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Abstract. Binary mistures separate into two immiscible fluids when quenched below a critical temperature. Once the
process starts, the two fluid domains grow and the interfacial area decreases as a power law with time. This process,
know as spinodal decomposition, is important in the metallurgical, oil and food industries. In this work, a lattice
Boltzmann method (LBM), based on a discretization of the continuous Boltzmann equation using a BGK collision
operator, is used to study the spinodal decomposition. Because of its mesoscopic character, the LBM is suitable for
the  macroscopic  description  of  microscopic  interactions,  as  interface  dynamics  and  capillary  phenomena.  We
investigate the effect  of  domain size,  the viscosities  of  the fluids and the interfacial  tension in  two dimensional
simulations.  The results  obtained  show a very good agreement  with  experimental  results  and other  works.  The
viability of using the present model to simulate two-phase two-component flow is evaluated.
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1. INTRODUCTION

When  a  mixture  of  two  immiscible  fluids  is  quenched  below  a  critical  temperature,  known  as  the  spinodal
temperature,  it  segregates  into  two  phases  with  different  compositions.  This  phenomenon  is  called  spinodal
decomposition and it is a process of significant intellectual and industrial relevance. For 50:50 mixtures, also called
critical or symmetric mixtures, the phases form interconnected domains, which at late times produce a bicontinuous
structure  with  sharp,  well  developed  interfaces.  Once  integral  domains  have formed,  experimental  and theoretical
evidences show that the system evolves with time t in a way that is scale invariant. Hence lengths such as the domain
size R(t) grows according to a power law R(t) ~ tα and the interfacial area A decreases with time as A(t) ~ tβ, β < 0. The
exponents  α and  β are  believed  to  be  universal  (González-Segredo  et  al.,  2003),  depending  only  on  the  growth
mechanism and not on the details of the particular system.

Spinodal decomposition has been studied by experimental, analytical and numerical approaches. The fact that it
involves a lot of mechanisms that can act concurrently and at different time and length scales, has made it an important
test for complex fluid simulation methods.

The lattice Boltzmann method is a mesoscopic approach to simulate fluid flows, based on Kinetic Theory. In this
method, the Boltzmann transport equation is solved with a simplified collision model, the BGK (Bhatnagar et al., 1954).
The  lattice  Boltzmann  model  is  an  efficient  way  to  simulate  hydrodynamics,  coupling  easy  implementation  and
algorithm efficiency due to the simplicity of the Boltzmann-BGK collision operator.

We study the growth of  the  domains  and  the decrease  of  interfacial  area  with  time.  Results  show very  good
agreement with other works and with theoretical prediction.

2. LATTICE BOLTZMANN METHOD

The lattice Boltzmann method can be interpreted as a finite difference solver for the Bhatnagar-Gross-Krook (BGK)
approximation to the Boltzmann transport equation. This method appeared in the end of the 80’s as an extension of the
lattice gas model (Lattice Gas Automata). In the lattice gas, particles in the nodes of a discrete system have a discrete
velocity. After a time interval, the particles move to neighbor sites, according to their velocity. This phase is known as
propagation.  Then the particles  collide and change their  velocity,  at  the collision phase.  After that,  the simulation
proceeds in an alternation between collisions and propagations.

The major inconvenience in lattice gas simulations is the presence of noise. To avoid this noise, is necessary to do
averages over a very large domain and over a long time. The lattice Boltzmann method solves this problem by pre-
averaging the number of particles in a lattice gas site. Instead of one particle at each direction, in the lattice Boltzmann
method a distribution of particles exists at each node, at each direction.

The general form of the discrete Boltzmann equation is shown at Eq. 1, where f represents the distribution function,
which is the concentration of particles that travel with velocity ic , and iΩ  is the collision operator.
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The local density ρ and velocity u are the first and second order moments of the particle distribution f ,
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In order to simulate the behaviour of a immiscible fluid, one particle distribution function is related to each fluid.
The two distributions interact with each other by a potencial, generated by field mediators, Santos et al. (2003). These
mediators are particles with no mass that are emanated from the each site of the domain and whose only effect is to
invert the momentum of particles, simulating the long-range field. Four distribution functions will be used, each one
representing the two types of  particles and their  respective mediators,  ),( TXNi

ψ  and ),( TXM i
ψ ,  where  ψ  = r,  b

represents the type of fluid. Mediator dynamics can be described by equation
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The velocity of mediators mu  is defined as
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Remembering the long-range interactions are expressed by changes in particle velocities,  modified velocities are
defined by the mediator action.
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where the parameter A is related to the interaction intensity and, consequently, to the interfacial tension.
The interaction between fluid particles is modeled by a split collision operator, representing the collision between

particles of the same type and of different types. Considering a single-phase flow, the main collision effect is to relax
the Ni distribution towards a prescribed equilibrium distribution Ni

eq, which can be described by macroscopic parameters
as density and velocity, using a BGK operator
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with the relaxation time represented by ταβ.
Then, the particle dynamics can be stated in the form
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where the single-phase operator ψψ
iΩ  is reproduced by Eq. (8) (ψ = r or b). Although, the two-phase operator ψψ

iΩ

also can be written in Eq. (8) form (ψ = r or b, ψψ ≠ ), the equilibrium distribution has to be calculated with modified
velocities according to Eqs. (6) and (7). The relaxation time τrr refers to the interactions between particles in the wetting
fluid, τbb in non-wetting fluid and τrb in the interface. After a Chapman-Enskog analysis, Santos et al. (2003), these three
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relaxation times can be related to the viscosities of the pure phases and to the diffusivity. The macroscopic equations
obeyed by the fluids  in  the  limit  of  small  Knudsen numbers  are  obtained using a  perturbation method.  The state
equation retrieved by this analysis for the pure fluids is that of a ideal gas and large density gradients are not allowed,
limiting the simulations to fluids with almost the same density. The gravity plays no role in the simulations, which is
equivalent to say that the simulations were done in a horizontal plane.

3. SPINODAL DECOMPOSITION

When  a  mixture  of  two  immiscible  fluids  is  quenched  below  a  critical  temperature,  known  as  the  spinodal
temperature, it segregates into two phases with different compositions. After the domain boundaries have achieved their
thinnest configuration via diffusion, the binary structure that is formed presents similarity over time. In this work, the
dynamical scaling hypothesis was adopted, which states that at late times, when diffusion is no longer important, there
is a unique characteristic length scale which grows with time, so that the geometrical structure is independent of time
when its  lengths are scaled with it.  The parameters  that influence the characteristic  length are the fluids viscosity,
interfacial tension and density provided that no mechanisms are involved in their late stage growth other than viscous
dissipation, fluid inertia and capillary forces. 

Simulations were done to determine the effects of these parameters and to determine the growth of the characteristic
length with time. Interfacial area decrease is also simulated and results are explained in the next sections. Since the
main objective of this work is to determine the later-time growth exponents, we simulate generic fluids. In this manner,
all units that are expressed here are dimensionless.

3.1 Domain Growth

In order to evaluate the characteristic length  R(t), we define the order parameter  ψ as the difference between the
local densities of the fluids.

),(),(),( TTT br XXX ρρψ −= (10)

So the  domain  size  R(t) will  be  the  first  zero  of  the  order  parameter  correlation  function,  defined in  Eq.  11,
according to (Bray, 1994). Averages are taken over shells of radius r.
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Figure 1 shows R(t) for a two dimensional model. The parameters used in the simulation were τrr = 1.0, τbb = 1.0, τrb

= 1.0 and A = 0.4, size of 512² nodes and random initial distribution of ρr and ρb. The exponent found shows very good
agreement with theoretical prediction (Furukawa, 1985) and other works (Chin and Coveney, 2002), (Alexander et al.,
1993) and (González-Segredo et al., 2003) of t2/3. Figure 2 depicts a sequence of snapshots of the density distribution at
various times.

To guarantee that the exponent α is well defined and do not depend on particular arrangement of the initial system,
we ran the simulation with the same parameters as the first one shown, but with different initial displacement. The
results found were the same.

Computational resources limited the simulations to 512x512 nodes. It was observed that, at later times, when the
fluid structures formed had a magnitude equivalent to the domain size, the deviances from the theoretical prediction
were very large. 
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Figure 1 – Evolution of the characteristic size R(t).

The deviation in the beginning of the graph reflects the early-time diffusive stage, when the interfaces are still under
formation trough diffusion. This process is very fast because the initial condition is quite unstable, i.e., a mixture of
fluids that are, in normal conditions, immiscible and that have the diffusivity set to zero. When the first bubbles are
formed, the system evolves following a power law scale, as already discussed. Although the behaviour of the fluid in
the early-stages of the spinodal decomposition seems to follow a power law scale too, Fig.1., the determination of the
exponent of this power law was not done in this work and stay as a open issue for future studies. 

Figure 2 – Snapshots of the simulation at various steps, in a 512² domain. 
The color gradient in the red fluid represents small fluctuations of the local density.

To appraise the influence of the parameters, several simulations were done. Figure 3 shows that red fluid viscosity,
obtained when the parameter τr was changed, does not affect substantially the growth exponent. Data are shown for τr of
0.6, 0.75, 1.0 and 5.0, which corresponds to a viscosity relation ηr/ ηb of 0.2, 0.5, 1.0 and 9.0.
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Figure 3 – Influence of the red viscosity in the evolution of the characteristic size R (t).

3.2 Decrease of interfacial area

When the fluid domains grow, the interfacial area (the total area between the two phases) decreases. As the domain
grows obeying a power law with time, it is expected that the interfacial area decreases as a power law with time as well.

Flow of  immiscible  fluids  is  classically  treated  considering  that  the  transition  layer  has  a  null  thickness  and
performing a momentum balance around this layer. But, the existence of a transition layer where the two fluids coexist
is  inherent  to  lattice  Boltzmann methods,  so  it  is  necessary to  define  a  critical  concentration  that  will  define  the
interface. The concentration of fluid r is defined as ρr/(ρr + ρb), so a fluid node will be considered as being an interfacial
ode if its concentration is between two critical values, e.g., 0.1 and 0.9. The sum of the interfacial nodes will give the
total interfacial area.

The definition of the interface should not alter in any way the exponent found for the power law, because, if it did
so, we should talk in some kind of ideal definition of interface and the results would not be consistent. We simulated the
process with different critical concentration values and no variation was found on the exponent. The only modification
was the reduction of the zero-decrease initial phase, a consequence expected because of the diffusive process occurring
in the beginning of the simulation. Results are illustrated in Fig. 4.

To our knowledge, no work has been done to calculate the area decrease, but there is a lot of works about the fluid
domain growth.  We observed that  the interfacial  area is  very much easier  to  measure,  requiring significantly less
computational effort. In fact, domain growth simulations could not be performed with 1024² nodes due to the huge time
involved.

The later times deviation on the power decrease is a consequence of the size of the computational domain. In Fig. 5
we show the normalized graphic for different computational domain sizes. As the domain grows, the deviation of the
power law scale is postponed to later times. This is expected to occur because larger domains can accommodate larger
structures. When the length of these structures reaches the length of the computational domain, the scale is broken.
Simulations were run for mesh sizes up to 1024², but that demanded very high computational power and time so the
majority of the simulations were run for 512² meshes.
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Figure 4 – Comparison between the interface definitions. No variation on the exponent β was observed.

Figure 5 – Computational domain size effect. Deviations of the power law occur when the fluid structures
 formed are of the same size of the computational domain.

 
In Fig. 6 we show the evolution of A(t) with time. The critical values are 0.001 and 0.999 and the parameters used

in the simulation were τrr = 1.0, τbb = 1.0, τrb = 1.0 and A = 0.4. A 512² mesh and a random initial distribution of ρr and
ρb were used. The initial zero-decrease line represents the interface formation via diffusion, when the interface is still
forming. 
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Figure 6 – Evolution of the interfacial area for a 1024² mesh.

There is, in both graphs presented for the interfacial area decrease, a tail on the right that does not obey the power
law. This indicates the end of the spinodal decomposition process, when the fluid domains have achieved their largest
size and are no longer growing, so the interfacial area does not decrease anymore.

Varying the viscosity of the red fluid did not cause appreciable changes on the growth exponent, so it is expected
that it does not influence the interfacial area decrease as well. We simulated τr equals 0.6, 0.75, 1.0 and 5.0. The results
are depicted in Fig. 7. Divergence is only seen at later times, when the domain size effects diminish the accuracy of
results.

Figure 7 – Effect of the fluid viscosity on the area decrease. On the right side, bottom-up,
the red relaxation time is 0.6, 1.0, 0.75 and 5.0.

4. CONCLUSIONS

A  lattice  Boltzmann  method  has  been  proposed  to  simulate  immiscible  fluids,  in  a  process  of  spinodal
decomposition. We studied both the growth of fluid domains and the decrease of the interfacial area. Results for fluid
domain growth were in a very good agreement with other works and theoretical prediction. To our knowledge, there is
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no work concerning the interfacial area decrease, but the results we found couples with the domain growth rate, as
shown before.

Numerical effects, such as the mesh size and the definition of the interface, were evaluated. We found no influence
of viscosity over the exponents. Further work is necessary to estimate the effects of interfacial tension on this process.
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