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Abstract. In this paper the rotational oscillation of a cylinder is numerically studied. The two-dimensional Navier-
Stokes equations for incompressible fluids with the Smagorinsky sub-scale model are solved for a cartesian non-
uniform grid. The Immersed Boundary Method with Virtual Physical Model are used for modelling the presence of the 
circular cylinder. The simulations were carried out for a Reynolds number equal to 1000 for different amplitudes of 
oscillation and different forcing frequencies. In order to better understand the flow dynamics due to the rotational 
oscillation movement of the cylinder, the aerodynamic coefficients, the Strouhal number and the length of the 
recirculation are presented. 
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1. INTRODUCTION  
 

The flow around a circular cylinder has been a topic of interest for many years mainly due to the importance of an 
engineering problem of vortex induced vibration of bluff bodies in a stream. Vortex streets are formed in the wake of a 
bluff body over a wide range of Reynolds number. The formation of the vortices in the flow past a stationary circular 
cylinder has been well documented, both numerically and experimentally (e.g., Lima e Silva, 2002; Silva, 2004; Lai and 
Peskin, 2000; Ryan et al. 2004; Su et al. 2006). A number of researchers has studied the effects of rotating cylinder on 
the wake structure (e.g., Silva et al. 2004a, Silva et al., 2004b, Carvalho, 2003, Kang et al., 1999). Flows over a bundle 
of cylinders disposed in “V”, at different angles were also studied by Silva et al. (2003) for low Reynolds number. 

The effective control of drag exerted by the fluid on the cylinder has been a challenge that has received particular 
attention. The drag force on the cylinder may be reduced by an active control in the rotational oscillation of the 
cylinder. The literature covers the effect of cross-flow oscillations and in-line oscillations, but studies on rotational 
oscillations are very few. According to Fujisawa et al. (1998), the effects of rotational oscillations on the cylinder wake 
were first studied by Okajima et al. (1975).  

The purpose of the present paper is to study the influence of rotational oscillation on the flow around a circular 
cylinder in a uniform flow.  
 
2. MATHEMATICAL METHODOLOGY AND NUMERICAL METHOD 
 

All the simulations were carried out using the Immersed Boundary Method (Peskin, 1977) with the Virtual Physical 
Model (Lima e Silva, 2002).  

The Navier-Stokes equations and continuity can be written as follow: 
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where ρ  e ν ef  are the specific mass and effective viscosity, respectively, , represents the components of the velocity, 

 is the pressure and  the components of eulerian force vector. The force term is calculated by the distribution of the 
components of lagrangian vector as follow: 
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where rx  and rkx  are the position vectors of the eulerian and lagrangian points, respectively,  is the distance between 

two lagrangian points, 
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kF x  is the interfacial lagrangian force and  is the interpolation/distribution function, 
proposed by Juric (1996). 
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The turbulence model used in the present work is based in the filter process, named by box filter described in 
Silveira-Neto et al. (2002) and Silveira-Neto (2003). The turbulent viscosity (Smagorinsky, 1963) is given as a function 
of the strain rate and scale length as: 
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where = ∆ ∆l x y  is the characteristic sub-grid length, ijS  is the strain rate and  is the Smagorinsky constant. The 
analytical value , which was determined by Lilly (1967), was used. 

SC
0.18=SC

In all of the simulations a damping function was used in the outlet of the domain. Details of this procedure can be 
found in Silva (2004), Silva et al. 2004c and Souza et al. (2002). 

The Fractional Step Method (Chorin, 1968) based on the pressure correction was also used. The spatial 
discretization of the Navier-Stokes equations was done by the Finite Difference Method and the time discretization by 
the second order Runge-Kutta method. The effective viscosity and velocities were interpolated as suggested by Patankar 
(1980). 
 
3. RESULTS AND DISCUSSION 

 
The influence of the forced frequency and the oscillation amplitude in the structure wake, in the behavior of the 

aerodynamic coefficients as drag and lift, in the length of recirculation bubble and in the Strouhal number were 
analyzed. The results are presented for different frequencies, 0.2 6.0c of f≤ ≤  (  is the forced frequency and  is 
the natural frequency of vortex shedding for stationary cylinder) and amplitudes 1.0

cf of
3.0A≤ ≤  ( A  is the oscillation 

amplitude). The Reynolds number based on the diameter of the cylinder and on the free stream velocity is 1000 and the 
dimension of the domain is 40 x 15m. All the simulations were done with a non-uniform grid of 400 x 125 points, 
where the small space grid in the normal and transversal directions of the flow is given by  ( nmc  is the grid 
number inside the cylinder). The cylinder was located at 16.5d in x direction and 7.5d in y direction, where d is the 
diameter of the cylinder. 

2 /R nmc

The behavior of structure wake is different when the cylinder oscillates around its own axis. According to Ponta and 
Aref (2006), the usual vortices wake would be designed as ‘2S’ mode in the classification of WR (Willianson-Roshko). 
This mode indicates the vortex shedding of two single vortices per cycle of each side of the cylinder. There are five 
different flow regimes according to Lee and Lee (2006), for a amplitude equal 30°. Many other authors consider only 
two different regimes to classify the flow, named non lock-on and lock-on regimes (Cheng et al., 2001; Cheng et al., 
2001a). 
 
3.1. Description of the flow 
 

The oscillation amplitude and frequency were used as control parameters. The tangential velocity over the cylinder 
is given as: 
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 is the oscillation amplitude,  is the radius of cylinder and  is the physical time of the simulation. 

According to He et al. (2000) this procedure is constituted by two degrees of freedom.  
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3.2. Vorticity Fields 
 
Figure 1 shows the vorticity fields for an admensional time of 200, 0.2 6.0c of f≤ ≤  and 1.0 . The 

positive vorticity is represented by the red color and the negative vorticity by the blue color. The three columns 
represent the simulations with 

3.0A≤ ≤

1A = , 2A =  and 3A = , respectively. As can be observed there are different modes of 
vortex shedding for a given column and for the same frequencies considering different amplitudes. 
 

   
(a) 

 

   
(b) 

 

   
(c) 

 

   
(d) 

 

   
(e) 

Figure 1. Vorticity field: a) ; b) 0.2=c of f 0.5=c of f ; c) 0.9=c of f ; d) 2.5=c of f ; e) . From left to right 6.0cf = of
1A = , 2A =  and 3A =  

 
For  and 0.2=c of f 1A = , vortices are generated from both sides of the cylinder and the wake oscillates with time. 

There are pairs of vortices with opposed signs in the wake. This behavior was also observed in the other amplitudes, 
however the longitudinal and transversal displacement between the pairs of vortices is larger. For the frequency 

, the behavior is similar to the previous one, however for 0.5=cf of 3A = , the pairs of vortices have the same signal. 
For , the vortices are synchronized with the oscillation of the cylinder. In other words, the cylinder and 
vortex shedding have the same characteristic frequency (

0.9=cf of

cvf f= ). This is the lock-on phenomenon or resonance. In this 
regime, the formation of an elliptic wake close to the cylinder with vortices of the same signal in the same row was 
observed. These vortices form a single wake far from the cylinder. The range of the lock-on regime obtained in this 
work for 1A =  was 0.6 1.05c of f≤ ≤ , while for 2A =  was 0.5 1.1c of f≤ ≤  and for 3A =  was 0.2 1.8c of f≤ ≤ . 

For  and 2.8≤c of f 1A = , a transition from the vortex shedding mode to the ‘P+S’ mode was found, which is clear 
at  and  (not shown here). This mode corresponds to one pair of vortices of one side and a single 
vortex of the other side. It was also observed that the wake has the form of a cone. This structure wake is also observed 
for 

2.5=c of f 2.8=cf of

2A =  for the same frequency. However in this case, the vortex shedding mode is named ‘2P’, that is, two pairs of 
vortices in each cycle. Increasing the amplitude, 3A = , a double wake close to the cylinder and a single wake far away 
were noted. For all amplitudes analyzed and for the larger frequencies it were observed that the wake vortices come 
back to the regular configuration of the Kármán street and the standard of vortices do not change anymore. The non 
synchronized flow is similar to the flow for the stationary cylinder with some disturbance due to the movement 



(Tuszynski and Löhner, 1998). In other words, the disturbance caused by the oscillation is limited near the cylinder, 
instead of downstream, the vortices reorganize to form the Von-Kármán street. This behavior is better visualized in the 
next item by the power spectra. 

 
3.3. Drag coefficient 
 

The control of the instabilities that lead to the vortex shedding is possible when the cylinder is forced to oscillate in 
the sinusoidal mode as Eq. 6. Figure 2 shows the behavior of the mean drag coefficient versus the oscillation 
frequencies. The results were compared with the numerical results of Cheng et al. (2001a), Chou (1997) and Lu and 
Sato (1996).  

dC

The results of the present work are in good agreement with those of other authors in the resonance range. For high 
c of f , the results also tended to approximate to those of Cheng et al. (2001) for amplitudes 2 and 3. High  values in 

the lock-on regime and small values for high forced frequency, out of the lock-on regime were found. The mechanism 
of drag reduction is caused by the combined effect of forced frequency and oscillation amplitude due to the 
modification of wake at high frequency and of the delay in the separation of the flow. It is worth to note that the 
quantitative difference would be a consequence of the influence of the flow parameters, of the different numerical 
methods and of the assumptions adopted in the simulations. However, considering that at a given frequency, the 
vortices wake acquire the configuration and frequency of the classic Von Kármán street, it is expected that the value of 
drag would be close to the correspondent value of a stationary cylinder. This coherence can be observed in the results of 
the present work.  

dC

 

 
(a) (b) 

 

 
(c) 

Figure 2. Mean drag coefficient: a) 1A = , b) 2A =  and c) 3A =  
 

Figure 3 shows the behavior of the mean drag coefficient with the oscillation amplitude for the two frequencies. It is 
observed for 1A =  that the mean drag presented approximately the same value for both frequencies. Increasing the 
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oscillation amplitude an increase of the mean drag for low frequency and reduction for high frequency is observed. This 
behavior was already mentioned previously. Depending on the amplitude, the minimum drag can be around half or even 
a third of the stationary case value (Srinivas and Fujisawa, 2003). For Ray and Christofides (2005), when the cylinder 
oscillates at five times the natural frequency, it exhibits a drag reduction compared with the stationary case, to a range 
Reynolds number of 100 – 500.  

 

 
Figure 3. Mean drag coefficient versus oscillation amplitude 

 
3.4. Power Spectra 
 

The power spectra obtained by Fast Fourier Transform (FFT) of the lift coefficient signal is presented in Fig. 4 for 
the same ratios of frequency and amplitude of the previous item. The columns refer to the amplitudes 1A = , 2A =  and 

, respectively.  3A =
For 1A =  and  there are two peaks of frequencies in the power spectra. One of them corresponds to the 

smallest frequency, that is, the forced frequency  and the other is the natural frequency of vortex shedding  which 
is near  (frequency of the stationary cylinder). In this range it can be noted that the smallest frequency has nearly the 
same magnitude for both ratio of frequency. In the lock-on regime only one peak is observed and the vortex shedding 
frequency  is synchronized with the forced frequency of cylinder  

0.5cf ≤ of

cf vf

of

vf cf ( )v cf f≈ . According to Lee and Lee (2006), as 
the oscillation amplitude decreases, the range of lock-on also decreases until reaching a given limit amplitude, which 
above this, the lock-on phenomenon only occur at 1.0cf of= . Increasing the frequency, the two peak reappear 
indicating that the lock-on no longer exists. For 6.0cf of= , the magnitude of the small scale frequency  increase and 
approaches of the value of the natural vortex shedding frequency. 

rf

For 2A = , the range of lock-on regime is 0.5 1.1c of f≤ ≤ . The magnitude of the peaks are greater than those of 
1A = . It was also observed a decrease in the magnitude of the frequency peak along the lock-on regime. For 2.5c of f≤  

the value of the large scale vortex shedding frequency  is smaller than the value for the stationary cylinder. For 
, due to interaction between the vortices the final configuration has type and frequency  similar to the 

Von-Kármán of the stationary cylinder . 

rf
3.0cf ≥ of rf

of
The lock-on range, for 3A = , occurs for 0.2 2.5≤ ≤c of f . For the same Reynolds number and amplitude, the 

range of lock-on regime found by Cheng et al (2001a) was 0.5 3.0c of f≤ ≤ . It can be observed that the range of lock-
on regime increase with the oscillation amplitude. For  the magnitude of lift fluctuating at the scale vortex 
shedding frequency tends to be constant, implicating in their stability. It was also noted that this frequency remains 
approximately at  for flow past a stationary cylinder. At high frequencies all the amplitudes presented the same 
behavior. 

3.0cf > of

of
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Figure 4. Power spectra: a) ; b) 0.2c of f= 0.5c of f= ; c) 0.9c of f= ; d) 2.5=c of f ; e)  From left to 6.0cf = of
 right 1=A , 2=A  and 3=A . 
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3.5. Length of recirculation bubble. 
 

The length of recirculation bubble  is defined as the distance between two stagnation points downstream of the 
cylinder. The first point is located at the surface of the cylinder and the second at the end of the bubble. For this reason 
many numerical probes were created downstream of cylinder, as presented in Fig. 5. The time average of the y 
component of the velocity was obtained at each probe. The distance between two points where the velocity is zero gives 
the value of .  

wL

wL
 

 
Figure 5. Illustrative scheme of the positions of the numerical probes. 

 
Figure 6 shows the mean length of recirculation, formed downstream of the cylinder versus ratios of frequency for 

all analyzed amplitudes.  
 

 
Figure 6. Mean length of recirculation bubble. 

 
As can be noted by the presented results, the control parameters not only change the standard configuration of wake 

as they also alter the forces acting on the cylinder. It was also observed alterations in the length of recirculation bubble. 
For small frequencies where the flow is more accelerated it is noted a reduction on the length compared to the stationary 
case, . In the lock-in regime, it is observed an increase in drag due to the accelerated flow and it is also 
observed an increase in the length of recirculation. It is worth to emphasize that out of lock-on regime, where the forced 
frequency is greater than the natural frequency, the length of recirculation bubble is almost the same as the length of the 
stationary cylinder. This behavior is comparable with the observations found for vorticity field and drag coefficients.  

0.45=wL

 
4. CONCLUSIONS 

 
In this work, the two-dimensional, incompressible viscous flow over a circular cylinder was examined with the 

effect of controlled rotational oscillation cylinder in reducing the drag and the influence in the Strouhal number and in 
the length of recirculation bubble. It was observed that the drag reduction is strengthened with an increase in oscillation 
amplitude, but it is saturated at higher oscillation amplitude. Thus, the mechanism of drag reduction is considered to be 
due to the combined effect of optimal pairs { }, cA f , which is caused by the modification of the flow structure by 
generating small-scale vortices along the shear layers and the delay in mean separation points along the cylinder 
surface. The maximum drag reduction compared at the value of stationary cylinder was  at 38.8% 3=A  and 



1.65=cf of , while at 2=A ,  and 2.5=c of f 1=A , 7=cf of  the reduction were  and  respectively. 
With appropriate choice of the control parameters, the rotational oscillation of a cylinder can be a promising method for 
controlling the drag acting on the cylinder. Importantly for practical applications, this approach is effective even at large 
Reynolds numbers. 

24.13% 3.76%

 
5. ACKNOWLEDGEMENTS 
 

The authors gratefully acknowledge the support of CNPq, the Federal University of Uberlândia – UFU and 
FAPEMIG.  
 
6. REFERENCES 
 
Cheng, M., Liu, G.R. and Lam, K.Y.,2001, “Numerical simulation of flow past a rotationally oscillating cylinder”. 

Computers & Fluids. 30, pp. 365-392. 
Cheng, M., Chew, Y.T. and Luo, S. C.,2001a, “Numerical investigation of a rotationally oscillating cylinder in mean 

flow”, Journal of Fluids and Structures, 15, pp. 981-1007. 
Chorin, A., 1968, “Numerical solution of the Navier-Stokes equations”, Math. Comp. 22, 745–762. 
Chou, M.H, 1997, “Sinchronization of vortex shedding from a cylinder under rotary oscillation”, Computers & Fluids, 

v. 36, n. 8, pp 755-774. 
Fujisawa, N., Ikemoto, K. and Nagaya, K., 1998, “Vortex Shedding Resonance from a Rotationally Oscillating 

Cylinder”, Journal of Fluids and Structures, 12, pp 1041-1053. 
He, J.W., Glowinski, R., Metcalfe, R., Nordlander, A. and Periaux, J., 2000, “Active Control and Drag Optimization for 

Flow Past a Circular Cylinder I. Oscillatory cylinder Rotation”, Journal of Computational Physics. 163, pp 83-117. 
Juric, D., 1996, “Computation of phase change”, Ph. D. Thesis - Mech. Eng. Univ. of Michigan, USA. 
Kang, S., Choi, H. and Lee, S. C.,1999, “Laminar Flow past a Rotating Circular Cylinder”, Physics of Fluid, 11, pp 

3312-3320. 
Lai, M-C. and Peskin, C.S., 2000, “An Immersed Boundary Method with Formal Second-Order Accuracy and Reduced 

Numerical Viscosity”, Journal of Computational Physics. 160, pp 705-719. 
Lee, S-J. and Lee, J-Y., 2006, Flow structure of wake behind a rotationally oscillating circular cylinder”, Journal of 

Fluids and Structures, 22, pp. 1097-1112. 
Lilly, D.K., 1967, “The representation of small-scale Turbulence in Numerical Experiments”, Proc. IBM Sci, Comp. 

Symp. Environ. Sci, IBM Data Process. Did., White Plains. NY, pp 195-210. 
Lima e Silva, A.L.F, 2002, “Desenvolvimento e Implementação de uma nova Metodologia para Modelagem de 

Escoamentos sobre Geometrias Complexas: Método da Fronteira Imersa com Modelo Físico Virtual”, Tese de 
Doutorado – Universidade Federal de Uberlândia, Uberlândia. 

Okajima, A., Takata, H. and Asanuma, T., 1975, “Viscous flow around a rotationally oscillating circular cylinder”, 
Reports of Institute of Space and Aeronautical Science. University of Tokyo, n. 532, pp 311-338. 

Patankar, S.V., 1980, “Numerical Heat Transfer and Fluid Flow”, Taylor & Francis, 197p. 
Peskin, C.S., 1977, “Numerical Analysis of Blood Flow in the Heart”, Journal of Computational Physics. 25, pp 220-

252. 
Ponta, F.L. and Aref, H., 2006, “Numerical experiments on vortex shedding from an oscillating cylinder”, Journal of 

Fluids and Structures, 22, pp. 327-344. 
Ray, K., Prasenjit, and Christofides, D.P., 2005, “Control of flow over a cylinder using rotational oscillations”. 

Computers and Chemical Engineering, 29, pp 877-885. 
Ryan, K., Pregnalato, C.J., Thompson, M.C. and Hourigan, K., 2004, “Flow-induced vibrations of a tethered circular 

cylinder”, Journal of Fluids and Structures. 19, pp 1085-1102. 
Silva, A.R., 2004, “Simulação Numérica de Escoamentos em Transição sobre Cilindros Imersos”, Dissertação de 

Mestrado. – Universidade Federal de Uberlândia, Uberlândia. 
Silva, A.R., Lima e Silva, A.L.F. and Silveira-Neto, A.,2003, “Modelagem Matemática e simulação Numérica de 

escoamentos sobre bancos de cilindros imersos dispostos em diferentes ângulos”, VI Congresso Íbero-Americano de 
Engenharia Mecânica, Coimbra-Portugal. 

Silva, A.R., Carvalho, G.B., Lima e Silva, A.L.F., Mansur, S.S. and Silveira-Neto, A.,2004a, “Simulação Numérica de 
escoamentos sobre cilindros imersos com e sem rotação, utilizando-se o Método da Fronteira Imersa, VI Simpósio 
Mineiro de Mecânica Computacional, Itajubá – São Paulo. 

Silva, A.R., Carvalho, G.B., Lima e Silva, A.L.F., Mansur, S.S. and Silveira-Neto, A.,2004b, “Modelagem Matemática 
e simulação Numérica de escoamentos sobre corpos móveis utilizando-se o Método da Fronteira Imersa”, 
Proceedings of the 10º Brazilian Congress of Thermal Sciences and Engineering – ENCIT, Rio de Janeiro, Brazil. 

Silva, A.R., Lima e Silva, A.L.F., Mansur, S.S. and Silveira-Neto, A.,2004c, “Experimentos numéricos utilizando 
diferentes esquemas de discretização temporal em modelagem da turbulência”, Proceedings of the 10º Brazilian 
Congress of Thermal Sciences and Engineering – ENCIT, Rio de Janeiro, Brazil. 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

Silveira-Neto, A., Mansur, S.S., and Silvestrini, J.H., 2002, “Equações da Turbulência: Média versus filtragem”, III 
Escola da Turbulência. 

Silveira-Neto, A., 2003, “Apostila do curso de Turbulência”. 
Smagorinsky, J., 1963, “General Circulation Experiments with Primitive Equations”, Mon. Weather Rev,  v. 91, pp 99-

164. 
Souza, L.F., Mendonça, M.T., Medeiros, M.A. and Kloker, M., 2002, “Three Dimensional Code Validation for 

Transition Phenomena”, III Escola de Turbulência. 
Srinivas, K. and Fujisawa, N., 2003, “Effect of rotational oscillation upon fluid forces about a circular cylinder”, 

Journal of Wind Engineering and Industrial Aerodynamics, 91, pp 637-652. 
Su, S-W., Lai, M-C. and Lin, C-A., 2006, “An immersed boundary technique for simulating complex flows with rigid 

boundary”, Computers & Fluids. Article in Press. 
Tusynski, J. and Löhner, R., 1998, “Control of a Kármán Vortex Flow by Rotational Oscillations of a Cylinder”, 

George Mason University, USA. 15, pp 1-12. 
 


