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Abstract. The crescent progress of computation has generated  a powerful and efficient model of numeric tools  for the 

stress analysis. Though, because of their limitations, it lacks validation. The photoelasticity is an experimental tool 

based in an optic phenomena that  comes to highlight  the world scenary for its validation of numeric models. This 

work will make use of a plane with central hole to verify the use of the hybrid technique through the determination of 

the stress concentration factor. The study begins making the test body with photoelastic material: polycarbonate. After 

identification of residual stress existent caused by the production process, it was made a thermal treatment. Soon 

afterwards, the model was loaded. With intention of guaranteeing that the results was reliable, the fringe  order in the 

border of the hole was determined 10 times. The second stage consisted of modeling the test body with the geometry of 

the previous model and submitting it to the same load conditions in the commercial package Ansys 5.2. The obtained 

results were expressive and satisfactory presenting an error less than 2%.   
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1. INTRODUCTION 

 

Projects of mechanical components demand the evaluation of structural flaws caused by the growth of trines close to 

areas of concentration of stresses. These projects also request isolated or combined use of numeric, analytical and 

experimental tools in way to obtain solutions that, in the point of view of the structural integrity, are safe and reliable 

(da Silva et al, 2006).   

The analysis of stresses accomplished through analytical or computational techniques not always supply compatible 

answers with reality, because of idealizations and assumed simplifications. In these cases the experimental analysis of 

tensions becomes a quite effective project’s tool.  

The technological progress allowed a vast development in numeric methodologies. From there, the necessity of 

validation of those methods grew indeed with the intention to provide larger reliability to the results obtained by 

computational solutions and to verify how necessary the numeric models are. Among the experimental techniques 

available, Photoelasticity is one of the most versatile and it is distinguished for allowing the visualization of the fields of 

elastic stresses and the quantification of their intensities. Besides, it is distinguished because certain isotropic materials 

present double refraction index, or birefringence, when submitted to a certain mechanical loading (Dally and Riley, 

1991).  

When these materials are observed under polarized light, a pattern of fringes appears as a series of colored or 

monochrome strips. Each strip represents a birefringence degree, corresponding to the stress and deformation states of 

the material in that point. Thus, the fringe pattern can be read as a topographical map of the distribution of stresses and 

deformations along the analyzed surface.   

Thus, the distribution of stresses in the points of interest can be interpreted by the evaluation of the order of the 

local isochromatic fringe. Working in the elastic regime and interrupted the applied effort, the deformations are 

diminished and the structure of the material returns to the initial situation (Frocht, 1941).   

The combined use of the numeric and experimental tools has intensified with the modelling through finite elements 

and its comparison with photoelasticity. The modernization of data acquisition accentuated the optic methods among 

the experimental procedures for the synergy with computational methodologies. 

 

2. THEORETICAL FOUNDATIONS 

 

2.1. Photoelasticity 

 

The photoelasticity is a very versatile and necessary experimental method in the determination of the distribution of 

elastic stress in a body submitted to mechanical shipments. The description and understanding of optic phenomena is of 

fundamental importance in this analysis for it is based in the alterations of the behavior of the light when crossing a 

submitted transparent body to tensions inside of the elastic lineal domain.  
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2.1.1. Propagation of the light in isotropic and anisotropic materials 
 

The optically isotropic substances are those that present the property of transmitting light waves with equal speed in 

all directions. As examples, water and some polymers without deformations can be mentioned. Anisotropic substances 

are those which have the property of transmitting the light with speed that depends on the propagation direction. 

Crystals, stresses glasses and some polymers have this property. If a light source was put in the center of a crystal block, 

one would observe that two different sets of waves would be irradiated outside of the block. For each incident ray, there 

are two emerging rays and one of them crosses the crystal block faster than the other. This leads to the peculiar effect 

known as double refraction or birefringence.   

After the two wave fronts emerge from the plate, they will keep their paths so that the distance among them, known 

as relative retard, will stay constant. The lineal relative retard (R) depends evidently on the thickness of the plate and on 

the relative speed of light correspondent to the two wavelengths or, in other words, it depends on the difference between 

the refraction indexes. Therefore   

   

2 1( ).R n n h= − ,                (1) 

   

Where h  represents the thickness of the plate and 2n  and 1n  are the refraction’s indexes of the different wave 

components in the isotropic material.   

In most of the photoelastic analyses, the phenomenon of the overlap of waves is mainly related to the width of the 

resulting wave. This is due to the fact that human eye and most of the optic instruments present an answer to the 

intensity of the light that is proportional to the square of the width of the resulting wave. The change in the luminous 

intensity through the phenomenon of the overlap of waves is known as luminous interference and it can be constructive 

or destructive. If the relative retard is exactly half of the wavelength, the two components will be exactly opposed each 

other. The valleys of one will coincide with the crests of the other, and they both will be annulled.   

Beams of polarized light suffer interference only when their polarization azimuths are coincident. Therefore, 

although the light that emerges of a crystal plate usually consists of two polarized plan components which have a certain 

relative retard, the phenomenon of the interference won't be observed since the two components are polarized in 

perpendicular plans amongst themselves. If the components of the emerging plan polarized waves are brought to a 

common plan by the appropriate means, as it is done, the effects of the interference now can be observed.   

 

2.1.2. Circular polariscope 
 

Polariscope is optic instruments that use the properties of polarized light in its operations. In the experimental 

analysis of tensions, two arrangements frequently used are the plane polariscope and the circular polariscope. Their 

names are given according to the type of light used in the polariscope.   

In both types, the light of the source is polarized by the first filter, known as polarizer. The second filter, the 

analyzer, can present its polarization axis forming an angle of 90º with the polarizer, so that any light polarized by the 

first filter will remain after the passage to the second. Two filters arranged like this are said "crossed" and the 

arrangement receives the name of dark field. If the analyzer axis is parallel to the polarizer axis, the arrangement is 

known as clear field.   

In general, waves that cross a crystal plate divide themselves in two components that combine forming an elliptic 

polarized wave. If they present a relative retard of π/2, corresponding to the retard of a fourth of the wavelength, they 

will combine forming a wave polarized circularly. Crystals’ plates that convert incident plan polarized waves in waves 

polarized circularly are known as quarter-wave plates. And instruments which have two quarter-wave plates put 

between the polarizer and the analyzer are known as circular polariscope.   

The light is polarized circularly by the first quarter-wave plate and penetrates the object in study. The second 

quarter-wave plate is put with its polarization axis perpendicular polarization to the first, that is, the fast axis of the first 

plate aligned with the slow axis of the second. Thus, the second plate undoes the effect of the first. When the light 

circularly  polarized by the first quarter-wave plate passes for a crystal sample, for instance, the light that emerges can 

be subdivided once again in two plan polarized components in right angles amongst themselves and in parallel 

directions to the polarizer axes of the sample. In polariscope with this assembly, the luminous intensity composes a 

known pattern of isochromatic fringes and it can be calculated as:   

   

2sen
2

I K
∆ 

= ⋅  
 

,               (2) 

   

Where k = a.cos(α) and ∆ is the relative phase retard among the two resulting waves.    
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Thus:   

   

( )2 1

2. .h
n n

π

λ
∆ = −                           (3) 

   

If we change the monochrome light by white light then, any light wave whose wavelength is the same – or multiple 

– of the relative delay will be extinguished by interference. When the relative retard increases progressively from zero, 

all the colors of the spectrum will be extinguished in shifts, beginning from the smallest wavelengths.   

 

2.1.3. Relations between stress and optics 
 

In 1853, Maxwell noticed that the changes in the refraction indexes were lineally proportional to the applied loads 

and consequently to the tensions and deformations to lineally elastic materials, according to the following relations:   

   

( )1 0 1 1 2 2 3n n c cσ σ σ− = ⋅ + ⋅ + ,          

( )2 0 1 2 2 3 1n n c cσ σ σ− = ⋅ + ⋅ + ,                           (4) 

( )3 0 1 3 2 1 2n n c cσ σ σ− = ⋅ + ⋅ + ,         

 

where σ i represents the main tensions in a point; 0n , the refractive index of the unloaded material; in , the indexes 

of refraction of the materials, under load application, associated with the directions of the main tensions; 1c and 2c , 

constants known as stress optic coefficients.  

These equations affirm that the state of stresses in a point can be completely determined by means of the knowledge 

of the refractive indexes associated with the three main directions and the directions of the material’s optic axes. In 

cases of plane stresses and using the relative changes in the refractive indexes, instead of the absolute ones, the index of 

refraction of the unloaded material can be eliminated and the following expression is obtained:   

   

( ) ( ) ( )2 1 2 1 2 1 2 1n n c c cσ σ σ σ− = − ⋅ − = ⋅ − ,              (5) 

   

Where " c " represents the relative stress optic coefficient. Its unit is called Brewster (1Brewster =10
-13 

cm
2
/dina). 

If a plate of photoelastic material is put in a polariscope, it acts like a uniaxial crystal, and its optic axes are parallel 

to the plate surface. Generally, a polarized plane wave that enters in the plate is divided in two components in the 

directions of the main stresses in the incidence point. As in the case of natural crystals, these components are 

transmitted with different speeds, so that when they emerge of the plate, they present a relative retard whose magnitude 

is directly proportional to the difference of main stresses. Also proportional to the thickness of the plate, we can express 

them by the equation:  

  

( )
2 1 2 1

( )h n n c hδ σ σ= ⋅ − = ⋅ − ⋅              (6) 

   

In a plane state of stresses, the relative phase retard (∆) correspondent to the relative retard “R” between the two 

resulting waves is expressed as:   

   

( )12 1 2

2 h cπ
σ σ

λ

⋅ ⋅
∆ = −                                                                        (7) 

   

As Brewster is not a unit used frequently in engineering, we can put the expression above in the following form:   

   

( )1 2

.N f

h

σσ σ− =  N/m
2
 ,                                                                                                         (8) 

   

Where   
2

N
π

∆
= ,                                                             (9) 

   

N  represents the Fringe Order (relative retardation in terms of complete wave cycles, 2π); K represents a property 

of the material for a given wavelength known as fringe value for the material or coefficient stress-fringe and h , the 

thickness of the test body.   
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2.1.4. Spectrum of isochromatics 
 

Let us suppose now that a test body of photoelastic material is put in one circular polariscope with arrangement of 

dark field, and is subjected to a gradually growing traction tension. When the body is not under tension, the material is 

isotropic and the field of the polariscope keeps dark. With the load application, the material becomes birrefringent. With 

the use of white light and by means of load application, the image of the body appears colored.   

When a small stress is applied in the test body, the retard is smaller than the wavelength of the smaller wave of 

visible light and all the colors of the spectrum are transmitted by the analyzer. Then the body appears white. With the 

tension’s and retard’s increase, each color of the luminous spectrum is extinguished. The model then displays the 

sequence of colors that results of the combination of the complemental colors of those extinguished by interference. 

  

2.1.5. Technique of Compensation 
 

The point-to-point determination of the isochromatic fringe orders requests that compensation techniques be used 

for determination of the fractional values of the fringe orders. The compensation method of Tardy is a relatively fast 

and simple technique and needs measurements of fractional fringe orders. The basic principle predicts that when the 

polarizer and the analyzer are aligned with the main directions and the quarter wave plates form an angle of 45º, a 

rotation of an angle, in the clockwise of the analyzer, will do the fringe order N to move for a position where the fringe 

order will be:   

   

180º
N n

λ
= +                                     (10) 

 

When the retard reaches two wave cycles, the colors correspondent to the second order fringes which are not equal 

to the ones of the first will appear, because it can happen the simultaneous extinction of more than a color. But the 

fringes of third level and up consist especially of the colors pink and green, each time more pale in the high orders, on 

account of  the interference of turning more and more complex. 

 

2.2. Finite Element Method 

 

The methodology used in Finite Elements is based in the polynomial interpolation of the elements that constitute its 

composition. The field of stresses, for instance, is given by the interpolation of the resulting values of the field of 

stresses in each node of the structure. The sum will have so many polynomial expressions as elements that resulted in 

the evaluation of the field in all the structure.   

Through the minimization of functions, the values of the field in the nodes can be obtained. This process produces 

series of concomitant algebraic equations for the field values in each node. The numeric resolution for finite elements 

involves matrix manipulation, resolution of equations and numeric integration, routine procedures solved with the use 

of computers.   

A finite elements program is constituted by three modules: the pre-processor, the processor and the post-processor. 

The pre-processor generates the geometry of the piece and imposes the outline conditions. The processor makes the 

analysis and selects the exit data that will be visualized in the post-processor.   

The term 2D solid is used to identify a two-dimensional solid without restrictions of form, loading, material 

properties or outline conditions. The field of displacements involves the components u and v. The typical elements used 

in 2D solids are the triangles and the squares with three degrees of translation freedom for node (Cook, 1994).   

Adopting the notation used by Cook, it can be considered u=u (x, y), v=v(x, y) and w=w(x, y) as the components of 

the displacements of an arbitrary point in the solids in the directions x and y, and if the stresses and the rotations are 

small, one can link the efforts and their gradients through the equations:   

   

x

u

x
ε

∂
=
∂

; y

v

y
ε

∂
=
∂

; xy

u v

y x
γ

∂ ∂
= +
∂ ∂

                                                            (11) 

   

The equations can also be written in matrix form: 

 

0

0

x

y

xy

x
u

y
v

y x

ε

ε

γ

  ∂ ∂ 
      = ∂ ∂    

    ∂ ∂ ∂ ∂   

; or ε u= ∂ .                                                                   (12) 
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The displacements u in a plan of finite elements are interpolated starting from the displacements in nodes iu and iv  

in the usual way, meaning u=Nd. If the nodes only have degrees of translation freedom and n is the number of nodes by 

element, the matrix form of function N has 2n columns for an element 2D, thus, for 2D solids, where u=Nd: 

   

1

1

1 2

2

1 21

2

0 0

0 0

u

v
N Nu

u
N Nv

v

=

 
 
     

    
     

 
  

L

L

M

                        (13) 

   

Making the u=Nd substitution in the stress-deformation relation it is obtained the stress-deformation matrix B, that 

enters in the formula of the integrating to the calculation of the rigidity matrix k of the element.   

   

∂=ε Nd, or =ε Bd, where B= ∂ N                       (14) 

 

A general formula for the calculation of k is obtained by deriving an expression for 0U , the deformation energy by 

unit of volume in an elastic material. In the matrix format and in terms of the deformation this expression is: 

0 / 2
T

U Eε ε= . Integrating the expression on a volume, V, and substituting in Eq. (15), it is obtained an element of 

deformation energy (Cook, 1994):   

   

1 1 1

2 2 2

T T T TU E dV d B EBdVd dε ε= = =∫ ∫ kd                                      (15) 

   

An expression for the rigidity matrix k can be identified in Eq.(15) which can be applied to all finite elements 

problems based on displacements.    

   

Tk B EBdV= ∫                           (16) 

 

3. METHODS 
 

3.1. Experimental   

   

The selected geometry is very frequent in machines and structural components. The study of distribution and 

concentration mechanisms of stresses and deformations in the proximity of the incisions are of great interest for the 

engineering. The selected material for the analysis, polycarbonate, PSM-01, with fringe value equal to 7002 Pa/fr.m, 

will be evaluated for monotonic loading conditions.    

Initially the models were arranged in the circular polariscope, model P-150 of Riken Keiki Fine Instruments CO, 

and in one analysis of dark field the presence of residual tensions was verified. In order to eliminate them, they suffered 

relief in oven, model P-2307-M for photoelastics works, submitted to 250 ºC for 24 hours.  

After the preparation of the arrangement of the polarizer for one analysis of dark field, the material was axially 

loaded with 152.1 N. The calibration was made by rotation of the analyzer through displacement of the fringe of order 0 

until a section presenting uniform tension. With the repetition of this procedure for the same loading, the reliability of 

the value obtained for the fringe was increased.   

The point-to-point determination of isochromatic fringe orders requests that compensation techniques be used for 

the determination of the fractionary fringe order values. In the present work the method of compensation of Tardy was 

used. This procedure seeks the determination of the fractional value of the fringe order in the border of the hole. With 

this purpose, a load of 200.1 N was properly applied to the proof body in the circular polarizer prepared for one analysis 

of dark field.  It has been made a division of the projected image in the screen in an appropriate number of points.   

The procedure continued with the turn of the analyzer, making that the fringe of whole order N, visually 

recognized, coincide with the first point of interest. For the reading of the rotation of the analyzer, it becomes possible 

to determine the order of fractionary fringe of that point. With the attainment of this data for the several selected points, 

it will be possible the construction of a curve of the Order of fringe N versus the Location of the point. Through 

extrapolation of the curve it is obtained the order of fractionary fringe for the root of the incision and it becomes 

possible to determine the main stress in the border of the hole and also the theoretical stress concentration factor for the 

elastic regime. 
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3.2. Numeric 
   

The commercial program ANSYS 5.2 was used to generate a discrete mesh from isoparametric triangular elements 

of constant deformation. All with six nodes for element and two degrees of freedom for node, according to Fig.(1). A 

fine mesh with 0.1 degrees was obtained possessing 20012 elements and 43774 nodes.   

 

 
 

Figure 1. Mesh and nodes  

 

4. RESULTS 

 

4.1. Experimental  results 
 

The Figure (2) shows the curve obtained from the data of the Tab. (1). It relates the fringe order and the distance 

from the border of the hole of the projected image. Through the obtained graphic for the tendency equations, the 

extrapolation was done for the chosen point. The Table (2) introduces an order of medium fringe of 3.393 for the three 

experiments. The factor of sensibility used correspond to 6991 Pa/fr.m, in agreement with da Silva, 2006. Therefore, the 

result to the fringe order in the hole border was 3,39 ± 0.01. 

The nominal stress is equal to 1.74 MPa. The maximum stress from the photoelastic test given by Eq. (8) is equal to 

3.74 MPa. Therefore, from Eq. (3), the medium stress concentration factor is 2.123. The Figure (3) illustrates the fringe 

orders pattern in the identification of Kt. 

 

Table 1. Experimental data obtained from the fringe order in the border of the hole. 

 

 Experiment 1 Experiment 2 Experiment 3 

 Points (mm) N Points (mm) N Points (mm) N 

1 0 x 0 x 0 x 

2 1 3.00 2 3.00 2 3.00 

3 3 2.42 4 2.42 4 2.42 

4 4 2.25 5 2.25 5 2.25 

5 5 2.00 6 2.00 6 2.00 

6 9 1.50 10 1.00 9 1.50 

7 10 1.42 11 1.42 10 1.42 

8 11 1.25 13 1.25 12 1.25 

9 14 1.00 15 1.00 15 1.00 
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Figure 2. Relation between the fringe order and the distance of the hole for the projected image. 

 

Table 2. Results of the extrapolation for the fringe order in the border of the hole. 

 

Ensaio N  N  Nσ  Nσ (%) 

1 3.184 

2 3.445 

3 3.549 

 

3.393 

 

0.188 

 

0.055 

 

 
 

Figure3. Plane plate with central hole under shipment of 201.1 N 
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4.2. Numeric  results 
 

The numeric stress concentration factor is equal to 2.12. It was obtained from 20012 elements and 43774 nodes, 

according with Fig. (4). The analysis of convergence of the results can be seen in the Fig. (5) and the distribution of the 

ratio of the maximum stress for the normal stress along the axis y in the Fig.(6). 

 

 
 

Figura 4. Stress distribution. 

 

 
 

Figure 5. Convergence graph- Stress concentration - Kt 
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Figure 6. Distribution of the ratio of the maximum tension for the normal stress along the axis y. 

 

5. CONCLUSION 
 

The use of the photoelasticity is of great utility in the validation of numeric methods. The practical experimental 

methodology can be used with efficiency in the relief of practical problems in engineering. Though, we suggest the use 

of the digital photoelasticity in order to minimize the doubts associated to the analogical tests. However, the adopted 

hybrid technique presented satisfactory results concerning the deviation of results between finite elements and 

photoelasticity by transmission. This deviation was from centesimal order, less than 2%. It shows the importance of 

photoelasticity like a reliable tool in the validation of numeric methods.  

 

6. ACKNOWLEDGEMENTS 
 

We thank God for the gift of life and for the health. To GAMMA, Group of Solid Mechanic of the University of 

Brasília for the released support and to CNPq for the sponsorship. 

 

7. REFERENCES 

 

Da Silva, B. L., 2006,”Calibração de Modelos Numéricos através da Fotoelasticidade”, Report submitted as partial 

requirement for obtaining of Mechanical Engineer's degree of University of Brasília. Brasília, Brazil. 

Cook, Robert D., 1994, “Finite Element Modeling for Stress Analysis”, John Wiley & Sons, Inc, New York. 

Dally, J.W., Riley, W. F., 1991, “Experimental Stress Analysis”, 3rd ed, McGraw-Hill International Editions, New 

York, 639p. 

Frocht, M. M., 1941, “Photoelasticity”, Vol. 1 e 2, John Willey & Sons, Inc., New York. 

Hendry, A. W., “Photoelastic Anallysis”, Pergamon Press, Londres, 1966. 

Norton, R. L., “Projeto de Máquinas: uma abordagem integrada”, 2 ed, Bookman, Porto Alegre. 

 

 

8. RESPONSIBILITY NOTICE 

 

The authors are the only responsible for the printed material included in this paper. 

 


