sensors A, B and C, respectively;  

R
C

R
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R
A iii

S,S,S : industrial robot translational error at the ith measuring point, on sensors A, B and C, respectively; 

D
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D
A iii

S,S,S : components due to probing device pitch at the ith measuring point, on sensors A, B and C, respectively; 

E
C

E
B

E
A iii

S,S,S : components due to zero-adjustment errors at the ith measuring point, on sensors A, B and C, respectively; 

i = 1, 2,…, N indicates a measuring point and N is the total number of measurements. 
An additional hypothesis, which is implicit in Eq.(2), is that each component can be individually described, i.e., one 

error source does not alter the behaviour of the others. Consequently, each term of Eq.(2) is independent and can be 
developed separately. It must be observed that there is no restriction as to relative proportion among contributions. 

 
3.1. Errors due to workpiece profile 

 
The workpiece straightness errors components at the ith measuring point can be written as follows: 
 

( )[ ]
( )[ ]
( )[ ]⎪

⎪
⎩

⎪⎪
⎨

⎧

=+⋅++=

⋅++=

−⋅++=

+

−

N,,,iiACARS

iACARS

iACARS

PPPP
C

PPPP
B

PPPP
A

i
i

i
i

i
i

K211

1

1

1

 (3)

 
where:  is the workpiece straightness error at the iiPR th measuring position and 

PCA  and  are the parameters of the reference line (with relation to a reference system) of the workpiece profile. PA
 

3.2. Errors due to robot translational motion along the measuring path 
 
The contribution of the robot translational error motion along the measuring path upon sensor readings can be 

expressed in the same way as the workpiece profile: 
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where  is the translational error motion of the industrial robot at the iiRR th measuring position and  and  are 
the robot translational error motion reference line parameters. The translational error motion equally affects all three 
sensors on a given measuring point, i.e., . 
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3.3. Errors due to pitch of probing device along the measuring path 

 
The scanning device pitch error that occurs during the measuring procedure can be expressed as follows: 
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where iδ  corresponds to the probing device angular error at the ith measuring position, given by: 

 
Lii ⋅=θδ  (6)

 
where iθ is the probing device pitch error in radians and L is the distance between sensors. 

In this case, rotation is supposed to happen around the central sensor. Thus, the angular error produces an increase in 
 and a corresponding decrease of same value in , whilst  remains unchanged. D
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3.4. Zero-adjustment errors 

 
The most influential error source on the three-point method is the lack of a single reference for the three sensors. A 

calibration procedure could be carried out using a reference flat surface in order to align sensors up to a reasonable 
difference, as shown in Fig. 3(a). However, any minimal discrepancies between the zero values of the three sensors 
(with relation to an ideal flat surface) produce a large deleterious parabolic error term on the final resulting profile (Gao 
et al. 2002). 

The zero-adjustment error can be expressed in several ways, depending on how the reference is chosen. It can be 
reduced to one adjustment component (calibration constant kB) on the central sensor if sensors A and C zero-readings 
were taken as reference points, as illustrated in Fig. 3(b) Paziani et al. (2007). 

 

 
 

 
Figure 3 (a). Ideal alignment 

 
Figure 3 (b). Zero-adjustment error, kB

 
The choice of sensors A and C zero-readings as reference also settles the orientation of a coordinate system. Such 

orientation is described by two orthogonal axes. X axis is defined by the line intercepting the reference points at sensors 
A and C, whilst Z axis is defined by a line that is normal to axis X. The origin of the system coincides with the first point 
of the workpiece straightness error, which is identically equal to zero as imposed by the model. 

Therefore, the contribution due to zero-adjustment errors can be expressed as: 
 

N,,,i

S

kS

S

E
C

BE
B

E
A

i

i

i

K21

0

0

=

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

=

=

 (7)

 
where kB is a constant that describes the zero-adjustment error of the central sensor B with relation to a reference system 
developed from the zero-readings of sensors A and C. Next, the proposed coordinate system will be used to define the 
error model. Substituting Eqs.(3), (4), (5) and (7) in Eq. (2) yields: 
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Considering a data set of N sensor readings, an analysis of Eq.(8) reveals that the system has more unknowns than 

equations: the number of equations is equal to 3N, where N is the total number of measured points; the number of 
unknowns is equal to 3N+7, which are detailed below: 

0PR to → N+2 unknowns; 1+NPR

1RR to → N unknowns; NRR
1δ to Nδ → N unknowns; 

,CAP ,AP ,CAR RA and → 5 unknowns; Bk
Therefore, the system shown in Eq.(8) is undetermined and it is impossible to find a solution by means of 

conventional numerical methods. A larger number of equations can be generated either by using more than three 
sensors or by incorporating experimental data from various runs in a single system. The latter constitutes the proposed 
methodology, which represents an innovative approach regarding traditional multi-probe error separation methods and 
is described next. 

A mathematical model employing data sets from M runs can be derived from the system shown in Eq.(8) simply by 
generating new equations using additional experimental data sets. The new model will then present M(3N) equations 
and M(3N+7) unknowns, i.e., both number of equations and unknowns were increased by the same amount regarding 



the system in Eq.(8). However, it is possible to reduce the number of unknowns assuming that the test conditions 
remain unaltered during the whole measuring procedure. In other words, the straightness error of the workpiece is 
considered the same at any run and thus the number of unknowns is reduced by ( )( )21 +⋅− NM . Since the experimental 
data used to increase the number of equations change from run to run, the referred system is made up of linearly 
independent rows and thus can be solved. The following system is then obtained: 
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where: 
j designates the run which a given group of equations and respective parameters belong to; 
M is the total number of experimental runs; 
h is the number of reference lines for the workpiece profile: h = 0 or h = 1 or h=M; 
k is the number of measuring system translational error motion sets: k = 1 or k = M; 
s is the number of reference lines for the robot error motion: s = 0 or s = 1 or s = M; 
t is the number of scanning device angular error sets: t = 0 or t = 1 or t = M; 
v is the number of zero-adjustment errors of the central sensor: v = 0 or v = 1 or v = M. 

The system shown in Eq.(9) comprises an adjustable mathematical error model where indices h, k, s, t and v can be 
appropriately chosen to set the model to meet specific measuring conditions. Considering the determination of only one 
workpiece profile using data from multiple runs, the system in Eq.(9) becomes overdetermined and therefore can be 
solved.  

The system shown in Eq.(9) can be rewritten in matrix form: 
 
{ } [ ]{ }PCS ⋅=  (10)
 

where{  is a column vector composed by the readings of the three sensors, detailed below; }S
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where  is the ij

iAS th reading of sensor A at the jth run and { }P  is a column vector composed by the system parameters 
to be determined (RP, CAP, AP, RR, CAR, δ1, kB); 

 
{ } { }{ }{ }{ }{ }{ }[ ]TBRRRPPP kACARACARP δ=  (13)
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where: 
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and  is the coefficients matrix of parameters [ ]C { }P . Matrix [ ]C  is rectangular and defined by the system of Eq.(9). 

Once the system in Eq.(10) is developed, a solution is needed for the sought parameters. In this case, however, a 
traditional solution of the model presents some drawbacks. An analysis of the system reveals that matrix [ ]C  is 
rectangular, ill-conditioned and rank-deficient. Thus, obtaining a satisfactory solution for the modelled system by means 
of conventional techniques is not feasible due to the above-mentioned limitations of matrix . In this work, the 
orthogonal-triangular decomposition of matrices (QR) is applied to solve Eq.(10). The QR decomposition, which is 
available in MATLAB® package, is appropriate for providing solution for rectangular sparse systems. Supplementary 
information concerning model building and solution can be found in Paziani (2005) and Di Giacomo et al. (2005). 

[ ]C

 
4. THE MEASURING SYSTEM 

 
The Automated and Dedicated Measuring System (ADMSys) is comprised mainly of an ABB IRB140 six-axis 

articulated industrial robot, which fulfils the application requirements. The control system is provided with analogue-
digital conversion circuit board for communication with peripheral equipment. 

A especially prepared device for straightness measurement was built to hold three equally spaced LVDT type 
sensors. The distance between successive sensors is 18 mm, which corresponds to the measuring step. Sensor measuring 
force is equal to 0.63 N ± 25% and uncertainty is equal to ±1 µm. 

Only a minor adjustment of sensors positioning in the probing device is necessary, so that a simultaneously minimal 
operating range is available to allow measurement. Indeed, fine adjustment is not a requirement, since the remaining 
zero-adjustment error is included in the previously described mathematical model as a parameter to be calculated. 

Sensors were connected to an electronic measuring column for signal conditioning. The measuring column holds up 
to four sensors and provides independent analogue output signals, which are connected to the A/D acquisition board 
input channels in a conventional PC. 

 

  
(a) (b) 

 
Fig. 5. The Automated and Dedicated Measuring System (a) and detailed view of probing device (b). 

 
The 12-bit A/D acquisition board presents a total operating range of 600 µm, with resolution of approximately 

0.15 µm per A/D level, which is close to the resolution of the sensor itself (0.1 µm, as stated by the manufacturer). In 
dimensional metrology it is frequently accepted that the repeatability of an instrument corresponds to ten times its 
resolution. Therefore, the ADMSys is expected to produce satisfactory results at a resolution limit of about 1.5 µm. 
Considering the influence of other not controlled error sources, such as vibration from the manipulator servomotors 



over sensors and the table where the whole system is placed, as well as temperature variation over sensor readings, the 
system global uncertainty is about 3 µm. In order to provide a more detailed understanding, a theoretical uncertainty 
analysis is being conduced and hopefully will be soon published. 

 
5. EXPERIMENTAL RESULTS 

 
A laser interferometer system was employed in a series of tests performed to evaluate the robot translational error 

and probing device pitch error along the measuring path. The results are compared to the ones obtained by the proposed 
error separation method. The experimental set-up for both measurements is depicted below. Fig. 6 (a) shows the 
Wollaston prism, as well as the retroreflector and part of the laser head used for measuring the translational error 
motion of the manipulator. In the same way, Fig. 6 (b) shows pitch measurement with an angular interferometer, an 
angular reflector, as well as the laser head. Five forward and five backward runs were performed for each measurement. 

 

  
(a) (b) 

 
Fig. 6. Vertical straightness error measurement (a) and pitch error measurement (b). 

 
Figure 7 shows measurement results of the manipulator translational error, RR. It can be observed that maximum 

amplitude of the mean forward direction measurement is equal to 99.5 µm ± 5 µm. Also, hysteresis is very pronounced 
in the range between 100 mm and 250 mm of the measuring length. Such aspects indicate the inadequacy of the 
manipulator for high positioning accuracy tasks. Had the robot been used as a measuring device without any suitable 
error separation procedure, only measurements greater than about 1 mm could be obtained. 
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Fig. 7. Robot translation error. 
 

Figure 8 shows the evaluated results of the probing device angular error in the scanning direction. Maximum 
rotation in the mean forward direction measurement is equal to –96 arcsec, which correspond to an increase of 8.4 µm 
in sensor C reading, as well as a correspondent decrease in sensor A reading. 
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Fig. 8. Pitch error of probing device. 
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Further experimental tests were carried out to evaluate the proposed system. The straightness errors of both a granite 

straightedge and a steel artefact were measured using the ADMSys. The steel artefact had been intentionally machined 
to present pronounced and known straightness errors. The measuring procedure started with the robot activation via 
analogue to digital (A/D) interface in order to place the probing system at the first measuring point on the artefact. Next, 
the robot was moved along the artefact longitudinal direction at 18 mm steps and sensor readings were collected at 
every step. Both artefacts were measured at 23 points along the measuring path and a total of five forward and five 
backward runs were accomplished. 

Since the error separation model is configurable to suit a diverse number of measurement parameters, two different 
model configurations were employed in this work. The first one, entitled the Complete Model, considers that all 
parameters of Eq.(11) vary from run to run. In other words, the complete model considers that parameters indexed by h, 
k, s, t and v of Eq.(11), i.e., are different at each run. Alternatively, in the entitled Simplified Model, the parameter given 
by h is considered constant, i.e., the workpiece profile reference line does not vary during the whole measuring process. 
Next, experimental results from the application of both models are presented. 

A Mitutoyo granite straightedge was employed to test the behaviour of the measuring system at its uncertainty 
limits. First of all, the straightedge was measured by means of the reversal method, which took nearly 30 minutes to be 
accomplished. The obtained straightness error RP is equal to 1.5 ± 1.0 µm (2σ). Hence, the straightedge can be taken as 
a reference for the system, since the accuracy level of the employed industrial robot is much poorer. 

Subsequently, the granite straightedge was measured by means of the proposed system. The application of the 
complete model yielded a straightness error of 3.9 ± 8.8 µm (2σ). Fig. 9 shows the measurement of the granite 
straightedge using ADMSys complete model. 
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Fig. 9. Straightness error of granite straightedge – Complete Model. 
 
The result using the simplified model produced a straightness error equal to 3.6 ± 8.6 µm (2σ), which is shown in 

Fig. 10, compared to the reversal. The difference between measurements by ADMSys and reversal can be ascribed to 
the fact that the measured quantity leans too close to the uncertainty of the proposed system, which is approximately 
3 µm. In such situations, the measuring system is prone to error sources that were not considered in the models, as 
vibration, for instance. 
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Fig. 10. Straightness error of granite straightedge – Simplified Model. 
 
Fig. 11 shows a comparison between robot translation error decoupled by means of the ADMSys, while measuring 

the granite straightedge, and the calibration using a laser interferometer. Data was fitted by means of the least squares 
method. It can be observed that the curves of Fig. 10 present similar behaviour along position axis. Robot translation 
error measured by the ADMSys is equal to 68.9 ± 5.6 µm (2σ), while the same error measured with a laser 
interferometer is equal to 76.5 ± 15.2 µm. 
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Fig. 11. Robot Translation Error. 
 
The discrepancies, which were rather expected, are a result of the measurement on slightly different lines of action.  
Fig. 12 below shows the measurement results of the steel artefact. The straightness error RP by means of the 

complete model is equal to 111.4 ± 1.5 µm (2σ), whereas the reversal method yielded 115.9 ± 4.0 µm (2σ). The 
difference between maximum errors is 4.5 µm, which is equivalent to a percent error of 3.9%. 
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Fig. 12. Straightness error of steel artefact – Complete Model. 
 
In this case, good correspondence between profile shapes can be observed. The improved shape matching may be 

credited to the fact that steel artefact straightness error magnitude is about the same as robot translational error motion 
(approximately 100 µm, not shown), allowing better numerical solution of the model. 

The results for the application of the simplified method to the steel artefact error are presented next. 
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Fig. 13. Straightness error of steel artefact – Simplified Model. 
 
As a result of the application of the simplified measuring model, profile straightness error of the steel artefact, RP, is 

equal to 113.9 ± 8.2 µm (2σ), while the reversal method yielded 115.9 ± 4.0 µm (2σ). Percent error between curves of 
Fig. 13 is equal to 1.7%, which corresponds to less than half the percent error obtained for the steel artefact using the 
complete model and reveals the adequacy of the adjustable error model to suit different measuring conditions. Average 
errors are 54.7 µm and 54.9 µm, obtained by the proposed system and reversal method, respectively, which demonstrate 
good decoupling ability. 

 
6. CONCLUSIONS 

A measuring system comprising an industrial robot was developed aiming at the measurement of straightness errors 
of mechanical parts. The Automated and Dedicated Measuring system (ADMSys) employs as an error separation 
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technique to decouple part error from errors induced by the measuring system itself. The innovative error model takes 
into consideration the zero-adjustment errors of the sensors to provide artefacts profile identification in a single 
operation. The proposed approach also presents low susceptibility to environmental variations and good effectiveness in 
determining workpiece straightness error. 

A probing device was built according to the demands of the error model. Three LVDT type sensors were employed 
and provided enough resolution to meet most common machining processes accuracy requirements. 

An electronic interface was implemented to carry out displacement data acquisition and to make a communication 
path between the robot control system and a microcomputer in order to activate programmed robot movements. The 
interface comprises an AD/DA acquisition board, object-oriented software and electric connections. 

The error separation algorithm was developed using MATLAB programming environment. The solution for an ill-
conditioned linear system of equations was accomplished by means of QR decomposition. 

Experimental tests were performed both to calibrate the manipulator and to verify the efficiency of the error 
separation algorithms. Artefacts measurements were completed much faster if compared the reversal method. ADMSys 
eliminates the influence of the human operator upon results and allows full-lot inspection aiming selective assembly. 
Finally, the proposed system is mechanical and electronically stable and can possibly be employed at industrial 
environments 
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