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Abstract. This paper considers several procedures to process experimental data for polymeric materials in time 
domain. The raw experimental data are, usually, of total relaxation or total creep tests. However, numerical 
computation requires the knowledge of deviatoric and volumetric contributions. This paper utilize  the differential 
constitutive equation to derive several relations between the material parameters, aiming to processing experimental 
data obtained in total creep tests, and extract material parameters of total relaxation modulus, deviatoric and 
volumetric modulus, constitutive equation and rheological mechanical parameters . 
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1. INTRODUCTION  
 

Although not all polymers behaves viscoelasticaly, and not are linearly viscoelastic, this theory provides a usable 
engineering approximation for many applications in polymer and composite structural parts. Common plastics used in 
today’s industry are required to withstand working loads for long periods of time, in some cases periods of ten to fourty 
years. It is important to be capable to perform time experimentations of common rigid polymers like PVC, in different 
conditions of temperature, humidity, age and other aggressive agents. Also, these data have to be processed to render 
the material information into material models, which, in turn, are to be used in finite element codes to perform the 
structural analysis of components. 

Many different types of functions have been used to describe creep effects in plastic, in addition to Prony series, for 
instance, laws based on power laws and based on a kernel of the form Exp( / ) .mt τ  This last form was proposed still in 

1847 by Kohlrausch and is extensively used by Tomlins (1994, 1996) and by Struik (1987a,b, 1989), among others, to 
describe the creep of both, semicrystaline and amorphous polymers (which include rigid PVC, PP, HPDE, PP, among 
the most used in industry) over limited timescales. The power laws are observed to model adequately experimental data 
in the intermediate range of the time span, but it is unable to fit correctly the beginning of the curves. However, none of 
these families of functions posses consistent physical or mathematical grounds, as does the Prony series. Another type 
of functions also able to model experimental data over arbitrarily large time periods are series based on Mittag-Lefler 
functions, which are solution of constitutive equations based on differential equations of fractional order. 

The linear viscoelastic material behavior can be represented by different formulations, of which we consider the 
following: 

I. Differential equations  usually associated with a rheological spring-dashpot model, like the generalized Kelvin-
Voigt and generalized Maxwell (also denominated Wiecherst model). Therefore, the material can be characterized 
by the knowledge of one of the sets of constants: 

a) The set of parameters in the differential equation; 
b) The set of spring and damping “mechanical” parameters in the generalized rheological model; 

II. A second type of representation for the material properties are through a function which represent the material 
response to one of the simple standard tests, of which the most usual are: 

a) Creep tests, where a specimen is subject to axial tensile loading (or bending, compression or torsion 
ones), uniform in time, and deformation is recorded. 

b) Relaxation tests, where the specimen is subjected to tensile deformation, constant in time, and the 
stress evolution is recorded; 

c) Dynamic tests, where a uniform oscillatory signal of stress or strains are applied to the specimen. 
 
Additionally, one observes that a number of special tests have been designed (see Lemetre and Chaboche, 

2000, for instance). The constants associated with any of the five groups above listed completely characterize the linear 
viscoelastic behavior of the material, within the limitations of the model itself. Each one of the three standard tests 
generates its particular set of material constants. Usually, only one type of test is performed to characterize the material. 
The need for multiple tests appears, for example, when the dynamic test is conducted to extend the time spectrum of 
creep or relaxation tests to low values, in the range where time tests are not practical. However, for rigid plastics, 
numerical structural analysis in time domain rarely requires data in times inferior of 10 seconds, such that a single type 



of test, creep or relaxation, is sufficient.  The type of test can be chosen simply by the availability of equipment and 
personnel in a given laboratory. When one considers the utilization of the material properties in structural analysis of a 
part, one notices that each algorithm, each numerical procedure and each commercial finite element code, requires a 
proper set of material constants. In this situation, it is important to have available efficient procedures to recast one set 
of material constants into another among the standard tests. 
 A second type of constant conversion is between one of the sets in the group II above and one of the sets of 
group I. Although the parameters of the Prony series in sets II(a) and II(b) have to be non-negative, the procedures of 
least square errors used to process experimental data do not always produce coherent values. A conversion to the 
mechanical parameters in set I(b) provides an additional test for soundness of the parameter determination. Also, the 
knowledge of constants of any of the two sets I(a) and I(b) enables direct computation of the results in any of the 
standard tests in group II. 
 In what concerns numerical structural analysis, it is important to observe that a single standard test is not 
enough to characterize a material, even a linear isotropic one, in the way it is usually considered in applications where 
the only concern is quality control or comparison between different material compositions. For the isotropic material, 
two independent time functions are needed, being the most usual the following: 

(a) Elastic modulus and Poisson coefficient; 
(b) Volumetric and deviatoric modules; 
(c) In frequency domain, the storage and loss modules. 
 
Few works are available on interchanging between different sets material properties. Flugge, (1975), Findley at 

alli (1976) and Christensen (1982), among others, present relations between relaxation (or creep) modulus and complex 
modulus. The formulations are left open for a generic function J(t) or G(t), etc., or are, at best, developed only to short 
chains of Kelvin-Voigt or Maxwell models. However, the character of the exponential basis in the Prony series makes 
the development of the formulation for arbitrarily long chains by no means a simple task. In this paper a brief treatment 
is given for relationships between some of the parameter sets listed above, with emphasis in the computation of 
deviatoric relaxation constants from experimental total creep test data. 

  
The organization of the paper is the following: first, the constitutive equation for a viscoelastic linear solid is briefly 

derived following the classic development, according to a generalized Maxwell model, using Laplace transform. The 
constitutive equation in differential form and its Laplace counterpart are determined, and a relationship between the two 
sets of material parameters, mechanical and constitutive sets, is established. Next, the creep modulus is obtained in form 
of Prony series, and its parameters are related with the constitutive constants. Likewise, the Prony series of the 
relaxation modulus is obtained and its constants are related with mechanical parameters of the material. The Prony 
series for the relaxation deviatoric modulus is derived for a material with elastic bulk modulus, in terms of the creep 
parameters. A set of experimental creep data is processed to test all different relationships developed, performing a 
close loop, from creep data to creep Prony series to relaxation Prony series, to mechanical parameters, to constitutive 
parameters and back to creep Prony series. 
 
2. RELATIONSHIP BETWEEN CONSTITUTIVE AND STANDARD TESTS MATERIAL CONSTANTS 

 
Let one consider the well known generalized Maxwell model of order N, consisting of a single spring with constant 

ko in parallel with N Maxwell spring-dashpots units (see standard texts as Flugge, 1975, Findley at alli, 1976 and 
Christensen, 1982). The constitutive relation for the model is obtained considering that, for an arbitrary unit, 
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Where [ ]L i  denotes Laplace transform of [ ]i  and s is the coordinate in the Laplace domain. Expanding the 

denominators and collecting terms one obtains the standard form of the constitutive relation in Laplace domain 
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The inverse Laplace transform of Eq. (3) gives the constitutive equation in differential form as 
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The set of 2N – 1 constitutive parameters, p’s and q’s, relates to the 2N – 1 mechanical parameters by 
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Other pj can be obtained exchanging k and m in the expression of pN-j. Parameters qj are the following: 
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and .o oq k=  Other jq  are obtained exchanging k and m in the expression of 1N jq − + . 

 The solution for the creep test with constant stress oσ  is obtained substituting [ ] /oL sσ σ=  in Eq. (3), which 

generates the creep modulus J(t), which Laplace transform is [ ] ( ) / ( ).L J P s sQ s=  The N roots jδ  of the polynomial 

Q(s)/qN allows its representation as 
1

( ) / ( ).
N

N j
j
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=

= −∏   This operation renders the inverse transformation of L[J] to 

be easily performed, resulting in the Prony series 
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where 1/j jρ δ= −  and Bj form the set of creep parameters. Its relationship with the set of constitutive constants, p’s and 

q’s, is the following 
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 An additional parameter is the initial value of J(t), (0) .o jJ B B B∞= = −∑  In case the creep parameters are 

approximately known from experimental data fitting, the constitutive parameter can, in principle, be estimated, as 

follows. The form ( )
1

( ) /
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collected, resulting 
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The pattern is followed until ( )
1

1 .
N
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= − ∑  Next, one equates the coefficients of both polynomials in Eqs (4) and 

(10), resulting  
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This is an explicit algebraic system of equations for the constitutive constants q’s, which can be directly solved once 
δ ’s and f’s are known from experimental data and Eqs. (11). Determination of the remaining constants, p’s, is 
performed recognizing Eq. (9) as an algebraic system in terms of p’s, which can be recast in matrix form as 
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The system can, in principle, be solved, but the matrix D is extremely ill conditioned. In practice, a more efficient 
method should be seek to generate the values of p’s , as the procedure introduced in Eqs. (16)-(17). 
 The solution for the relaxation test, performed with constant deformation oε , is obtained substituting 

[ ] /oL sε ε=  in Eq. (3), which generates the relaxation modulus [ ] ( ) / ( ).L Y Q s sP s=  The N roots jζ  of the polynomial 
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obtained in the form of a Prony series 
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where the characteristic times 1/j jλ ζ= −  and the strengths jC  form the set of relaxation parameters. Its relationship 

with the set of constitutive parameters, p’s and q’s, it the following: 
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This procedure is analogous to that of creep modulus, Eqs. (8)-(9), but the relationship of the relaxation constants λ ’s 
and C’s, with mechanical constants k’s and μ ’s, is extremely simple. In fact, one can prove that it reduces to the 

following: 
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Also, it is frequently useful defining the initial relaxation modulus 
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constants are easily obtained from relaxation test results. Since the creep constants are not as amicable to generate other 
constant sets, instead of using Eqs. (12)-(13) to obtaining p’s and q’s, it is easier to convert directly creep into relaxation 
constants using the known relationship in Laplace domain 
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Once the relaxation set is known, Eqs. (16) produce the mechanical set and, in turn, Eqs. (6)-(7) produce the 
constitutive set. 
 
3. DETERMINATION OF PRONY SERIES FOR DEVIATORIC RELAXATION MODULUS 
  
 Let one consider the bulk and deviatoric modules pair for characterization of an isotropic viscoelastic material 
under three-axial state of stress and strains. These modules can be obtained in time domain from one of the standard 
tests of creep or relaxation. For many metal and polymeric materials, the bulk modulus can be considered to be 
insensitive to viscous deformation, such that it can be considered purely elastic, such that 
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where elE  and elν  are the elastic modules and Poisson coefficient, respectively, obtained from a separate test. The 

deviatoric relaxation counterpart, G(t), has to be derived indirectly from one of the standard tests. One alternative 
consists in the torsion test, which measures directly the deviatoric modulus, but it is more complex to perform than 
those of creep or relaxation. Therefore, in what follows, an efficient procedure is introduced to extract the Prony 
parameters of G(t) from those of J(t), obtained from creep tests. 
 The goal consists in determining the deviatoric relaxation parameters g∞ , jg  and jλ  of the corresponding 

Prony series 
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given the constants of the Prony series of the total creep deformation J(t), i.e., j,  and o jB B ρ  as in Eq. (8). In case 

( ) , elK t K= the relationship between G(t) and J(t) assumes a simple form (see Flugge, 1975, Chistensen, 1982) in 

Laplace transform domain: 
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Where, in order to compact notation, it is used [ ] [ ]L• •#  to represents the Laplace transform. The transform ( )J s  is 

obtained from Eq.(8) as 
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which can be substituted in Eq.  (20) to result 
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 An analytic form for the inverse Laplace transform of ( )G s  in Eq. (21) seems to be impossible for large values 

of N. However, we introduce here a different approach to obtain the deviatoric relaxation function from Eq. (21). First, 
let one consider that the N roots ja  of the polynomial f(s) in Eq. (21) can be computed, such that the polynomial can be 

represented as 
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Therefore, ( )G s  in Eq. (21) takes the form 

 

 

( )
1

1

ˆ

3 .

N

j
j

N

i
i

G
sC s a

ρ
=

=

=
−

∏

∏
          (23) 

 
This form can be easily Laplace transformed back, resulting in Eq. (19), with the deviatoric relaxation parameters given 
by 
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These expressions completely extract the deviatoric relaxation set of parameters from standard creep test data.  
The roots of f(s) necessary in Eq. (22) are obtained by first identifying explicitly its polynomial coefficients, 

such that 
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3. NUMERICAL RESULTS 
 
 The formulation developed in the preceding sections was tested by processing a set of experimental data points 
obtained from a PVC blend tested in tension creep in the laboratory of Grante/EMC/UFSC (Pagliosa, 2004, Medeiros, 
2006). First, the raw data is filtered to reduce local fluctuation and smooth the curve, using the simple moving average 
filter (linear, with all weights equal, summing the unity, see Smith, 1997). Next, a subset of points is selected, in this 
case, 36 points, to represent the material. The bulk modulus is computed from short duration tests as 

125.361 10  Pa.elK = ⋅  Usually, it suffice choosing N equal to the number of decades spanned by the experimental data. 

Therefore, it is selected a constitutive model of order N = 5. The fitting of the data are performed using the procedures 
analyzed by Gerlach, 2005, coded by the authors in Fortran and MathematicaTM. 
 The characteristic creep times chosen are shown in the second column of Table 1. A curve fit procedure 
generates the creep curve strengths shown in the first column of the table. The Prony series thus obtained and some 
experimental points are shown in Figure 1a. 
 

Table 1. Strengths and characteristic times for creep modulus J(t) of PVC. 
 

Strengths [1/Pa] Times [s] 
107.760 10B −

∞ = ⋅   
103.897 10oB −= ⋅   
11

1 1.650 10B −= ⋅  2
1 5 10ρ = ⋅  

11
2 2.870 10B −= ⋅  3

2 5 10ρ = ⋅  
11

3 9.074 10B −= ⋅  4
3 5 10ρ = ⋅  

10
4 1.641 10B −= ⋅  5

4 5 10ρ = ⋅  
11

5 8.627 10B −= ⋅  6
5 2 10ρ = ⋅  

 
 Next, the deviatoric relaxation parameters are estimated using the Prony series of J(t). The function f(s) in Eq. 
(21) is identified and its roots are determined as 
 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

 
3 5 7

1 3 5

4 6
2 4

2.086 10 ,          2.430 10 ,          5.571 10 ,

2.143 10 ,         2.632 10 .

a a a

a a

− − −

− −

= − ⋅ = − ⋅ = − ⋅

= − ⋅ = − ⋅
     (28) 

 
 Deviatoric parameters are directly computed using Eqs. (24), resulting the values in Table 1. The 
corresponding curve obtained from Eq. (19) is shown in figure 1b. 
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(a) (b) 

Figure 1. Diagrams for total creep modulus in (a) and for deviatoric relaxation modulus in (b). 
 

Table 2. Strengths and characteristic times for deviatoric relaxation modulus G(t) for PVC. 
 

Strengths [Pa] Times [s] 
84.296 10g∞ = ⋅   
7

1 3.547 10g = ⋅  2
1 4.795 10λ = ⋅  

7
2 5.645 10g = ⋅  3

2 4.663 10λ = ⋅  
8

3 1.382 10g = ⋅  4
3 4.116 10λ = ⋅  

8
4 1.511 10g = ⋅  5

4 3.800 10λ = ⋅  
7

5 4.464 10g = ⋅  6
5 1.795 10λ = ⋅  

 
3.1. Identification of total relaxation modulus Y(t) and mechanical parameters 
 

      The Prony series of the total relaxation modulus Y(t) was estimated in two steps: 
 

(a) The creep experimental data points were used to perform a numerical inversion of the Laplace transform of the 
relaxation modulus, using the function given in Eq. (17). The procedure to approximate inversion is that of 
Schapery (Christensen, 2000, Schapery, 1962), which consists in computing  
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(b) The table thus obtained is used in a least squares procedure (Gerlach and Matzenmiller, 2005) to obtain the 

Prony series of the total relaxation modulus. The parameters of the series, according to Eq.(14), are given in 
the first two columns of Table 3, and its plot is shown in Figure 2. 
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Figure 2. Diagram for total relaxation modulus of PVC, extracted from creep test. 

 
Table 3. Strengths and characteristic times for total relaxation modulus Y(t) of PVC and mechanical parameters. 

 
Relaxation parameters Mechanical parameters 

Strengths [Pa] Times [s]   [Pa]k    [Pa s]μ ⋅  
91.328 10Y∞ = ⋅     
92.562 10oY = ⋅   91.328 10ok = ⋅   
8

1 1.000 10Y = ⋅  2
1 3.5 10λ = ⋅  8

1 1.000 10k = ⋅  10
1 3.500 10μ = ⋅  

8
2 1.944 10Y = ⋅  3

2 4.0 10λ = ⋅  8
2 1.944 10k = ⋅  12

2 7.780 10μ = ⋅  

8
3 4.247 10Y = ⋅  4

3 4.0 10λ = ⋅  8
3 4.247 10k = ⋅  13

3 1.699 10μ = ⋅  

8
4 3.639 10Y = ⋅  5

4 4.0 10λ = ⋅  8
4 3.639 10k = ⋅  14

4 1.456 10μ = ⋅  

8
5 1.509 10Y = ⋅  6

5 1.6 10λ = ⋅  8
5 1.509 10k = ⋅  14

5 2.414 10μ = ⋅  

 
 The total relaxation parameters enables a quick estimation for the mechancial parameters, using Eqs. (16). The 
values obtained are shown in columns three and four of Table 3.  

 
Table 4. Constitutive parameters of PVC. 

 
p’s  q’s p’s q’s 

    1op =   91.328 10 Paoq = ⋅  91.328 10ok = ⋅   

    6
1 2.080 10 sp = ⋅   15

1 3.175 10 Pa sq = ⋅ ⋅  8
1 1.000 10k = ⋅  10

1 3.500 10μ = ⋅  

11 2
2 8.023 10 sp = ⋅  21 2

2 1.477 10 Pa sq = ⋅ ⋅  8
2 1.944 10k = ⋅  12

2 7.780 10μ = ⋅  

16 3
3 5.468 10 sp = ⋅  26 3

3 1.176 10 Pa sq = ⋅ ⋅  8
3 4.247 10k = ⋅  13

3 1.699 10μ = ⋅  

21 4
4 1.043 10 sp = ⋅  30 4

4 2.564 10 Pa sq = ⋅ ⋅  8
4 3.639 10k = ⋅  14

4 1.456 10μ = ⋅  

23 5
5 3.584 10 sp = ⋅  32 5

5 9.183 10 Pa sq = ⋅ ⋅  8
5 1.509 10k = ⋅  14

5 2.414 10μ = ⋅  

 
 

3.2. Constitutive parameters 
 
Once the mechanical parameters are estimated, one proceed to compute the constitutive ones, which is done using 

Eqs. (3)-(7). The values obtained are shown in columns one and two of Table 4.  
The quality of all estimated sets of parameters is tested by utilizing the constitutive parameters to estimate the creep 

parameters. Good adjustments would imply obtaining the same constants, and the same graph of the experimental data 
which originated the chain of computations. In the present case, the estimated values are computed from Eqs.(9) and are 
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shown in Table 5. Comparison with the original creep parameters in Table 1 one observes a good approximation for the 
characteristic times. The strengths are also similar, but 2B  appears as zero. It means the pair of parameters 

corresponding to characteristic time 2 4000 sρ ≈  is missing. It shows in the plot, as depicted in Figure 3. For ease of 

comparison the original curve obtained directly from experimental data is also shown in continuous line. As expected, 
the dashed line shows steep ascent in the vicinity of 1000 s. 

 
Table 5. Reconstructed strengths and characteristic times for creep modulus J(t) of PVC. 

 
Strengths [1/Pa] Times [s] 

107.529 10B −
∞ = ⋅   

103.903 10oB −= ⋅   
11

1 1.577 10B −= ⋅  2
1 3.64 10ρ = ⋅  

25
2 1.525 10B −= − ⋅  3

2 4.00 10ρ = ⋅  
10

3 1.278 10B −= ⋅  4
3 5.30 10ρ = ⋅  

10
4 1.289 10B −= ⋅  5

4 4.98 10ρ = ⋅  
11

5 9.038 10B −= ⋅  6
5 1.80 10ρ = ⋅  
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Figure 3. Diagrams for total creep modulus: continuous line obtained from experimental data and dashed line from 

recoverd parameters of Table 5. 
 

4. CONCLUSIONS 
 
This paper considers the problem of identification of material parameters in linear viscoelastic materials. Two new 

procedures are introduced to process experimental creep data into total creep module, total relaxation module and 
deviatoric relaxation module. Also, determination of the mechanical constants associated to the rheological model and 
determination of the coefficients in the differential constitutive equation is addressed. Numerical results obtained 
indicate the applicability and numerical efficiency of the procedures presented. 
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