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Abstract. In this work, we present a nonlinear Kalman filter algorithm for monitoring the orbital motion of a single 
satellite in real time. It is based on the linearized and extended Kalman filters. Some tests are done to show its 
correctness. After that, we intend to extend such algorithm to a triangular equatorial constellation of satellites to 
monitor their absolute positions and velocities. The tests will also be extended to show its correctness. The orbital 
motion will be modeled as simple as possible so as not to burden the computer load and, at the same time, to provide 
enough accuracy to this sort of problem. The source of measurements will be simulated to represent actual 
measurements such as GPS, geostationary satellite to satellite tracking, or conventional ground tracking stations. The 
errors in orbit determination will ultimately affect the performance of the control and maneuvering of the 
constellation, therefore providing the basis for future corrective and preventive constellation maintenance.  
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1. INTRODUCTION 
 

The problem to be solved here is to develop a nonlinear Kalman filter algorithm which uses real-time measurements 
to produce estimates of a satellite position and velocity – the best possible for the information available. The algorithm 
will allow a preliminary study of the filter behavior in face of varying parameters such as measurement precision and 
measurement rate. This can later be extended to provide good preventive/corrective maintenance of a satellite 
constellation, where it is necessary to have precise estimations of the satellite positions to support maintenance 
decisions. 
 
2. SYSTEM DESCRIPTION  
 

The simulated satellite has an orbit in a bidimensional space, and the measurements considered are three 
simultaneous distances from it taken by other three satellites simulated at GPS-altitude orbits in the same plane. 

The state vector x contains the position (x1, x2) and velocity (x3, x4) of the simulated satellite in each dimension (x,y), 
while the vector of observation y contains the distances from the simulated satellite observed by the other three GPS 
satellites. Below, G is the dynamic noise addition matrix, � is the continuous dynamic noise vector, assumed normal 
with zero mean and covariance Q; and v is the discrete observation noise vector, assumed normal with zero mean and 
covariance R. The Earth gravitational parameter considered in the simulations is � = 398600 km3/s2. So, the equations 
of the system are: 
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where ( )Q0� ,N=  and ( )R0v ,N= . 
 

The functions of transition f(x) and observation h(x) are described as follows: 
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where 2
2

2
1 xxr +=  is the orbit radius magnitude. 
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where Xi, Yi, are the position coordinates of the observing GPS satellite i. 
 
3. FILTER DESCRIPTION 
 

The Kalman filter (Kalman, 1960) works by trying to minimize the mean squared estimation error of the state of 
linear systems with noises in the dynamics and in the measurements. According to references such as Kuga (2005), 
Maybeck (1979), Brown e Hwang (1996), it has the advantage that it can be used recursively, instead of being obliged 
to collect and process all data at once as other minimum square methods. Besides that, it can easily include the dynamic 
noise in the formulation. It consists of two phases: 1) propagation in time, where it takes initial estimates of the mean 
state vector )(tx and the state covariance matrix P(t) and predicts their behavior until the next measurements; and 2) 
updating in measure, where it uses the available measurements to obtain new estimates by comparing them with 
propagated ones. 

The mean state vector )(tx  will follow the (ideal) physical model without noise, but the uncertainty (given by the 
covariance matrix P(t) ) will be updated taking into account the uncertainties attributed to the model. The Kalman filter 
theory assumes normal distributions of deviations; actually they are not always normal, but  this is a fair approximation 
in most cases. 

As most things in Nature, satellites in orbit do not exhibit linear behavior, so we need to use linear approximations 
in a variant called the extended Kalman filter. At the initial instant t0, it starts the first nominal state trajectory  xn(t) in 
the initial state estimate 0x , i.e., 000 )()( xxx == ttn . Between updating instants (ti; ti+1) it propagates the nominal state 

trajectory xn(t), as being  the mean trajectory )(tx , i.e., )()( ttn xx = from that point on, until the new updating. At each 

updating instant ti, it starts a new xn(t) in the updated state estimate )(ˆ itx , i.e., )(ˆ)( iin tt xx = . While more 
computationally costly, it is more adequate to situations of poor models or initial conditions and it is easier to 
implement than its counterpart called the linearized Kalman filter, which works only with the linear deviations from a 
nominal trajectory xn(t) that is not altered along the cycles. In this paper, we will use the extended Kalman filter.  
 
3.1. Propagation phase 
 

Considering a continuous system and a discrete measurement, the propagation phase of )(tx  and P(t) during 
t∈ (ti; ti+1) is defined by the following differential equation system: 
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where F is the jacobian matrix of f: 
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with 2
2

2
1 xxr += . 

 
3.1. Updating phase 
 

The updating phase at t = ti is done by first defining the Kalman gain K, and then using it to find the updated )(tx  
and P(t): 
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The new x̂  and P̂  are then used for initializing the next propagation phase. 

 
4. DESCRIPTION OF THE SIMULATED CASES 
 

The positions of each satellite were produced by a numerical simulation with MatLab (versions 6.1) using the two 
body dynamics, as described in Kuga and Rao (1995). For the observed satellite, a dynamic noise was introduced as an 
acceleration in each dimension to account for the imprecision of the model. Eclipses in observation caused by Earth 
were neglected. 

The simulation parameters (absolute tol. = 10-6, relative tol. = 10-8) were chosen so that, with dynamic noise �D = 0, 
the order of the numerical error in position after one revolution be smaller than 1 m, using the variable step integration 
methods ODE1-13 of Matlab 6.1. We plotted the results for each satellite in N equally distributed instants along the 
time span [t0;tf]. In the same time interval the measurements were done at a rate Ts. The observed satellite initial 
conditions x0 = x(t0) are assumed to be known with a standard deviation �P

 at each dimension of position and �V  at each 
dimension of velocity; the dynamic noise has a standard deviation �D in each dimension, and the measurement noise has 
a standard deviation �M in each sensor. 

The tests were conducted according to Table 1, by applying deviations in the initial conditions x0 = x(t0) that were 
equal to the uncertainty attributed to them, and then letting the Kalman filter try to approach the actual positions by 
using the measurements affected by noise. 
 

Table 1: Parameters of the Graphics Shown in Figures 1-8. 
 

Tests �M �D Ts Initial State x(t0) Initial Estimate 0x  Initial Covariance P0 
(diagonal) 

Figure 1 10 m 1e-3 m/s2 60 s [7000, 0, 0, 7.5] [7010, 10, 1, 8.5] [10², 10², 1², 1²] 
Figure 2 1 km 1e-3 m/s2 60 s [7000, 0, 0, 7.5] [7010, 10, 1, 8.5] [10², 10², 1², 1²] 
Figure 3 10 m 1e-5 m/s2 60 s [7000, 0, 0, 7.5] [7010, 10, 1, 8.5] [10², 10², 1², 1²] 
Figure 4 10 m 1e-3 m/s2 10 s [7000, 0, 0, 7.5] [7010, 10, 1, 8.5] [10², 10², 1², 1²] 
Figure 5 10 m 1e-3 m/s2 60 s [7000, 0, 0, 8.5] [7010, 10, 1, 9.5] [10², 10², 1², 1²] 
Figure 6 10 m 1e-3 m/s2 60 s [7000, 0, 0, 7.5] [7100, 100, 2, 9.5] [100², 100², 2², 2²] 
Figure 7 10 m 1e-3 m/s2 60 s [7000, 0, 0, 7.5] [7010, 10, 1, 8.5] [10², 10², 1², 1²] 
Figure 8 10 m 1e-3 m/s2 60 s [7000, 0, 0, 7.5] [7010, 10, 1, 8.5] [10², 10², 1², 1²] 

 
Though the estimation process does not require this, we also recovered the positions pointed by the noisy 

measurements for comparison with the real and estimated positions. The method chosen was a Newton-Raphson 
iteration using the first two of the three distances measured. As the observed satellite is assumed to be always in a lower 
orbit than the GPS’, the initial radius is equaled to zero and then used in the following recursion: 



 

[ ])(
)( 1

1 k
k

kk rh�
r
rh

rr −�
�

�
�
�

	

∂
∂

+=
−

+  (11) 

 
until ε≤−+ kk rr 1 , where � = 0.0001 is the desired precision. 

 In a real time application, the algorithm would start propagating the initial state vector and covariance matrix 
and stop at the scheduled time of the next measure until it comes; then repeat the procedure with the updated state. 
 
5. RESULTS 

 
Figure 1 shows that the Kalman filter was able to estimate the position and velocity beyond the measurement error, 

even with measures related only to position. The algorithm was able to drop the position standard deviation from 10 km 
to 5 meters in 10 to 20 measurements of 10 m precision, and the velocity standard deviation from 1 km/s to less than 10 
cm/s in an equivalent time interval. 

With the standard parameters of the first example, position and velocity deviations ultimately settled around 5 m and 
3 cm/s respectively. Besides that: 

Figures 1 and 2 show that decreasing the measure precision by two orders resulted in a more oscillating precision 
�xx(t), worse by a factor of 40. 

Figures 1 and 3 show that reducing the dynamic noise by two orders also resulted in a more oscillating precision 
�xx(t), but roughly 2 times better. 

Figures 1 and 4 show that increasing the measure rate by 6 resulted in an increase factor of 2 in precision. 
Figures 1 and 5 show that using an eccentric orbit altered the oscillation of the precision, but no other significant 

difference. 
Figures 1 and 6 show that increasing the initial deviation and standard deviation by 10 and 2 in position and 

velocity, respectively, resulted in a more unstable transient, but also no other significant difference. 
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 Figure 1. Figure 2. 
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 Figure 3. Figure 4. 
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 Figure 5. Figure 6. 
 

For didactic purposes, we also tested two less adequate variations in the algorithm, all of them with the same 
parameters shown in Fig 1. 

Figure 7 shows the extended Kalman filter applied to a 3D space, i.e., x now includes z and vz; but still with only 3 
observers. As in tests 1-6 the three observing satellites were in the same plane of the observed satellite, and could only 
measure scalar distances, they had no means to observe the signal of the displacement in the z axis neither its speed. So, 

the linearization prevented any variation in z axis from being computed from , since the first order derivatives 
zvz ∂

∂
∂
∂ hh

,  

are null at x-y plane. So, even with initial states zeroed in the z axis, the filter always diverged in a matter of time . 
In Fig. 8, it was used the linearized Kalman filter, with an initial state of the nominal trajectory )( 0tx deviated in 1 

km along the x axis from the initial state of the real trajectory )( 0tx . Differently from the extended Kalman filter, the 
nominal trajectory was not updated. It was able to work properly for one orbit; but, after that, the difference of position 
between the real and nominal references became too big, making the filter to diverge. As the standard deviation relies 
on the nominal trajectory, it did not accused the divergence, which is even worse. This outweighs the milder 
computational load of this filter, and shows that it would be better only in situations where there is control to keep it 
close to the nominal trajectory. 
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 Figure 7. Figure 8. 
 

6. INTENDED EXTENSIONS 
 

Until now the movements and deviations were kept in two dimensions, we intend to increase the number of 
observation sources, so that we can also work in the z axis. 

With the algorithm for a single satellite completed, the next step is to adapt it to a constellation of satellites and 
eventually include the modeling and detection of other GPS error sources, such as the clock synch and atmospheric 
interference, as treated in Raimundo (2007). 
 
7. CONCLUSIONS 
 

In this work, we presented a nonlinear Kalman filter algorithm for monitoring the orbital motion of a single satellite 
in real time. It was based on the extended Kalman filter mainly. Some tests were done to show its correctness. The tests 



helped to show how variations in the estimation parameters influence the quality of the resulting data. This is useful in 
determining what is necessary and what is superfluous, and is the key to find what parameters should be emphasized in 
a multi-satellite estimation system. After that, we intend to extend such algorithm to a triangular equatorial constellation 
of satellites to monitor their absolute positions and velocities. 
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