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Abstract. The Generalized Integral Transform Technique (GITT) is employed in the hybrid solution of energy equation 
to describe the non-fourier heat conduction behavior of conical pin fins. The employment of the GITT approach in the 
hyperbolic heat conduction equation leads to a coupled system of second order ordinary differential equations in the 
time. Therefore, this resulting system is then numerically solved by using the Gear`s method for stiff problems, 
available in the subroutine DIVPAG from the IMSL Library. Numerical results for the temperature field is computed 
for different Biot numbers and dimensionless thermal relaxation times, which are then compared with those previously 
reported in the literature for special cases. 
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1. INTRODUCTION 
 

The phenomenon of finite speed of thermal propagation has gained much attention along the years, mainly due to 
special applications that can not be modeled by the classical Fourier model; among them one can cite pulsating laser 
heating, rapidly contacting surfaces in electronic devices and heat transfer in nanosystems. 

Several models have been proposed in the literature to describe such hyperbolic behavior, therefore the  
Cattaneo-Vernotte model (Cattaneo, 1958; Vernotte, 1958) is the more spread one, although some authors may point 
out some limitations in it because of a possible violation of the second law of thermodynamics (Criado-Sancho and 
Llebot, 1993; Bai and Lavine, 1995). 

Many authors have analyzed the non-Fourier Cattaneo-Vernotte model for heat transfer in fast processes (Tsai et al., 
2005; Quaresma et al., 2001; Cruz et al., 2001; Macêdo et al., 2005), but particularly in dealing with heat conduction in 
fins one cites works of Lin (1998) who studied the effect of the relaxation time on the performance of a convective fin 
of constant cross-sectional area subjected to periodic thermal conditions, by employing a hybrid scheme involving the 
Laplace transform and the finite volume method and that of Silva et al. (2006) who analyzed the same problem by 
employing the Generalized Integral Transform Technique (GITT). 

In this context, following the same steps in the previous work of Silva et al. (2006), the main objective of the present 
work is to develop a hybrid numerical-analytical solution based on the GITT approach (Cotta, 1993; Cotta, 1994; Cotta 
and Mikhailov, 1997; Cotta and Mikhailov, 2006) to analyze the non-Fourier thermal response of a conical pin fin by 
using the Cattaneo-Vernotte model, such as that one studied by Cotta et al. (1993), where it was used the Fourier model. 
The employment of the GITT approach to solve the related hyperbolic partial differential equation produces a fast and 
efficient solution, with a considerable analytical involvement, but presenting some advantages when compared to purely 
numerical schemes. The characteristic of automatic global error control inherent to this technique allows for the 
computation of benchmark results as well. In this case, the integral transformation of the hyperbolic partial differential 
equation yields an infinite system of coupled ordinary differential equations of second order, which is then solved 
through well-established routines appropriate for handling initial value problems with stiff characteristics, such as the 
DIVPAG routine from the IMSL Library (1991). Numerical results are then produced for the temperature field within 
representative ranges of the governing parameters, and critically compared with those previously presented in the 
literature. 
 
2. ANALYSIS 
 

One-dimensional hyperbolic heat conduction in a fin with form of frustum of right circular cone is considered, 
initially at the temperature distribution To(x), assuming constant properties as thermal conductivity (k), thermal 
diffusivity (α) and specific heat (cp), and no internal heat generation. The fin tip is maintained insulated, while its larger 
surfaces are exchanging heat by convection with a fluid kept at a constant temperature, T∞ and heat transfer coefficient 
varying with the time and the space, h(x,t). The fin base is subjected to a uniform prescribed temperature. 



The general one-dimensional energy equation for the fin is written in the following form: 

 

 p
q (x, t) A(x) dS(x) T(x, t)A(x) q (x, t) h(x, t) [T(x, t) T ] C A(x)

x x dx t∞
′′∂ ∂ ∂′′− − − − = ρ
∂ ∂ ∂

 (1) 

 
where A(x) is the area of the cross-section of the infinitesimal element of the fin, S(x) is the lateral area related to a 
perimeter p(x) and q”(x,t) is the heat flux in the fin. 

For the phenomenon involving finite speed of propagation of the thermal waves, the classical Fourier model must be 
modified. Therefore, Cattaneo (1958) and Vernotte (1958) independently derived a model of heat flow in the form: 
 

 T(x, t) q (x, t)q (x, t) k
x t

′′∂ ∂′′ = − − τ
∂ ∂

  (2) 

 
where τ is the relaxation time of the material in which the heat conduction process is occurring. Combining Eq. (2) with 
Eq. (1), it then results the partial differential equation that governs the hyperbolic heat conduction in a convective fin, 
as: 

 
[ ]
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2
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∞

∞

∂ ∂ ∂
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∂ ∂∂

∂ ∂ ∂ ∂
+ − −

∂ ∂ ∂∂

 (3) 

 
Equation (3) describes the heat propagation in a convective fin with speed ν = (α/τ)1/2. Equation (4) is then written 

in dimensionless form as: 
 

 
2 * * *

2 *
r 2

(X, ) (X, ) (X, )K(X) F(X, ) K(X) M G(X, ) (X, )
x

⎡ ⎤∂ θ ξ ∂θ ξ ∂ ∂θ ξ
τ + ξ = − ξ⎢ ⎥

∂ξ ∂ ∂ξ∂ξ ⎢ ⎥⎣ ⎦
θ ξ  (4a) 

 2
rF(X, ) K(X) M W(X, )ξ = + τ ξ  

 r
W(X, )G(X, ) W(X, )∂ ξ

ξ = τ + ξ
∂ξ

 

 
subjected to the following initial and boundary conditions: 

 ;* *
o(X,0) (X)θ = θ b tX X X≤ ≤   (4b) 

 
*(X,0) 0∂θ

=
∂ξ

; b tX X X≤ ≤   (4c) 

 *
b(X , ) 1θ ξ = ;   (4d) 0ξ >

 
*

t(X , )
0

X
∂θ ξ

=
∂

,   (4e) 0ξ >

 
The following dimensionless groups were employed in obtaining Eqs. (4): 

 

   2 2 * 2
r r r r r bX x / l ; K(X) A(x) / A ; t / l ; / l ; (X, ) [T(x, t) T ] /[T T ]; M =m l∞ ∞= = ξ = α τ = α τ θ ξ = − − 2 2

r

 * 2 r r
o o b

r r r

h P h(x,t) dS(x)(X) [T (x) T ]/[T T ]; m = ; W(X, )=
kA P h dx∞ ∞θ = − − ξ  (5) 

 
Equations (4) constitute a non-homogeneous problem, which have to be filtered in order to obtain a better 

computational performance in the integral transform method. For this purpose, the dimensionless temperature θ*(X,ξ) is 
written in a separated form as follows: 
 
 *(X, ) 1 (X, )θ ξ = + θ ξ   (6) 
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Introducing Eq. (6) into Eqs. (4), to obtain the partial differential equation for the filtered potential θ(η,ξ) and 
filtered boundary conditions as: 
 

 
2

2
r 2

(X, ) (X, ) (X, )K(X) F(X, ) K(X) M G(X, ) (X, ) M G(X, )
x

⎡ ⎤∂ θ ξ ∂θ ξ ∂ ∂θ ξ
τ + 2ξ = − ξ θ ξ − ξ⎢ ⎥∂ξ ∂ ∂ξ∂ξ ⎣ ⎦

 (7a) 

 ;*
o(X,0) (X) 1θ = θ − b tX X X≤ ≤   (7b) 

 (X,0) 0∂θ
=

∂ξ
; b tX X X≤ ≤   (7c) 

 b(X , ) 0θ ξ = ;   (7d) 0ξ >

 t(X , )
0

X
∂θ ξ

=
∂

;   (7e) 0ξ >

 
2.1. Application 
 

A geometric arrangement of a frustum of right circular cone is considered to obtain the solution of the presented 
problem given by Eqs. (7). Figure 1 shows a truncated conical pin of length (l1-lo) and base are A1, subjected to a 
constant base temperature and negligible heat exchange with the surroundings, through the tip at x=lo. Initially, the fin 
has reached the steady state temperature distribution with a uniform heat transfer coefficient hr. For t>0, a transient 
situation develops due to a time-varying heat transfer coefficient h(t), with hr=h(0), as described in Cotta et al. (1993). 
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Figure 1. Geometric configuration ad coordinate system for the analysis of conical pin fin. 

 
From direct comparison with the general system (5), we find: 

 

  
2

2 20 1
b t r 1 r 1

1 1

l 2h(0)l h( )X l; X ; l l ; A A ; K(X) X ; M ; W(x, ) X
l kr

ξ
= = = = = = ξ =

h(0)
 (8) 

 
The time-dependent heat transfer coefficient is obtained from approximate expressions for mass flow rate decay 

typical of loss-of-flow accidents (Tong and Weisman, 1978), and given in the following functional form: 
 

 h( ) 1
h(0) 1 B

ξ
=

+ ξ
  (9) 

 
2.2. Solution methodology 
 

The next step is to find a solution for the potential θ(X,ξ), and for this purpose we follow the ideas in the GITT 
(Cotta, 1993; Cotta, 1994; Cotta and Mikhailov, 1997; Cotta and Mikhailov, 2006), first by selecting an appropriate 
auxiliary eigenvalue problem, which shall provide the basis for the eigenfunction expansion. Therefore, the following 
simple eigenvalue problem is here proposed: 



 2i
i o i

d (X)d K(X) [ K(X) W (X)] (X) 0
dX dX

ψ⎡ ⎤ + µ − ψ =⎢ ⎥⎣ ⎦
  (10a) 

 i (1) 0ψ = ;   i td (X )
0

dX
ψ

=   (10b,c) 

 
Equations (10) can be analytically solved with Wo(X) = 0 to yield, respectively, the eigenfunctions and 

eigencondition for the determination of the eigenvalues (µi) as 
 

 [ ]i i i
1(X) sin( X) tan( ) cos( X)
X

ψ = µ − µ µi   (11) 

 [ ] [ ]i t i t i tsin (1 X ) X cos (1 X ) 0µ − + µ µ − =   (12) 
 

It can be shown that the eigenfunctions ψi(X) present the following orthogonality property: 

 

 
tX

i j
i

1

0,       i j
K(X) (X) (X)dX

N ,     i j
≠⎧

ψ ψ = ⎨ =⎩∫   (13) 

 
where Ni is the normalization integral. Also, one defines i(X)ψ  as being the normalized eigenfunctions. Then, Ni and 

i(X)ψ  are computed respectively as 
 

 
tX

2
i i

1

N K(X) (X)dX= ψ∫   (14) 

 i i(X) (X) / Nψ = ψ i   (15) 
 

Equations (11) and (14) together with the above properties allow the definition of the integral transform pair for the 
potential θ(X,ξ) as 

 Transform: 
tX

i i

1

( ) K(X) (X) (X, )dXθ ξ = ψ θ ξ∫   (16) 

 Inverse: i i
i 1

(X, ) (X) ( )
∞

=

θ ξ = ψ θ ξ∑   (17) 

To obtain the resulting system of differential equations for the transformed potentials i( )θ ξ , the partial differential 
equation (7) is multiplied by i(X)ψ , integrated over the domain [Xb,Xt] in the X-direction, and the inverse formula, Eq. 
(17), is employed in place of the potential θ(X,ξ), resulting in the following transformed ordinary differential system: 

 

 
2

i i
r ij ij i i2

j 1 j 1

d ( ) d ( )
A ( ) F ( ) ( ) D ( ),     i=1,2,3,...

dd

∞ ∞

= =

θ ξ θ ξ
τ + ξ + ξ θ ξ = ξ

ξξ ∑ ∑  (18) 

 
The same operation can be performed over the initial conditions given by Eqs. (7b,c), to furnish 

 
tX

*
i i o

1

(0) K(X) (X)[ (X) 1]dX fθ = ψ θ − =∫ i   (19a) 

 id (0)
0

d
θ

=
ξ

  (19b) 
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 The initial temperature distribution can be obtained from solving the steady-state version of Eq. (4), in the following 
way: 
 

 
*

2 2 *o
o

d (X)d X M X (X
dX dx

⎡ ⎤θ
− θ =⎢ ⎥

⎢ ⎥⎣ ⎦
) 0   (20) 

 *
o 1 1 2 1

1(X) C I (2M X) C K (2M X)
X

⎡ ⎤θ = +⎣ ⎦   (21) 

 
1

2 t
1 1 1

2 t

I (2M X )
C I (2M) K (2M)

K (2M X )

−
⎡ ⎤

= +⎢ ⎥
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  (22) 

 
1

2 t
2 1 1

2 t

K (2M X )
C K (2M) I (2M)

I (2M X )

−
⎡ ⎤

= +⎢ ⎥
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  (23) 

 
where Iν and Kν are the modified Bessel functions. 

The coefficients in Eqs. (18) are defined as follows: 
 

 
tX

2
r

ij ij i j
j

1

M 1A ( ) X (X) (X)dX
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τ
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tX
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j

1
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2
r
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1
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=⎩

 
 

The coefficients may be analytically obtained through symbolic manipulation platforms such as the Mathematica 
system (Wolfram, 2003). Equations (18) form an infinite linear initial value problem, which has to be truncated in a 
sufficiently high order N, in order to compute the transformed potentials, i( ),θ ξ  to within a user prescribed accuracy 
target. For the solution of such a system, due to its expected stiff characteristics, specialized subroutines have to be 
employed, such as the subroutine DIVPAG from the IMSL Library (1991). This subroutine provides the important 
feature of automatic controlling the relative error over the solution of the ordinary differential equations system, 
allowing the user to establish error targets for the transformed potentials. Once this system is solved for the transformed 
potentials, the inverse formula, Eq. (17), is recalled to provide the potential θ(X,ξ), which is added to the Eq. (6), to 
furnish the complete temperature field. 
 
 
3. RESULTS AND DISCUSSION 
 

Numerical results for the temperature field were obtained from a code developed in the FORTRAN 90/95 
programming language. The routine DIVPAG from the IMSL Library (1991) was used to numerically handle the 
truncated version of the system of ordinary differential equations, Eqs.(18) and (19), with a relative error target of 10-8 
prescribed by the user, for the transformed potentials. The complete solution was computed using up to six hundreds 
terms (N ≤ 50) in the eigenfunction expansion, and all the results were obtained with M = 1.0, Xt = 0.5, as well as 
different values of the governing parameters τr and B. 

Tables 1 to 4 show the convergence behavior of the temperature distribution along the fin length with different 
dimensionless relaxation times, and different values of the parameter B and fixed values of dimensionless time. The 
columns solution for the temperature field through GITT, with different truncation orders, N, which demonstrate an 
excellent convergence rate even for N = 20 terms for dimensionless relaxation times τr = 0 and τr = 0.1, as seen in such 
tables. Also, Tables 1 and 2 brings a comparison of the present results with those of Cotta et al. (1993) showing an 
excellent agreement, with at least 3 significant digits. The possible difference among the results is attributed to different 
tolerance employed in the solution of the ODEs system. 



 
Table 1. Comparison and convergence behavior of the present results for τr = 0, B=1, ξ=0.01, 0.1 and  1. 

τr=0, B=1, M=1, ξ=0.01 
N=5 N=10 N=20 N=50 Cotta et al. (1993) X 

θ(X,ξ) 
0.500 0.88624 0.88635 0.88633 0.88633 0.88542 
0.625 0.89749 0.89742 0.89742 0.89743 0.89686 
0.750 0.92356 0.92352 0.92354 0.92354 0.92372 
0.875 0.95855 0.95870 0.95869 0.95869 0.95970 

τr=0, B=1, M=1, ξ=0.1 
N=5 N=10 N=20 N=50 Cotta et al. (1993) X 

θ(X,ξ) 
0.500 0.89120 0.89130 0.89129 0.89128 0.88981 
0.625 0.90201 0.90194 0.90194 0.90194 0.90114 
0.750 0.92706 0.92703 0.92704 0.92704 0.92750 
0.875 0.96059 0.96072 0.96071 0.96071 0.96203 

τr=0, B=1, M=1, ξ=1.0 
N=5 N=10 N=20 N=50 Cotta et al. (1993) X 

θ(X,ξ) 
0.500 0.93859 0.93865 0.93864 0.93864 0.93818 
0.625 0.94475 0.94471 0.94471 0.94471 0.94446 
0.750 0.95897 0.95895 0.95896 0.95896 0.95910 
0.875 0.97789 0.97796 0.97796 0.97796 0.97837 

 
 
 
 

Table 2. Comparison and convergence behavior of the present results for τr = 0, B=10, ξ=0.01, 0.1 and  1. 

τr=0, B=10, M=1, ξ=0.01 
N=5 N=10 N=20 N=50 Cotta et al. (1993) X 

θ(X,ξ) 
0.500 0.88690 0.88701 0.88699 0.88699 0.88613 
0.625 0.89808 0.89802 0.89802 0.89802 0.89748 
0.750 0.92407 0.92403 0.92405 0.92405 0.92422 
0.875 0.95896 0.95909 0.95908 0.95909 0.96005 

τr=0, B=10, M=1, ξ=0.1 
N=5 N=10 N=20 N=50 Cotta et al. (1993) X 

θ(X,ξ) 
0.500 0.91824 0.91830 0.91829 0.91829 0.91761 
0.625 0.92654 0.92650 0.92650 0.92650 0.92614 
0.750 0.94592 0.94591 0.94592 0.94591 0.94613 
0.875 0.97141 0.97149 0.97148 0.97148 0.97207 

τr=0, B=10, M=1, ξ=1.0 
N=5 N=10 N=20 N=50 Cotta et al. (1993) X 

θ(X,ξ) 
0.500 0.98802 0.98803 0.98803 0.98803 0.98801 
0.625 0.98923 0.98922 0.98922 0.98922 0.98922 
0.750 0.99203 0.99203 0.99203 0.99203 0.99204 
0.875 0.99573 0.99575 0.99575 0.99575 0.99576 
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Table 3. Convergence behavior of the temperature field along the fin length for a fixed dimensionless time  
and τr = 0.1 and B=1. 

  τr=0.1, B=1, M=1, ξ=2 
X N=10 N=20 N=30 N=40 N=50 
  θ(X,ξ) 

0.50 0.42194 0.42173 0.42173 0.42173 0.42173 
0.55 1.24530 1.24550 1.24550 1.24550 1.24550 
0.60 0.67133 0.67117 0.67116 0.67116 0.67116 
0.65 0.94256 0.94271 0.94270 0.94270 0.94270 
0.70 1.01390 1.01370 1.01370 1.01370 1.01370 
0.75 0.69843 0.69857 0.69857 0.69857 0.69857 
0.80 1.20910 1.20900 1.20900 1.20900 1.20900 
0.85 0.67934 0.67941 0.67941 0.67941 0.67941 
0.90 1.17280 1.17280 1.17280 1.17280 1.17280 
0.95 0.87142 0.87147 0.87146 0.87146 0.87146 

 
 
 

Table 4. Convergence behavior of the temperature field along the fin length for a fixed dimensionless time  
and τr = 0.1 and B=10. 

  τr=0.1, B=10, M=1, ξ=2 
X N=10 N=20 N=30 N=40 N=50 
  θ(X,ξ) 

0.50 0.79553 0.79549 0.79549 0.79549 0.79548 
0.55 0.94160 0.94164 0.94164 0.94164 0.94164 
0.60 0.84615 0.84612 0.84612 0.84612 0.84612 
0.65 0.90095 0.90099 0.90098 0.90099 0.90098 
0.70 0.92282 0.92279 0.92279 0.92279 0.92279 
0.75 0.87844 0.87848 0.87848 0.87848 0.87848 
0.80 0.97970 0.97967 0.97967 0.97966 0.97966 
0.85 0.90032 0.90035 0.90035 0.90035 0.90035 
0.90 1.00030 1.00030 1.00030 1.00030 1.00030 
0.95 0.96235 0.96239 0.96238 0.96239 0.96239 

 
 

Inspecting Fig. 2 one can analyze the influence of the dimensionless relaxation time on the temperature field along 
the fin length. The governing parameters utilized were B = 1.0 and 10, ξ = 2.0 and τr = 0 and 0.1. As can be seen from 
this figure, for dimensionless relaxation time equal to zero, the thermal wave propagates very fast, as a result of the 
speed of propagation approaching infinity, on the other hand, for the dimensionless relaxation time equal to 0.1, the 
thermal wave travels more slowly than for τr = 0. It is observed for τr = 0.1 that with the increase of the parameter B the 
amplitude of the temperature profile decreases. Such result, it was expected because the parameter B is inversely 
proportional to the heat transfer coefficient h, according to the Eq. (9). As smaller the value of B, larger values for h are 
expected, and therefore the thermal change is more intense, as verified by the higher temperature profiles. 

From Fig. 3 one can also analyze the influence of the dimensionless relaxation time on the temperature field along 
the fin length. The governing parameters utilized were B = 1.0 and 10, ξ = 2.0 and τr = 1 and 5.0. As observed from this 
figure, for these dimensionless relaxation times, the results does not present any physical meaning, in function of 
extremely negative values for the temperature distribution. Such explanation may be because the present hyperbolic  
Cattaneo-Vernotte model presents an inconsistency with the second law of thermodynamics. 

Figure 4 shows the behavior of the Fourier heat conduction model on the temperature field at the fin tip by varying 
the dimensionless time. From this figure, such analysis demonstrates that for τr = 0, the temperature at the fin tip rapidly 
increases with the dimensionless time, as expected, because this value of τr agrees with the classical Fourier model, in 
which the thermal waves are propagated with an infinite speed. As also can be seen from this figure, with the increase 
of the parameter B the heat transfer coefficient decreases and therefore the thermal exchange in the fin is less 
intensified, as it can be observed by the dashed line of this figure, and consequently the temperature rises more quickly 
for this situation. 
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Figure 2. Temperature distribution along the fin length for different values of the parameter B, τr = 0 and 0.1 and  

ξ = 2.0. 
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Figure 3. Temperature distribution along the fin length for different values of the parameter B, τr = 1.0 and 5.0 and  

ξ = 2.0. 
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Figure 4. Temperature evolution at the fin tip (X = 0.5) and for dimensionless relaxation time (τr  = 0). 

 
4. CONCLUSIONS 
 

Hyperbolic heat conduction for a convective conical pin fin, submitted to a time-dependent heat transfer 
coefficient, has been analyzed using the Generalized Integral Transform Technique (GITT). The complete solution was 
numerically obtained through the DIVPAG subroutine from the IMSL Library (1991) with an error-controlled 
procedure, offering reliable results for the fin temperature distribution with different governing parameters. It was 
verified that the GITT approach solves the hyperbolic heat conduction equation accurately; capturing the numeric jump 
discontinuities that are characteristics of hyperbolic problems generated by non-Fourier effects. 
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