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Abstract. The concept of quality of products and services has evolved from attending the functional performance into 
exceeding customer expectations. In this context, the capability to meet increasingly tighter tolerances is paramount 
and is being well supported by enhanced manufacturing processes and new machine-tool technologies. This poses to 
the Metrology area the challenge of developing faster and more accurate measurement systems and evaluating 
uncertainties more precisely. The accuracy of measurement systems is affected to some extent by the algorithms used to 
evaluate form errors. Through a computational perspective, many general-purpose optimization algorithms are 
commercially available and data-processing capabilities have greatly improved. Therefore, this work presents a 
proposal of a pre-processor that enables the use of the commercially available optimization tools for form error 
assessment. A Linear Programming curve-fitting model was developed to provide the mathematical basis for the pre-
processor routines. The model was applied to flatness and straightness error assessment. In order to validate it and 
evaluate its efficiency, a measurement system with integrated software was assembled and experimental tests were 
carried out. The proposed system was compared to the traditional Least Squares algorithm, and the results showed its 
higher accuracy in the evaluation of the error. 
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1. INTRODUCTION  
 

The interactions between market, society and current technology being developed generate stimuli that mould the 
requisites of a competitive product or company. Since these stimuli are dynamic, the concept of competitiveness has 
also been changing during the decades. The economic and industrial scenario around 1960 was characterized by high 
volume production, a low level of diversity of products and services, long product life cycles, low speed of changes and 
a not strong influence of globalization over the markets, that is, more emphasis was given on regional and local markets 
instead of on global ones. The context in this current decade is almost the opposite. 

The main factor of competitiveness of those days was cost. On the next decade, a strong focus was set on quality 
with Deming, Juran and the Japanese engineers, among others. Statistical techniques and problem-solving tools were 
developed to processes control to improve quality. Attending the specifications and improving process capabilities 
became paramount. Later on, a demand for flexibility in the sense of diversification of products and production mix 
produced with lower volumes. In this current decade, short time-to-market and the ability of rapidly changing the 
productive structure and process to launch innovations are being pointed out as the main factors of competitiveness. 

Therefore, the customer choices nowadays are not exclusively driven by quality, but this factor surely still has a 
relevant weight, that is, meeting the project specifications is an expected requirement, a basic pre-requisite for 
competitiveness. Moreover, the level of what is acceptable regarding quality is becoming higher and increasingly tighter 
specifications are being required. Thus, special attention must be given to the measurement systems that can accurately 
assess non-conformities. 

Reliable data is an important input for quality tools such as Statistical Process Control and Design of Experiments, 
as well as for current quality methodologies such as Design for Six Sigma, which is characterized as data-driven 
approaches for problem solving. Accurate measuring systems may be highlighted as an important basis to support these 
quality programs. 

The demand for tighter tolerances is being well supported by enhanced manufacturing processes and new 
technologies for machine-tools. Some of the manufacturing technologies that may be referred include micromachining, 
dry machining, and CAD/CAM interfaces. Also, machines are becoming remarkably faster, more rigid, and, specially, 
more accurate. As a result, evident gains in speed and capability are achieved. 

The context depicted shows that challenge in Metrology consists of addressing topics such as performing faster 
measurement processes, evaluating measurement uncertainties more precisely and developing more accurate 
measurement systems. The accuracy of the algorithms used to evaluate geometrical errors may be emphasized as an 
important component of the general accuracy of a measurement system. Therefore, the general objective of this work is 
to present an algorithm for form errors evaluation as an alternative to the traditional Least Squares Method (LSM), i.e., 



a model that yields a more accurate evaluation and equally easy to implement. This last characteristic should be strongly 
taken into account, being the main reason for which the Least Squares Method has been largely used. Some applications 
of this curve-fitting method can be found in Di Giacomo, Magalhães and Paziani (2003), Forbes (2006), and Gao and 
Kyono (1997), among others. Huang, Fan and Wu (1993), however, draw attention to that LSM provides an 
approximate solution that does not guarantee the minimum zone value and suggest an alternative minimum zone 
method for evaluating flatness errors. 

A considerable number of algorithms have been developed for solving optimization problems. A brief list includes 
the traditional Simplex method, the interior point method, genetic algorithm, Newton-Raphson method and others. 
Many of these computational algorithms are commercially available in optimization packages, but they are usually 
designed for generic applications. The question that rises and deserves attention is how to model the curve-fitting 
problem and correctly set the data to benefit from the use of these algorithms and attain a more accurate error 
assessment. The specific objective of this work is to present a data pre-processor based on a Linear Programming model 
to evaluate form errors. The pre-processor is responsible for converting data into a suitable form so that it becomes an 
appropriate input for the optimization routines. In other words, it sets up matrices and vectors of coefficients to be 
processed by the solver, that is, the optimization tool. 

As a case study, the proposed mathematical model was applied to flatness error assessment of a surface plate and to 
straightness error assessment of steel artifacts. In order to validate it, measurement systems were assembled and 
experimental tests were carried out. A software was developed for gathering data to be used as input to the pre-
processor routines, which on their turn output a set of matrices that are processed by Matlab® optimization package 
tools. It is also a goal of this work to develop a system that can be easily programmed, integrated to commercially 
available tools and thus set for industrial applications. 

This work presents an application of the concepts of Linear Programming that is to some extent diverse from what is 
traditionally developed in the area. Topics such as logistics, transportation problems, Master Production Planning or 
stock portfolio balancing are more usual applications of it rather than curve fitting. In this sense, this research has a 
multidisciplinary perspective. 
 
2. LINEAR PROGRAMMING BASICS 
 

A Mathematical Programming model is an analytical formulation to a problem where the objective is finding an 
extreme point of a function that satisfies a set of constraints. It is an optimization model that aims to minimize or 
maximize a function, named objective function, by systematically choosing values of real or integer variables from an 
allowed set. Linear Programming, LP, it is a specialization of Mathematical Programming where the objective function 
is a linear combination of variables and the set of feasible solutions is specified only by linear equalities or inequalities.  

The standard form of a LP problem is given by Eq.(1). 
 
Minimize or Maximize xcT .  
Subject to (s.t.) bAx ≤  (constraints) 
 0x ≥  (sign restrictions) (1) 
 
where cT is a real vector of coefficients of the objective function, x is the vector of variables, A is a real matrix of 

coefficients of the constraints and b is a real vector. 
One of the most traditional algorithms to solve LP problems is the Simplex method. It requires the problems to be 

converted to the augmented form before starting the iterations. This form introduces non-negative slack variables to 
replace non-equalities by equalities in the constraints, and can be obtained by defining a matrix Aeq and a vector of 
variables x’ as in Eq.(2). The augmented form is presented in Eq. (3). 

 
Aeq = [A  I] and  x' = [x  xsl],  where xsl are the newly introduced slack variables, I is the identity matrix. (2) 
 
Minimize or Maximize xcT .  
s.t. eqeq bxA ='  
 x’≥ lb,  where cT, A, x and b are the ones defined in Eq. (1) and lb is the vector of lower boundary values for x’(3) 

 
The equalities and inequalities that express the constraints define a subset of Rn space that is a closed convex 

polytope, which is called the feasible region. Basically, there are two situations where the problem does not have an 
optimum solution. One of them is if the inequalities contradict one another and do not define a feasible region, that is, 
the feasible region is empty. The other alternative is in the case of an unbounded problem in the direction of the 
gradient of the objective function, when maximization is being performed, or umbounded in the opposite direction of 
the gradient when the function is being minimized. Excluding these particular situations, the convexity of the feasible 
region and the linearity of the objective function imply that an optimal solution can only occur at a boundary point of 
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the feasible region, unless the objective function is constant. This solution is not necessarily unique since the optimum 
points may lie on an edge or face of the polytope. It can be stated, however, that if an optimum solution exists, there is 
at least one optimum solution located in one vertex of the polytope. Moreover, it can also be stated that the set of 
feasible solutions is infinite, but the set of the ones located in the vertices is finite. These statements are proved by 
fundamental theorems in LP theory, and most of the algorithms are based on them. 

According to Simplex method, an initial feasible solution is taken in the vertex of the polytope. If the objective is a 
maximization, at each iteration an adjacent vertex is chosen such that the value of the objective function does not 
decrease. As this vertex is not usually unique, a pivot rule is established to determine which one must be chosen. For the 
case of maximization, the optimization ends when no vertex can be found such that the function value increases. 

In contrast to algorithms that remain on the boundary searching for the optimum point, there are other ones called 
interior point methods that try to improve the value of the function by moving across the interior of the feasible region 
until the vertex of the optimum solution is reached. 

As it is valid for other modeling efforts, the effective application of Linear Programming requires a pertinent 
interpretation of the obtained analytical solutions and a good understanding of the underlying modeling assumptions. 
Rather than being concerned with the numerical algorithm, this work set the focus on the understanding of the modeling 
process. 
 
3. THE LINEAR PROGRAMMING MODEL FOR FORM ERROR ASSESSMENT 
 

The evaluation of form errors consists of assessing the deviations of a measured profile from the ideal geometric 
form that the actual profile is expected to have. Therefore, in order to assess the straightness, flatness or roundness 
errors of a part, a reference straight line, plane or circle must be firstly fitted to the set of data. In other words, the 
evaluation depends on the determination of the parameters of the best-fit geometric entities. The method of extreme 
points has its importance in practical situations since it has a physical sense. For instance, one practical way of assessing 
the straightness error of a part would be laying its two extremities on leveling devices on a reference surface plate, 
aligning these extreme points and then reading the total range of deviation with a dial indicator. 

The accuracy required for some applications and the evolution of computers justifies the use of mathematical curve-
fitting methods. The basic concept of discrete curve fitting theory is simultaneously minimizing the set of deviations of 
each data point in relation to each corresponding value yielded by the function chosen for approximation. The deviation 
can be stated as in Eq. (4): 

 
 [ ]∑−=

j
ijjiii xgaxfxad )()(),(  (4) 

 
where di represents the deviation of the i-th point, a is a p-dimensional real vector a = (aj), f(xi) is the value of the 

real-valued function f at point xi and gj(x) is a set of real-valued functions (0 ≤ j ≤ p) used for the approximation. 
For the intended application, the combination of coefficients aj and functions gj(x) should represent the equations of 

geometric entities such as planes, straight lines or circles. Taking Eq. (4) as a basis, the LSM principle consists of 
minimizing the sum of the squares of the deviations. The Chebyshev Norm, L∞, seeks to minimize the maximum 
deviation of the set of deviations. In this case, as the determination of the maximum deviation depends on the 
parameters of best fit form and both of these things are unknowns, an iterative process is required to solve this problem. 
The curve-fitting method, also known as Minimax, can be modeled as a Linear Programming problem and iterative 
optimization tools can be applied. Equation (5) below shows the objective function of the problem. 

 
Minimize ( nmidi *,...2,1;max = ) (5) 
 
The relationship between the deviations and the parameters of the best-fit geometric form, or the limitations for the 

values that variables di can assume are stated in Eq. (4), which constitutes the first set of constraints of the problem. 
Depending on the relative position of the experimental data points and the points of the curve at a given coordinate, the 
sign of the deviations might be positive or negative. It is a requirement of Simplex and other optimization algorithms to 
work in non-negative algebraic spaces. In order to fulfill this condition, the deviations must be written as a difference of 
two positive real numbers ui and vi which enables rewriting Eq. (4) into Eq. (6). 

 
[ ] )()( iii

j
ijj xfvuxga =−+∑  (6) 

 
The variable change shown in Eq. (7) must be applied to eliminate the modulus operator in the objective function 

statement. This procedure leads to another set of constraints that directly result from the definition of the new variable h 
as the maximum of deviations. These constraints are presented in Eq. (8). 



 
mihdi ,....,2,1;max ==  (7) 

 
mivudh iii ,...,2,1, =−=≥  (8) 

 
The modulus operator in Eq. (8) may be eliminated with the use of a derived form from the triangle inequality for 

normed vector spaces, shown in Eq. (9). After some careful mathematical analysis, it is possible to show that Eq. (8) 
may be replaced by Eq. (10).  

 
iiii vuvu +≤−  (9) 

 
ii vuh +≥  (10) 

 
The sign of the parameters aj is unrestricted. To turn them into positive variables is enough to use the same kind of 

variable change previously described for the deviations id , which results in Eq. (11).  
 

pjaaa jjj ,...1,0),( =−= −+ , where aj
+ and aj

- are variables that may assume just positive values. (11) 
 
The proposed LP problem for general form error assessment is a combination of Eq.(5), (6), (10) and (11), that are 

summarized in Eq. (12). 
 
Minimize h 
Subject to:      0≤++− ii vuh  

                        [ ] )()()( iii
j

ijjj xfvuxgaa =−+−∑ −+ ,   with 0,,,, ≥−+
jjii aavuh  (12) 

                         
As a case study, the proposed model was applied to assess the straightness error of two different artifacts and the 

flatness error of a surface plate. It was considered relevant to present the specific equations of the model applied to 
flatness error assessment since the equations for straightness error evaluation can be easily derived from the first ones. 
For the selected case, the combination of functions gj should represent an Euclidean plane. These functions are 
dependent on two variables and p = 2, that is, j varies from 0 to 2. The function f(xi) that appears in Eq. (6), in this case, 
also depends on two variables and represents the measured data. All these functions are defined in Eq. (13). 

 
1),(0 =yxg ; xyxg =),(1 ; yyxg =),(2 ; f(xs, yt)= zi (13) 

 
where zi is the measured height at a point of coordinates (xs,yt) of the surface. The variation of the indices s, t and i 

are shown in Eq. (14). 
 

1,...,2,1,0 −= ms ; 1,...,2,1,0 −= nt ; nmi *,...,2,1,0=  (14) 
  
After these considerations, the final form of the LP model for flatness error assessment is presented in Eq. (15). 
 
Minimize h 
Subject to:      0≤++− ii vuh   
                        iiittss zvuyayaxaxaaa =−+−+−+− −+−+−+ )(221100  (15)  
                        0,,, ≥−+

jjii aavu  
 
The optimization of this model provides the parameters aj of the best plane and the maximum deviation h. This 

variable represents the symmetrical distance from the best-fit plane to the farthest measured point above it and below it. 
Therefore, the flatness error is, by definition, twice the distance h. 

The inputs for the optimization solvers are matrices of coefficients and vectors of independent terms that correspond 
to the presented mathematical model. A preprocessor was developed to set these matrices. The information about the 
dimensions of the matrices and about the variation range of the indices s, t and i must be taken from the experimental 
data set. For flatness error assessment, data is collected on an orthogonal grid. Hence, the indices s and t vary according 
to Eq. (14), where m is the number of horizontal lines that form the grid and n is the number of vertical ones. Moreover, 
the total number of intersections of the grid is given by the product m*n, which is equivalent to the total number of 
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coordinate pairs (xs,yt) on the grid. For each one of these pairs there is an associated height zi. This explains the variation 
range of index i. 

A vector V containing all variables used in the optimization must be established. The order of variables might be 
arbitrarily defined provided that the matrices of the coefficients are set respecting the chosen order. One of the 
possibilities for the definition of V is presented in Eq.(16). 

 
[ ]nmnmoo vuvuvuaaaaaah **22112211 ...−+−+−+=TV  (16) 

 
The values of the coordinates xs and yt that appear in the matrices of coefficients correspond to the coordinates of a 

Cartesian plane multiplied by the measurement step, named b here as it coincides to the base of the measuring 
instrument. Matrix Aeq of constraints in the form of equalities stated in Eq. (15) is presented as an example. The 
remaining matrices and vectors used in the optimization are defined in a similar way. 
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4. MEASURING SYSTEMS FOR THE CASE STUDY 
 

In order to validate the algorithms, prospective tests were firstly performed, using data and results already published 
in other works. After that, a series of experimental tests were carried out using two distinct measuring systems. The first 
one was assembled for straightness error assessment and basically included a six-degree-of-freedom industrial robot, 
three LVDT type probes, a probing device, a PC and interface components such as an analogue to digital conversion 
board. Two steel artifacts were measured using the Sequential Three Points Method. Error separation techniques were 
applied to the collected raw data and two data sets of interest for this work were provided: straightness profile data of 
the measured artifacts and vertical straightness profile data of the robot translational movement. The algorithm to 
perform the error separation was developed by Di Giacomo et al. (2005). It does not constitute the scope of this work to 
specifically describe this measurement system and the error separation model. The works just cited, as well as the work 
of Paziani (2005), focus on these topics in details and bring valuable discussions such as the strategies used to overcome 
the issue of the zero adjustment errors of the sensors. 

A second measurement system was assembled exclusively to enable the application of the Linear Programming 
model for flatness error assessment. It basically consisted of an electronic Level interfaced to a PC, a surface plate and 
data acquisition routines. The electronic Level was employed to perform the measurements due to its advantage of 
allowing a much faster measuring process in comparison to the laser interferometer. The instrument was connected to a 
PC by means of a 12-bit resolution Analog to Digital (A/D) data acquisition board to convert into digital the analogue 
signals to the computer. Before the conversion, these signals were amplified so that the output voltage of the instrument 
matches the input range of the board, thus making a better use of the available range of A/D numbers. 

Special attention was given to the interface between user and measurement system, so a software with graphical user 
interface (GUI) was developed. Mainly, it requires the user to inform the dimensions of the measured surface and the 
length of the base of the Level. The software also provides a map and a sequence of measurement. Additionally, the user 
may provide an input value to the routine that represents the difference between consecutive readings of the Level and is 
used to verify its stability before data is collected. In other words, the software will not record a data point until a certain 
level of stability of the instrument is reached. If this input value is not provided by the user, a default value is used. 

An area of 500 mm x 300 mm of a granite plate was measured. First, an orthogonal grid was mapped on the surface 
and one corner was taken to be the reference of the system, where the zero of the instrument was set. One direction of 
the grid parallel to the horizontal or vertical lines must be chosen as the main direction. Each line in this direction may 
be referred to as a generator. The angles between consecutive points along each generator were measured at steps 
corresponding to the base of the Level. The instrument provides relative measurements, i.e., it outputs the difference of 
height between two points in terms of angle. Thus, the height of the t-th point measured along each generator 
corresponds to a sum of all the previous values of height from the origin of the generator to the considered position. 
This is presented in Eq.(18). 

 

∑=
t

stst bz
0

sin.' α , for t ≠ 0,  and 0' =stz , for t = 0 (18) 



 
where s and t vary according to Eq.(14), z’st is the height of the t-th point measured along the s-th generator, b is the 

length of the base of the Level and αst is the measured angle between the points (s,t-1) and (s,t). The points where t is 
zero are denoted here as the origins of each generator. 

In fact, the procedure described so far provides straightness profile data of each generator. In order to obtain flatness 
profile data, the relative height between generators must be determined. In other words, each cumulated height along 
the line that is orthogonal to the generators and pass through their origins has to be added to the straightness profile of 
each respective generator, according to Eq.(19). 

 

st

s

sst zbz 'sin.
0

+= ∑ β , (19) 

 
where 000 =z , βs is the angle measured between the points s-1 and s along the straight line passing through the 

origin of the generators (t=0), and zst = z’st for s = 0. 
As a result of this procedure, all measured data refer to the two initial points where the Level was set to zero, and a 

matrix of flatness profile data is obtained. This matrix will be firstly read by the preprocessor, providing information for 
the optimization matrices set-up, and will eventually be an input for the optimization solver. Equation (18) and Eq. (19) 
will be relevant for calculating the uncertainty associated to the flatness error. 
 
5. PRE-PROCESSING ROUTINES 
 

Pre-processors are well-known tools used to improve the data flow in a data processing system, to prepare data for 
the application of a certain algorithm and, in some cases, to set starting conditions that reduce the number of iterations 
required by an algorithm. The work of Lee and Kim (1996) illustrates the use of pre-processors in Engineering 
Optimization. Benzley et al (1995) also provide an example where pre-processing techniques were used to increase the 
functionality of finite element method. 

A preprocessor was developed to generate matrices and vectors that correspond to the developed mathematical 
model. It constitutes a key element of the measuring system as it integrates the collected raw data to the solvers of LP 
problems by turning this data into suitable inputs for these tools. The main procedures it executes are summarized in the 
block diagram of Fig. 1. 
 

 
 

Figure 1. Block diagram of the preprocessor routines 
 
The output of the developed acquisition software described in topic 4 is a data file with straightness or flatness 

profile data. The pre-processor routines start by reading this file, as shown in block A of Fig. 1 shows. The dimensions 
of the matrices and vectors used in the optimization derive from the dimensions of this matrix of raw data. The vector 
cT of coefficients of the objective-function is an array with1 in the first position, which corresponds to the position of 
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variable h, and zero in all the remaining positions. In block D, some subroutines set the matrices of coefficients of the 
constraints following the formats shown in Eq. (15). Also, according to the model, the flatness data matrix must be 
converted into a vector. This conversion is performed in block E. Once all the inputs are set, the pre-processor starts the 
optimization tool that comes up with the error value. The pre-processing subroutines were developed in Matlab’s 
environment since the subroutine used to solve the LP problem, linprog, belongs to Matlab’s optimization package. 
This tool requires, as arguments, the coefficients vector for the objective-function; the matrix A of coefficients of the 
constraints in the form A.x ≤  b as presented in Eq.(1); the real vector b; the matrix Aeq of coefficients of the constraints 
in the equality form Aeq.x = beq shown in Eq.(3); the real vector beq; and the real vector lb of sign restrictions for the 
variables, i.e., x ≥  lb, also presented in Eq.(3).  
 
6. RESULTS AND DISCUSSIONS 
 

The curve-fitting algorithms were applied to sets of straightness data profile of each artifact. The straightness profile 
of the robot movement can be obtained from each measurement of the artifacts, after error separation is performed. In 
other words, for each data set of an artifact there is an associated data set of the profile of the movement of the robot. 
Table 1 to 4 present the values of the errors obtained using the proposed Chebyshev method and the LSM.  
 

Table 1. Straightness errors values for the artifact no. 1 
 

 Straightness errors (micrometers) Differences 
Test Proposed Method LSM Micrometers Percentage 
1.1 37.3 43.8 6.5 17.3% 
1.2 31.8 36.9 5.0 15.8% 
1.3 36.3 42.0 5.7 15.7% 

Average 35.2 40.9 5.7 16.3% 
 

Table 2. Straightness error values of the robot motion measured with artifact no. 1 
 

 Straightness errors (micrometers) Differences 
Test Proposed Method LSM Micrometers Percentage 
1.1 104.4 113.4 9.0 8.61% 
1.2 99.4 109.4 10.0 10.01% 
1.3 105.8 116.8 11.0 10.40% 

Average 103.2 113.2 10.0 9.67% 
 

Table 3. Straightness errors for the artifact no. 2 
 

 Straightness error value (micrometers) Differences 
Test Proposed Method LSM Micrometers Percentage 
2.1 112.3 120.8 8.5 7.6% 
2.2 105.8 114.2 8.4 7.9% 
2.3 110.1 118.4 8.3 7.5% 
2.4 108.9 116.8 7.9 7.3% 

Average 109.3 117.5 8.2 7.6% 
 

Table 4. Straightness error values of the robot motion measured with artifact no. 2 
 

 Straightness error value ( micrometers) Differences 
Test Proposed Method LSM Micrometers Percentage 
2.1 90.4 93.7 3.3 3.6% 
2.2 87.7 88.6 0.9 1.0% 
2.3 92.1 93.3 1.2 1.3% 
2.4 91.1 93.6 2.6 2.8% 

Average 90.3 92.3 2.0 2.2% 
 

The observed differences for the error of the robot movement, presented in Tab. 2 and Tab. 4 are due to the fact that, 
as the artifacts are different, the robot moves along different action lines while measuring each artifact. 

The straightness profile of artifact number one is shown in Fig. 2. The measurement step for the Sequential Three 
Points Method, by definition, coincides with the distance between sensors which is, in this case, 18mm. Figure 2 also 



shows the straight line adjusted by the proposed method and the straight line yielded by the Least Squares Method. 
Similarly, Fig. 3 show the straightness profile of the robot motion associated to the measurement of artifact no. 2 in the 
test 2.3. and the best-fit straight lines. 
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Figure 2. Straightness profile of the artifact no. 1 measured in test 1.1 and best-fit straight lines adjusted by the proposed 

method and by LSM 
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Figure 3. Straightness profile of the robot motion measured in test 2.3 and best-fit straight lines adjusted by the 
proposed method and by LSM 

 
The results for the flatness error assessment of a 500x300 mm2 granite surface are shown in Tab. 5, while Fig. 4 

presents a graph of the measured surface. 
 

Table 5. Error values of a granite flat surface 
 

 Flatness error value (µm) Differences Uncertainty values at 95% (µm) 

Test Proposed  
Method LSM Micrometers Percentage Proposed 

Method(us) 
LSM (uLS) uLS/us 

1.1 10.1 10.3 0.2 1.98% 1.28 2.16 1.69 
1.2 10.1 10.3 0.2 1.98% 1.28 2.16 1.69 
1.3 10.2 10.4 0.2 1.96% 1.26 2.16 1.71 

Average 10.1 10.3 0.2 1.97% 1.28 2.16 1.69 
 
In this case, there are two possible choices of directions for the generators. Two preliminary tests were carried out, 

one for each direction, to check out which evaluation would yield the higher value of error. This direction was taken for 
the subsequent tests because otherwise, the value of the error would be underestimated. However, once the set of data is 
defined, special attention should be given to the curve fitting models that come up with smaller values of error. 
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Figure 4. Graph of the measured surface 
 

It can be observed that, for the same set of data, the errors values that were obtained using the proposed algorithm 
are always smaller than the ones evaluated by LSM. In some cases, this difference is of up to 17%. Moreover, for 
straightness error evaluation, the differences in percentage between the evaluations varied within a significant range. 
The first consideration to be taken about this fact is that the differences are higher as long as the angular differences 
between the best-fit straight lines are more significant. In other words, the higher the difference between the angular 
coefficients of the straight lines, the bigger is the difference between the values of error that are obtained using each of 
the two methods. A significant angular difference between the straight lines can be seen in Fig. 2, for which the 
difference of error values is 17.3%, whilst in Fig. 3, the best-fit lines are almost parallel and the difference is 1.3%. 
Second, in the Least Squares Method, all the points are used by the algorithm in the computation of the error, i.e, each 
one of the points contribute to adjust the best-fit curve. On the contrary, when Chebyshev Norm is applied, just the 
points that present maximum deviations are considered in the curve fitting, that is, the best-fit curve is defined just by 
these points. This explains why the LS straight line in Fig. 2 has a significant positive inclination, reflecting the 
predominant positive inclination of the profile, whereas the inclination of the Chebyshev straight line is almost null. It 
can be seen that the increasing portion of the profile corresponds to two thirds of the data points and this increasing 
trend influences the Least Squares algorithm. It could be asked whether the horizontal straight line yielded by 
Chebyshev algorithm, in this case, is representative of the profile. The answer is affirmative as far as this best-fit line 
leaded to a smaller value of error. 

A parenthesis that may be stated here about the proposed method is that, for straightness error assessment, the 
maximum value of deviation h where verified at three points, which defined the best-fit line, whereas for flatness error 
assessment there were found four points in the referred conditions. These results are in accordance to the theorem 
attributed to de la Valle Poussin, presented by Kelley (1957) and Goldstein, Levine and Hereshoff (1957), what 
contributes to validate the developed mathematical model.   

The fact that Chebyshev curve-fitting method always presented smaller values of error for a given set of data 
corroborates its higher accuracy in the assessment. Additionally, the capacity of today’s computers justifies and 
stimulates the use of more complex algorithms, in terms of computational processing, than the traditional ones.  

Although the proposed algorithm is iterative and should, therefore, require more time to be solved, its computational 
processing time for each test was of the order of 100 seconds, which is comparable to the efficiency of the Least Squares 
Method. Efficiency is also a strong feature of the measuring system assembled for straightness error assessment since it 
is dedicated and designed for high-volume inspection. On its turn, the electronic level presents advantages over other 
instruments such as the laser interferometer due to the fact it requires much smaller setup times. Regarding costs, 
electronic levels are cheaper than interferometers and certainly cheaper than Coordinate Measuring Machines. 

Besides time and economic factors, some other aspects to be analyzed in the evaluation of the success of a project or 
application include human factors. Considering these latter ones, the ability of the user could affect, to some extent, the 
accuracy in positioning the instrument. Some error-proof tools were included in the programs, such as a measurement 
map and a check for the instrument stability, with the purpose of reducing this influence. In addition, the analysis of the 
uncertainty of the flatness error showed that positioning errors of up to 1 mm in the directions x and y contributed at 
least 1000 times less to the combined uncertainty than the uncertainty associated to the determination of the heights in 
the coordinate z. 

Finally, although the differences in Table 5 are of less than 2%, the smaller value of uncertainty provided by the 
proposed method must be highlighted as another important advantage of it. The explanation for this result comes from 
the fact that in the Chebyshev-Simplex method, the parameters of the best-fit plane and the maximum deviation h are 
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determined in the same level, and all these values are yielded by the model simultaneously. Thus, the calculation of the 
value of the error, i.e, the calculation of the value of h, just depends on the experimental data. In the Least Squares 
method, on the contrary, first the parameters of the best-fit plane are determined based on experimental data and then 
the value of the error is computed based on these parameters. In this case, an extra level of uncertainty is introduced 
since part of the uncertainty in the determination of the error comes from the uncertainty in the determination of the 
best-fit plane parameters. Therefore, the value of the uncertainty of the measurement, in this case, is dependent on the 
algorithm used for the evaluation of the error. 
 
7. CONCLUSIONS 

 
For non-ordinary applications, where tighter tolerances and manufacturing processes with high capabilities are 

required, it is essential to provide measuring systems with higher accuracy. These cases justify the use of more complex 
algorithms such as the Least Squares Method or the Minimax instead of conventional GD&T procedures to assess form 
errors. Attention should be taken when collecting discrete data, to guarantee that a given set is representative of the 
profile of the part and that the error is not being underestimated. However, for a given set of data, a model that provides 
smaller values of errors is certainly more accurate and should be preferred. The results proved that the difference 
between the evaluations provided by the developed method and the LS Method may be significant. Moreover, an 
analysis showed the advantage of the proposed model regarding the associated measurement uncertainties. 

A considerable set of general-purpose optimization tools is commercially available and computational capabilities 
do not constitute a limitation at all. The proposed pre-processing techniques have a major role in enabling the use of 
these tools for form error assessment, which, otherwise, would not be possible. The developed model of preprocessor 
may be used with other optimization solvers, as long as it is adapted to set the correct format of inputs required by these 
solvers. 
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