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Abstract.
Intermittent flow regimes, like severe slugging, may appear in offshore petroleum production systems for low liquid and
gas mass flow rates when a pipeline section with a downward inclination angle is followed by a section with upward
inclination or by the riser. It would be useful to know the region of the pipeline-riser system parameter space for which
the two-phase flow has a steady state. A linear stability analysis of an adequate model for the two-phase flow in pipeline-
riser systems should provide a stability criteria to decide about the stability of the two-phase flow stationary states.
The non-linear governing equations for the stationary states are obtained from the model used here, and do not have
closed form solution for risers of general geometry. These equations in non-dimensional form present non-dimensional
numbers which are small or large for usual values of the system parameters. We take advantage of this fact to use a
perturbation technique to construct asymptotic solutions for the stationary state governing equations. Analytic asymptotic
approximations for the stationary sate are a necessary step to obtain a closed form expressions representing the stability
criteria. The asymptotic solution for the stationary state governing equations are compared with the closed form solution
available for a vertical straight riser with only gravity dominated flow.
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1. INTRODUCTION

Under certain conditions, a steady two-phase flow with constant mass and liquid flow rates does not exists in pipeline-
riser systems, and intermittent flow regimes are observed. Whenever a sub-sea pipeline with a downward section connects
to a vertical riser, liquid may accumulate at the end of the downward pipeline section and stop gas motion. When this
happens, the upstream gas is being compressed and its pressure rises while the liquid accumulates at both riser and
pipeline. This situation continues until the gas pressure is large enough to push the liquid slug out of the pipeline and to
start gas penetration into the riser. With gas penetration into the riser, the gas inventory in the pipeline decreases steadily
with a corresponding rapid decrease in pipeline pressure. After a while the gas velocity in the riser becomes insufficient
to support liquid on the riser wall, and liquid starts to fall back and to accumulate at the end of the downward pipeline
section, blocking again the gas passage, and the repetitive cycle starts again. This cyclic phenomenon has tremendous
impact in oil production systems when it happens. It causes reservoir flow oscillations, high average back pressure at the
well head, high instantaneous flow rates, which are difficult to control, and eventually causes the oil production facility to
shutdown.

Linear stability analysis of an adequate model for two-phase flow in pipeline-riser system allows us to determine the
range of the system parameters and gas and liquid mass flow rates for which steady two-phase flow exists for a given
pipeline-riser system. The linear stability analysis of a dynamic system can be split in two parts. First, we need to obtain
the stationary states. Second, we need to study the stability of the stationary states under small perturbations. To study
the stability of a stationary state, we write the dependent variables as their stationary state value plus a perturbation, and
then substitute them into the system governing equations. We linearize the resulting equations to obtain the governing
equations for the stationary state perturbations. If the solution of this set of equations grows with time, the stationary state
is unstable, but if the solution decays with time, the stationary state is stable and it represents a steady state of the dynamic
system.

Even for relatively simple models for two-phase flows in pipeline-riser systems, the linear stability analysis requires
the solution of linear partial-differential equations with variable coefficients. The usual approach to solve this type of
equations is to discretize them in space using finite difference or finite elements, reducing the partial differential equations
to a system of ordinary differential equations. The time dependence can be eliminated by using Laplace transform. The
system of ordinary differential equations is now reduced to a system of algebraic equations, which is solved numerically.
Inverse Laplace transform of the solution of the resulting system of algebraic equations gives the time evolution of a
perturbation of the stationary state, and tell us that the exponential growth rate of a perturbation of the stationary state is
given by the eigenvalues of the resulting algebraic system of equations. The stationary state is stable if all the eigenvalues
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Figure 1. Part (A) - First configuration:x = 0. Part (B) - Second configuration:x > 0.

have negative real part. This approach to the linear stability analysis is numerically intensive, but can handle risers with
general geometry.

There is another way to look to the linear stability analysis. The governing equations for the stationary state and
perturbations have non-dimensional parameters which are small for pipeline-riser systems presented in the literature (see
for example, Schmidt et al., 1980), and an asymptotic approach could be applied. We assume series expansion for the
independent variables in terms of one of the small non-dimensional parameter. The governing equations for the stationary
state are now reduced to a sequence of non-homogeneous linear problems which can be solved in closed form for risers
of general geometry. This is not the case for the perturbations governing equations, and further simplifying assumptions
need to be made to obtain any sort of analytical result.

The objective of this work is to describe a perturbation method to obtain an asymptotic approximation for the stationary
states of the model for two-phase flows presented in the next section, which is the first step in the the linear stability
analysis of a dynamic system.

The next section describes the one-dimensional model used to analyse two-phase flows in pipeline-riser systems. In
the third section, we present the first step in the linear stability analysis for the two-phase flow model discussed in the
previous section. We derive the governing equations for the stationary states and describe the perturbation approach to
obtain an asymptotic solution for the stationary state which is valid for risers of general geometry. We also obtain the
closed form solution of the stationary state governing equations for a straight vertical riser under the assumption of no
friction. In the fourth section, we compare the closed form solution and the asymptotic solution for the stationary state for
a straight vertical riser under the assumption of no friction. We consider the two-phase flow in the straight vertical riser
given in Schmidt et al. (1980). Section five has a discussion and conclusion about the work done here.

2. Two-Phase Flow Model.

The pipeline-riser system is composed basically of two parts. The pipeline plus a gas buffer and the riser (see Fig. 1).
The pipeline and riser are connected at the bottom of the riser. The pressure at the top of the riser is assumed to be the
atmospheric pressure and we have liquid and gas mass flowing into the pipeline.

The gas-liquid flow in the pipeline is assumed as always stratified. This flow behavior extends either to the whole
pipeline (see part (A) of Fig. 1) or it extends until the liquid penetration position in the pipeline (see part (B) of Fig.
1). The configuration illustrated in part (A) of Fig. 1 corresponds to continuous gas flow from the pipeline into the riser
and the configuration illustrated in part (B) of Fig. 1 corresponds to no gas flow from the pipeline into the riser and
partial liquid flooding of the pipeline. VariablesQl0, ṁg0, β, L, g andx illustrated in Fig. 1 represents, respectively, the
volumetric flow rate of liquid into the pipeline, the gas mass flow rate into the pipeline, the pipeline inclination angle, the
distance of the liquid inlet from the bottom of the riser, the gravity acceleration constant and the pipeline liquid flooding
distance from the bottom of the riser (parts (B) of Fig. 1).

We consider an isothermal drift-flux model assuming quasi-equilibrium momentum balance for the two-phase flow in
the riser.

In summary, we consider a set of two different configurations. The first one is illustrated in part (A) of Fig. 1. In this
configuration we have stratified flow in the pipeline and continuous gas penetration from the pipeline into the riser. The
second configuration is illustrated in part (B) of Fig. 1, where we have stratified flow in part of the pipeline with liquid
flooding until a distancex from the bottom of the riser.

The set of governing equations is not the same for the two different configurations represented in Fig. 1. Below we
give governing equations for the different configurations illustrated in Fig. 1.
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2.1 Governing Equations for the Two-Phase Flow.

We give the governing equations for the two-phase flow in pipeline-riser system in non-dimensional form. We define
the following non-dimensional variables according to the set of equations below.

x∗ =
x

Lr
, (1)

s∗ =
s

Lr
, (2)

P ∗ =
P

ρlRgTg
, (3)

j∗ =j
A

Ql0
, (4)

t∗ =t
Ql0

ALr
, (5)

ṁ∗ =
ṁ

ρlQl0
, (6)

whereLr is the riser length,A is the cross-sectional area of the pipeline and riser,s is the space parameterization along
the riser length,Tg is the absolute temperature of the gas,ρl is the liquid phase density,Rg is the gas constant,j stands
for superficial velocity,ṁ stands for mass flow rate,P stands for pressure andt stands for time. The variables with * as a
superscript are non-dimensional variables.

2.1.1 Pipeline Governing Equations.

We first give the non-dimensional governing equation for the pipeline. We consider the gas in the pipeline behaving as
a pressure cavity at non-dimensional pressureP ∗g , constant in position and evolving isothermically as a perfect gas. We
consider a fixed control volume with the pipeline and gas buffer contours as the control volume surface. For this control
volume, we obtain the mass conservation equation for each of the two phases. We have to consider two different situation
at the pipeline. We have either continuous gas penetration from the pipeline into the riser (x∗ = 0, see part (A) of Fig. 1)
or partial liquid flooding of the pipeline (x∗ > 0, see part (B) of Fig. 1).

Below follows the governing equations for the pipeline for the conditionsx∗ > 0 andx∗ = 0. We start with the
equations for the case wherex∗ > 0. The mass conservation equation for the liquid phase is

−(δ − x∗)
dαp

dt∗
+ αp

dx∗

dt∗
+ j∗lb − 1 = 0, (7)

whereδ = L/Lr. αp is the pipeline void fraction andj∗lb is the non-dimensional liquid phase superficial velocity at the
bottom of the riser. The mass conservation equation for the gas phase is

[(δ − x∗)αp + δb]
dP ∗g
dt∗

+ P ∗g (δ − x∗)
dαp

dt∗
− αpP

∗
g

dx∗

dt∗
− ṁ∗

g0 = 0, (8)

where we used the perfect gas relationPg = ρgRgTg. δb = Vb/(ALr) is the non-dimensional length equivalent to the gas
buffer volumeVb divided by the product of the pipeline cross sectional areaA by the riser length. We consider variations
of pressure in the pipeline only due to hydrostatic effects. Then, the momentum equation is

P ∗g = P ∗b + ΠLx∗ sin(β), (9)

whereP ∗b is the non-dimensional pressure at the bottom of the riser and the non-dimensional numberΠL is given by the
equation

ΠL =
gLr

RgTg
. (10)

This non-dimensional number is the ratio between the hydrostatic pressure at the bottom of the riser when it is filled
completely with liquid and the gas pressure times the ratio between the gas and liquid densities.

We can eliminate the gas non-dimensional pressureP ∗g in favor of the riser bottom non-dimensional pressureP ∗b ,
by using the equation (9). Then the liquid phase mass conservation equation is not affected, but the gas phase mass
conservation equation assumes the form

[(δ − x∗)αp + δb]
(

dP ∗b
dt∗

+ ΠL sin(β)
dx∗

dt∗

)
+ (P ∗b + ΠLx∗ sin(β))

[
(δ − x∗)

dαp

dt∗
− αp

dx∗

dt∗

]
− ṁ∗

g0 = 0. (11)

Next, we present the equations for the casex∗ = 0. The liquid phase mass conservation equation is

−δ
dαp

dt∗
+ j∗lb − 1 = 0. (12)
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Notice that in this case, the gas non-dimensional pressureP ∗g is equal to the non-dimensional pressure at the bottom
of the riser. Then, we use the riser bottom non-dimensional pressureP ∗b instead of the gas non-dimensional pressureP ∗g
in the gas phase mass conservation equation, which is

(δαp + δb)
dP ∗b
dt∗

+ δP ∗b
dαp

dt∗
+ P ∗b j∗gb − ṁ∗

g0 = 0, (13)

wherej∗gb is the gas non-dimensional superficial velocity at the bottom of the riser.
To close the model for the pipeline, we use an implicit algebraic relation for the pipeline void fractionαp which

relates it with the non-dimensional gas superficial velocity at the bottom of the riserj∗gb, with the non-dimensional liquid
superficial velocity at the bottom of the riserj∗lb and with the non-dimensional gas pressureP ∗g , and is derived from local
momentum equilibrium for each phase of a stratified flow in a pipeline (Yemada and Dukler 1976, Kokal and Stanislav
1989 and others). For the casex∗ = 0 we write

Ap(αp, j
∗
lb, j

∗
gb, P

∗
b ) = 0, (14)

since in this caseP ∗b = P ∗g . For the conditionx∗ > 0 we write the algebraic relation forαp as

Ap(αp, j
∗
lb, x

∗, P ∗b ,
dx∗

dt∗
) = 0. (15)

To derive these algebraic relations we assume stratified flow in the pipeline. We consider local momentum equilibrium
for each phase and assume that the pressure gradient is the same for both phases. Then we eliminate the pressure gradient
and end up with an algebraic relation among the quantities mentioned in the above paragraph. This procedure leads to an
algebraic relation similar to Eq. (3) of Yemada and Dukler (1976).

2.1.2 Equations for the Riser.

For the riser, non-dimensional equations are derived from an isothermal drift-flux model assuming quasi-equilibrium
momentum balance for the two-phase flow in the riser. The mass conservation equation for the liquid phase is

−∂αr

∂t∗
+

∂j∗l
∂s∗

= 0, (16)

wherej∗l is the non-dimensional liquid superficial velocity along the riser andαr is the void fraction along the riser. The
mass conservation equation for the gas phase is

∂

∂t∗
(P ∗αr) +

∂

∂s∗
(P ∗j∗g ) = 0, (17)

whereP ∗ andj∗g are, respectively, the non-dimensional pressure and the non-dimensional gas superficial velocity along
the riser.

We assume the inertia forces small and neglect them. We consider pressure variation due to the hydrostatic force and
friction. The shear stress at the riser wall was modeled using a homogeneous two-phase flow model (Kokal & Stanislav
1989) for the fluid and a Fanning friction coefficientfm. Then, the linear momentum equation is

∂P ∗

∂s∗
= −ΠL[1− αr + P ∗αr]

(
sin(θ(s∗)) +

4
ΠD

fmj∗|j∗|
)

, (18)

whereθ(s∗) is the local riser inclination angle at positions∗ along the riser arc length,j∗ is the sum of the liquid and gas
superficial velocities andfm = fm(Re,m, εr/D). The quantityεr represent the riser wall roughness,D represents the
riser diameter andRe,m is the liquid-gas mixture Reynolds number given by

Re,m =
Ql0D

Aνl

(1− αr + Pαr)|j∗|
1− αr + δµαr

, (19)

whereδµ is the ratio between the gas and liquid dynamic viscosities. The non-dimensional numberΠL is already defined
by Eq. (10) and the non-dimensional numberΠD is defined as
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ΠD =
2gDA2

Q2
l0

. (20)

We consider the constitutive law corresponding to the drift flux model (Zuber and Findlay 1965) to relate the void
fraction along the riser with the local values of the gas and liquid non-dimensional superficial velocities. At the bottom of
the riser we have the relation

j∗g = αr[Cd(j∗l + j∗g ) + U∗
d ]. (21)

For the drift flux coefficientsCd andU∗
d we use the following correlation based on experimental data (Bendiksen

1984)

Cd =

{
1, 05 + 0, 15 sin(θ(s∗)) for |j∗| < 3, 5

√
gDA
Ql0

1, 2 for |j∗| ≥ 3, 5
√

gDA
Ql0

(22)

U∗
d =

{ √
gDA
Ql0

(0, 35 sin(θ(s∗)) + 0, 54 cos(θ(s∗))) for |j∗| < 3, 5
√

gDA
Ql0

0, 35
√

gDA
Ql0

sin(θ(s∗)) for |j∗| ≥ 3, 5
√

gDA
Ql0

(23)

Not all equations above are valid for the two configurations defined previously and illustrated in Fig. 1. In Tab 1 we
define which equations are the governing equations for each configuration and which dependent variables are used.

Table 1. Necessary governing equations and variables for each configuration defined in Fig. 1.

Configuration Governing Equations Dependent variables
1st (12)-(14), (16)-(23) αp, j

∗
lb, j

∗
gb, P

∗
b , αr, j

∗
l , j∗g , P ∗

2nd (7), (11), (15), (16)-(23) αp, x
∗, j∗lb, j

∗
gb = 0, P ∗b , j∗l , j∗g , P ∗

Next, we have to describe when we switch from one configuration to another, or from one set of equations to an-
other. Table 2 illustrate the conditions characterizing each configuration and the conditions to switch from the current
configuration.

Table 2. Characterization and switching conditions between configurations and correspondent set of equations.

Configuration Characterized by Switch from when
1st x∗ = 0, j∗gb 6= 0 j∗gb → 0, x∗ > 0
2nd x∗ > 0, j∗gb = 0 j∗gb > 0, x∗ → 0

The boundary conditions are the pressurePt at the top of the riser which is the atmospheric pressure, the gas mass
flow rateṁgo and the liquid volumetric flow rateQl0 (see Fig. 1 for details). The boundary condition at the top of the
riser in non-dimensional form isP ∗t = Pt/(ρlRgTg).

Since we are working only with non-dimensional variables, and for simplicity, from now on we omit the superscript *
from the equations.

3. Linear Stability Analysis.

The description of the model for two-phase flows in pipeline-riser systems is complete. The objectives of the linear
stability analysis of a dynamic system are to find the stationary states of the system and to determine if the stationary
states are stable or unstable under small perturbations. Here we just consider the first step of the linear stability analysis.
We discuss how to obtain the stationary states of the model for two-phase flows presented above. We give the governing
equations for the stationary states and obtain a closed form solution for the case of a vertical straight riser under the
assumption of no friction. For risers of general geometry, we obtain an asymptotic closed form solution for the stationary
state. The stability analysis of the stationary states is left as future work.

3.1 Stationary State.

Only the first configuration (x = 0 for the pipeline) of the model for two-phase flows in pipeline-riser systems
presented in the previous section has a stationary state. The equations for the stationary state are given by the Eqs.
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(12)-(14) and by the riser governing equations with the time partial derivatives set to zero (∂/∂t = 0). Liquid mass
conservation equation for the pipeline (x = 0) reduces to

jlb = 1. (24)

Gas mass conservation equation for the pipeline (x = 0) reduces to

Pbjg = ṁg0, (25)

and the pipeline void fractionαp is given by Eq. (14). Liquid mass conservation for the riser reduces to

∂jl

∂s
= 0 → jl = 1, (26)

sincejl(s = 0) = jlb = 1 (continuity condition between pipeline and riser bottom (s = 0) variables) according to Eq.
(24). Gas mass conservation equation for the riser reduces to

∂

∂s
(Pjg) = 0 → Pjg = ṁg0, (27)

sinceP (s = 0)jg(s = 0) = Pbjgb = ṁg0 (continuity between pipeline and riser bottom (s = 0) variables) according to
Eq. (25). The linear momentum equation for the riser used to obtain the stationary state is Eq. (18). The constitutive law
corresponding to the drift flux model used to determine the stationary state is given by Eq. (21).

The main difficulty to solve the governing equations for the stationary state results from Eq. (18) which is non-linear.
For general riser geometries and no further simplifying assumptions, this set of equations has no closed form solution, but
for a straight vertical riser (θ(s) = π/2) under the assumption of no friction (fm = 0), the governing equations for the
stationary state have closed form solution.

3.1.1 Vertical Straight Riser Under no Friction.

For a straight vertical riser (θ(s) = π/2), under no friction (fm = 0), we can integrate the governing equations
for the stationary state along the riser to obtain the pressure along the riser as an implicit function of the riser length
parameterization, given by the equation

C11

C21
(P − Pt) +

C12C21 − C22C11

C2
21

ln
(

C21P + C22

C21Pt + C22

)
= −ΠL(s− 1), (28)

where the constantsCij , i, j = 1, 2 are defined in terms oḟmg0 and in terms of the drift flux coefficientsCd andUd

according to

C11 =Cd + Ud, (29)

C12 =ṁg0Cd, (30)

C21 =Cd + U∗
d + ṁg0 = C11 + ṁg0, (31)

C22 =ṁg0(Cd − 1) = C12 + ṁg0. (32)

The liquid superficial velocityjl is already given by Eq. (24) and the gas superficial velocityjg along the riser is given
by

jg =
ṁg0

P
, (33)

where the pressureP for a given value ofs is given implicitly by Eq. (28). The void fraction along the riser is obtained
by using Eqs. (33) and (21). We have that

αr =
ṁg0
P

Cd

[
1 + ṁg0

P

]
+ U∗

d

. (34)

We were able to integrate the governing equations for the steady state in the case of a straight vertical riser because
the drift flux coefficientsCd andUd in this case are constants, as we can see from Eqs. (22) and (23).
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4. Asymptotic Approximation for the Stationary State.

For risers of more general geometry, closed form solutions are not possible, but we may obtain asymptotic closed form
solutions of the governing equations for the stationary state. We assume the non-dimensional numberΠL << 1, and use a
perturbation approach to solve the set of Eqs. (24)-(27), (18) and (21) asymptotically. The assumption regarding the non-
dimensional numberΠL is true for experiments with two-phase flow in pipeline-riser systems reported in the literature
(see Schmidt et al 1980, for example). To apply the perturbation approach mentioned above, we setΠL = ε in Eq. (18)
and assume series expansion in the parameterε for the dependent variablesjg, αr andP . For example, we write forjg(s)
the series expansion

jg(s) =
∞∑

n=0

εnjg,n(s). (35)

The Fanning friction coefficientfm in Eq. (18) is a function of the local Reynolds numberRe,m, given by Eq. (19),
which is for a given value ofs function of the variablesαr(s), j(s) andP (s). Therefore, if we substitute the series
expansion inε for these variables in Eq. (19), we obtain a series expansion for the Reynolds numberRe,m in terms of
the elements of the series expansion for the dependent variablesjg, αr andP . This will imply also in a series expansion
for the Fanning coefficient in terms of the parameterε. To avoid too complicate expressions, we write for the Reynolds
numberRe,m the series expansion

Re,m =
∞∑

n=0

εnRe,m,n, (36)

where the coefficientsRe,m,n are obtained by substituting the series expansions inε for the dependent variablesjg, αr

andP in Eq. (19) and expanding the resulting expression in terms ofε. This can be easily accomplished using software
for symbolic computation, like MAPLE or MATHEMATICA. The expansion for the Fanning coefficientfm in terms of
the parameterε is

fm(Re,m, εr/D) = fm(Re,m,0, εr/D)+
∞∑

n=1

εn





n∑

l=1

1
l!

Dlfm(Re,m,0, εr/D)
∑

j1+...+jl=n

Re,m,j1 . . . Re,m,jl



 , (37)

whereDlfm stands for thel-th order derivative of the expression forfm with respect to the Reynolds numberRe,m. Here
we assume that this derivatives exists, which is the case for the expression forfm to be considered and given in Chen
(1979). The termj|j| appearing in Eq. (18) has expansion in terms of the parameterε given by

j|j| = (1 + jg)|1 + jg| = (1 + jg,0)|1 + jg,0|+
∞∑

n=1

εn





n∑

l=1

1
l!

Dlg(jg,0)
∑

j1+...+jl=n

jg,j1 . . . jg,jl



 , (38)

whereg(x) = (1 + x)|1 + x|, Dg(x) = 2 + 2x for x ≥ −1, Dg(x) = −2 − 2x for x < −1, D2g(x) = 2 for x > −1,
D2g(x) = −2 for x < −1 andDng(x) = 0 for n > 2. Next, we substitute the expansions for the variablesjg(s), αr(s)
andP (s) in terms of the parameterε into the Eqs. (26), (18) and (21), and we take into account Eqs. (37) and (38).
Then, we collect terms of the same order inε and obtain a set of linear algebraic-differential equations. For the problem
of O(εn), we first integrate the equation which comes from Eq. (18) to obtainPn(s). Next, we obtainjg,n(s) from the
algebraic equation which comes from Eq. (26), and finally we obtainαr,n(s) from the algebraic equation which comes
from Eq. (21).Pn(s), jg,n(s) andαr,n(s) are obtained in terms of the variablesPl(s), jg,l(s), αr,l(s) andRe,m,l(s) for
l = 0, 1, . . . , n− 1. The solution of the problem ofO(1) is given by

P0(s) = Pt(constant), (39)

jg,0(s) =
ṁg0

Pt
, (40)

αr,0(s) =
ṁg0
Pt

Cd(s)
[
1 + ṁg0

Pt

]
+ Ud(s)

. (41)



Proceedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

wherePt is the non-dimensional pressure at the top of the riser, which is one of the boundary conditions. The solution of
the problem ofO(ε) is given by

P1(s) = −
∫ 1

s

(1− α0(z) + P0(z)α0(z))
(

sin(θ(z))− 2
Πd

fm(Re,m,0)(1 + jg,0(z))|1 + jg,0(z)|
)

dz, (42)

jg,1(s) =
ṁg0

P1(s)
, (43)

αr,1(s) =
jg,1(s)

Cd(s) [1 + jg,1(s)] + Ud(s)
. (44)

The solution of the problem ofO(εn+1) is given by

Pn+1(s) =−
∫ 1

s

{
(−αr,n(z) +

n∑
n1=0

Pn1(z)αr,n−n1(z)) sin(θ(z))− 4
Πd

n∑
n1=0

[(
n−n1∑

l=1

1
l!

Dlg(jg,0)

∑

j1+...+jl=n−n1

jg,j1 . . . jg,jl







n1∑
n2=0




n1−n2∑

l=1

1
l!

Dlfm(Re,m,0,
εr

D
)

∑

j1+...+jl=n1−n2

Re,m,j1 . . . Re,m,jl


αn2







+
4

Πd

n∑
n1=0

[(
n−n1∑

l=1

1
l!

Dlg(jg,0)
∑

k1+...+kl=n−n1

jg,k1 . . . jg,kl

)[
n1∑

n2=0

(
n1−n2∑

l=1

1
l!

Dlfm(Re,m,0,
εr

D
)

∑

k1+...+kl=n1−n2

Re,m,k1 . . . Re,m,kl

)
n2∑

n3=0

αr,n2−n3(z)Pn3(z)

]]}
dz (45)

jg,n+1(s) =
ṁg0

Pn+1(s)
(46)

αr,n+1(s) =
jg,n+1(s)

Cd(s) [1 + jg,n+1(s)] + Ud(s)
, (47)

for n ≥ 1.

5. Results.

We compare the asymptotic solution obtained in the previous section with the closed form solution for a vertical
straight riser under the assumption of no friction. We use pipeline-riser system parameters used in the experiment de-
scribed in Schmidt et al. (1980). The parameters and their values are

Pt = 105 Pa,

L = 30, 48 m,

Lr = 15, 24 m,

D = 0.0508 m,

θ = 90o,

β = 5o,

T = 293.15 K,

R = 287.336 m2sec−2K−1,

ρl = 824.952 kg.m−3.

Ql0/A = 0.127 m/sec

For these values of parameters, the non-dimensional numberΠL = 0.00174. It satisfies the necessary assumption to
apply the perturbation approach described in the previous section. We give in Fig. 2 graphs of the asymptotic solutions for
P (s), jg(s) andαr(s) up to the orderO(ε4) for the vertical straight riser used in the experiments reported in Schmidt et al.
(1980) under the assumption of no friction. This special case has closed form solution given in section 3.1.1 and is used
here to assess the performance of the asymptotic approach. We consider two values of the non-dimensional parameter
ṁg0, which represents the ratio between the gas and liquid mass flow rates. According to Fig. 2, the agreement between
the asymptotic solution and the closed form solution is very good and increases for larger values ofṁg0.

6. Discussion and Conclusions.

The nice agreement between the closed form solution and the asymptotic solution for the case of a straight vertical
riser suggest that the asymptotic approach provide a good approximation for the stationary state. Under the perspective of
the linear stability analysis, the asymptotic explicit solution is more useful than the implicit closed form solution since the
coefficients of the equations for the perturbations of the stationary state are polynomials ins instead of implicit functions
of s, what may allow us to obtain an expression in terms of the system parameters as a stability criteria for a vertical
straight riser.
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Figure 2. Horizontal axis:x = s − 1, and vertical axis: dependent variable. Solid line - closed form solution given
in section 3.1.1. Dashed lines - asymptotic solution. Red line - asymptotic solution up toO(ε), Blue line - asymptotic

solution up toO(ε2), Green line - asymptotic solution up toO(ε3), Navy Blue line - asymptotic solution up toO(ε4).
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Since our long term goal is to obtain a stability criteria for a pipeline-riser system, we need to construct assymptotic
approximations for the stationary state for the system parameters values near the region where the stationary state loses
stability. This occurs for small values oḟmg0, and consequently, small superficial velocities. The Fanning friction coef-
ficient fm usualy assumes valuesfm < 0.1, and for the experiment described in Schmidt et. al (1980),ΠD = 61.7745,
what imply that4fm/Πd ¿ 1. These facts suggest that the frictional effect are small for system parameters values near
the region where the stationary state loses stability, and they may be not important and could be neglected. Without fric-
tion forces, the asymptotic solution simplifies and we may be able to integrate in closed form the integrals in Eqs. (42)
and (45) for risers with more general geometry if the equation forsin(θ(s)) is simple enough.

This paper is a report on work in progress.
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