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Abstract: This work has as objective the development afimized numerical tool for evaluation of the iciél plane
in fatigue of components submitted to complex stafestress. This tool has the capacity to deteenihre plane
containing the largest equivalent shear stress é@omg# and its normal stress. The Modified Wohlervea Model
(MWCM) is then considered to evaluate the resigtancfatigue of several experiments reported inlitegature. In
order to optimize the process of search of theaaiitplane through the several material planes istate of stress the
genetic algorithm technique was use. Such algorithrhased on evolutions concepts and is capabl®eresee the
critical plane without the need to determine theiieglent shear stress amplitude in “all” materialgmes. The results
showed that the use of the genetic algorithm dgmitly reduced the computational cost associatéth he
determination of the plane which experienced theersst shear stress, i.e., the critical plane. Mwey, the results
found for the estimation of the multiaxial fatigtesistance compared well with the experimental dadbected in
literature.
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1. INTRODUCTION

Critical plane models were developed from a physicterpretation of the fatigue process where csaalere
observed to initiate and grow on certain prefeedntiaterial planes, Findley (1959). In such an apph, shear and
normal stresses during the loading cycle are détearfor several planes at the same point analyzéte component.
An empirical combination of these is used to pretlie most severely loaded plane (critical plamd)ere cracks are
expected to nucleate. In the setting of High Cydlédtiaxial Fatigue the critical plane is usuallyfisbed as the material
plane experiencing the largest amplitude of theaské&ress. Usually the radius of the minimum cikeumscribing
the shear stress vector path in a material plansad to characterize its amplitude, Susmel, Lzzagn, P. (2002), but
more recent approaches suggest that measuresasdowith the minimum circumscribing ellipse, Ar0j). A. &
Mamiya E. N. (2002), or with the maximum prisméhiigll, Aradjo, J. A., Mamiya, E. N. & Dantas, A. 007) may
provide a better measure of the shear stress amilit

The main drawback associated with the use of atifidane criteria as a practical engineering desagh is the
high computational cost involved in determining tnitical plane. Such multiaxial models not onlyguée that a large
number of planes be investigated to get an accuesponse, but also need to numerically computentimmum
sphere (or an equivalent measure) circumscribiagtiear stress vector path for each materialrcogal components
a Finite Element Analysis (FEA) usually will proeidhe cyclic stress history in a large number afasothat will need
to be checked under this time consuming criticalnpl searching process in order to determine the thosaten
material point in fatigue terms. An optimizatiorcheique capable to reduce such numerical cost wufithgnificant
loss of accuracy would constitute an important adeafor the practical application of the multiax@ltical plane
based criteria. In this setting, the aim of thisrkvis to evaluate the performance of a numerical based on Genetic
Algorithms to search the critical plane and caltailthe shear stress amplitude by a minimum circtilying circle
concept.



2. CRITICAL PLANE

Consider a mechanical element submitted to osmilfanultiaxial loadings. In what followssyni denotes the set of

all 3X3 symmetric matrices. Let : [0, T] - Sym3 be thestress pattassociated with a given material pomtalong a
time interval [0,T]. At each time instant;[o,T], the point is subjected to internal forces repmese by theCauchy
stress tenso;z(t)g Synd.

Uxx(t) Txy(t) sz(t)
Z(t): Txy(t) Jyy(t) Tyz(t) (1)

sz(t) Tyz(t) Jzit)

Consider now, a material plane characterized bwriis normal vectom , passing through poind. This in turn
described by its spherical anglesand ¢, as shown in Fig. Ia is the angle between and the z-axis, wherea is
the angle between the projection mfin the xy plane and the x-axis. Let[0,T] denotes thetress vectoacting on
any material planen along a time intervao, T] . It is possible to describe the stress vector paterms of a curved

in R> where each point (t) O R® of such path can be decomposed in two other v&ctostress vector normal to the

plane, denoted as(t) and a shear stress vectdt), acting on the plane (Fig. 1). It can be obsettbhead the direction
of the normal stress vectar(t) does not vary during its loading, however its magte is modified in each instant t.
The shear stress vecto(t) changes magnitude and direction on the planguring the cyclic loading. The projection

of the curve W on the planen is the curvew  that describes the history of the shear strestonewhich will be
different for other planes cutting poiat. This means that the amplitude of shear strggs depends on the orientation
of the plane where it actse., is function of anglesp and 6. An appropriate algorithm to compute the sheagsstr
amplitude, which is given by the radius of the mmnim circle circumscribing the stress path is given in Dang Van

(1989). Briefly, a small radius for the circle istially set and starting from the geometrical egraf W the shear

stress path is traversed from point to point. & tiew point lies outside the circle, its radiuslightly increased (by an
expansion factory ) and its center translated. Convergence is actiieven all points of the stress path are completely
engulfed and the center of the circle remains stabl

Figure 1: Plan@ passing through the point O and the minimum ciraribsg circle that contains the loading history
w - described by the shear stress vez:(d)) .

Different researches have considered criteria dfiaxial fatigue of high cycle based on the critiptane concept.
They consider that cracks of fatigue have origidétermined material planes, where combinatiorghear and normal
stress or deformation are particularly severe. &foee, these criteria are capable to not only sufip resistance in
fatigue of the material and the place of initiatmfrcracks, but also its orientation.
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3.0 GENETIC ALGORITHM

The Genetic Algorithms (GA) are based on the Ckdblarwin’s theory of evolution of species and thaye been
first considered by John Holland. These algorithbesed on concepts of the biological evolution, wed in the
optimization of mathematical problems. The Genehtigorithms have several applications mainly due it®
comparative advantages to other methods of opttiizalt is well suited for cases where gradierfibimation is not
available or is computationally expensive. Morepwbe GA’s work with a set of individuals and noittwonly one
point, thus being able to make parallel searcheifferent areas of the solution space.

A typical run of a Genetic Algorithm (GA) startstivia random population of individuals and then egdhese
individuals by using some genetic operators: fisneslculation, selection, crossover and mutatiorthé end of each
iteration, a new generation of individuals is cegaind this new population represents a betteroappation to the
unknown solution of the optimization problem thhe previous one (Fig. 2).

In this work, the individuals are binary string regenting the anglegy andg. The fithess value, for each
individual, is the maximum radius of the minimunncté circumscribing the shear stress path, plusthreesponding
normal stress value weighted by 0.01 (Fig. 1). beger fitted individuals are selected to randomigte, in this step,
crossover and mutation are used, respectivelygxdhange genes between the mates and to add neticgaf@mation
in the new populationThe fitness evaluation and the creation of new geimns are repeated until an adequate
solution is found or until the maximum number ohggations is reached, Goldberg D.E. (1989).

Random Individuals
(@ andg)

v
—>| Fitness calculatio |

End
Return 7., and respectivea

Found solution

Selectiol

Crossove

Mutatior

Figure 2: Diagram representing the steps of a &ffiEA

4.0 RESULTS AND DISCUSSIONS

In order to evaluate the results obtained by apglyGenetic Algorithms to compute the critical plaared its
associated equivalent shear stress amplitude weidsyed the stress history for twenty two multibfaigue tests
generated by Heindereiat al(1985) on 34Cr4 and by Nishihara & Kawamoto (1946)0,51%C hard steel. Both
materials were fatigue tested under combined bgndimd torsion loading. Synchronous, in phase areb®Bphase
sinusoidal waves were applied with and without mearmal and shear stresses superimposed. Such Bisésry can
be described by Eq. (2):

olt)=0, +a,sinat), @)
r{t)=r1, +1,sin(Aat - B),

where the subscri@ stands for the amplitude of stresses whileepresents the mean valugandr are normal and shear
stresses, whilgZ is the phase difference and is the load frequency, which is always equal to foméso-frequency tests.
Tables 1 and 2 report these data.andt_, are the fatigue limits under fully reversed bendangl torsion, respectively.



Table 1 — Synchronous biaxial fatigue data gendrdty Heidenreich et al. (1985). for 34Cré, = 410 MPa

t,=256MPa f_/t_ =1.60133[.

Test \f o, (MPa) o, (MPa) r,(MPa) 1 (MPa) B0
1 314 0 157 0 0 1
2 315 0 158 0 60 1
3 316 0 158 0 90 1
4 315 0 158 0 120 1
5 224 0 224 0 90 1
6 380 0 95 0 90 1
7 316 0 158 158 0 1
8 314 0 157 157 60 1
9 315 0 158 158 90 1
10 279 279 140 0 0 1
11 284 284 142 0 90 1
12 212 212 212 0 90 1

Table 2 — Synchronous biaxial fatigue data gendraby Nishihara & Kawamoto (1945) for hard steel,

f, =313.9MPs, t_, =196.2MPs, f_,/t_| =1.601.34 3].

Test \f a, (MPa) o, (MPa) r, (MPa) 1., (MPa) B ()
1 138,1 0 167,1 0 0 1
2 140,1 0 169,9 0 30 1
3 1457 0 176,3 0 60 1
4 150,2 0 181,7 0 90 1
5 2453 0 122.,6 0 0 1
6 2497 0 124.8 0 30 1
7 252,4 0 126,2 0 60 1
8 258 0 129 0 90 1
9 299,1 0 62,8 0 0 1
10 304,5 0 63,9 0 90 1

To compute the equivalent shear stress amplitutietbe traditional minimum circumscribing spherethwdology
described in section “critical plane” was usedhaligh new strategies based on the minimum circubisgrellipsoid
Bin Li, Santos, J. L., Freitas, M. A (2000) and e prismatic hull Goncgalves, C. A., Araljo, J. &Mamiya, E.
N.(2005) could also be considered.

The sphere expansion coefficieqt was defined as 0.05 in all cases studied. For t=stireported in Tab. 1 and 2
the location of the critical plane and the compatetl cost associated to its search were obtaigad/d methods. The
first searched the critical plane looking at a nembf material planes defined by angle incremexsAg=1°. Such

method requires that a combination of 181 by 18femdint planes be analyzed in order to find théiaai one for a
single material point, and is denominated herestha Plane Increment Method (PIM). It is wortnotice that such
searching process is extremely time consuming astibnly requires that a large number planes besiigated to get
an accurate response, but also needs to numergatipute the minimum sphere circumscribing the iskieass vector
path r(t) for each material cut. The plane containing tingdat sphere among all the searched planes isitioaloone.

The second method used Genetic Algorithm (GA) as@imization technique to find the critical plafie carry
out the analysis, we initially took a populationtef individuals randomly generated within a prérdsl range. In the
context of this work, each individual is a mategi#dne defined by the anglgs and ¢ in the rangeg® < ¢ <180 and

0°< 6<180 . All individuals (planes) are evaluated by thadiss function. The fithess value, for each indigldis the

radius of the minimum circle circumscribing the ahstress path, plus the corresponding normalsstraisie weighted
by 0.01. New genetic information, which correspotmshe binary coded strings associated to theeptarentation,
was introduced in some individuals with a mutatobability of 1%. The fitness evaluation and theation of new
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Figures 3 and 4 depict the values of the sheasssamplitude and the computational cost providedPiM and the
GA methods for the tests reported in Tab. 1 and fems clear that both methods provide essentiad same value
of the equivalent shear stress amplitude. On therdiand, as the computational cost is an impoftator, the time
34Cr4 (Fig. 3), the PIM method found the critictdne in 748 seconds while the GA method took 33s@s only. In
test 7 for the hard steel (Fig. 4) such cost wasaf&l 35 seconds respectively. The analysis wasyalearried out in a

required by the GA method was significantly smatlempared with the PIM method. For instance, in tee for the
same Pentium IV computer with a 2.2 GHz processor.

individuals, therefore, with the 1% mutation proiiah two individuals would be mutated in the peature. In this

generations of ten individuals would be producedcase of no prior convergence, resulting in theation of 200
study, all cases achieved convergence beforerthiedf twenty generations.

generations were repeated until convergence was\athor twenty generations were reached. In tlaskwtwenty
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Figure 3: Maximum Shear Stress Amplitude and coatpral cost provided by PIM and GA method for 34.Cr

Figure 4. Maximum Shear Stress Amplitude and coatprtal cost provided by PIM and GA method for hstekl



5. CONCLUSIONS

An optimization technique based on Genetic AlganitfGA) was proposed to compute the equivalent skass
amplitude in multiaxial fatigue. Comparable to tRmne Increment Method (PIM), the Genetic Algoritshows a
significant reduction in the run-time associatethwhe search of the critical plane and also presidccurate values of
the maximum shear stress amplitude. Therefore th@i@ved to be a powerful tool for optimizationfatigue analysis
based on critical plane concepts. Further as slgthithm is not based on derivative concepts indb face problems
of determining local maximum or local minimum. As a@nsequence it always will converge to the global
maximum/minimum but the results may be less prettis@ what could be obtained by a derivative basethod.
Considering the analysis carried in this work sddwback was not relevant as the computed valudsec$hear stress
amplitude were essentially the same comparing then@thod with the PIM method.

6. ACKNOWLEDGEMENTS
The financial support of CAPES is gratefully ackmedged.

7. REFERENCES

Findley, W. N., 1959, “A theory for the effect ofean stress on fatigue of metals under combineibtoend
axial load or bending’Journal of Engineering for Industry, Trans. of th6 ME, B81:301-6.

Brown, M. W., Miller, K. J., 1973, “Theory for Fatie Failure under Multiaxial Stress-Strain Conditia
Proc. Institution of Mechanical Engineers, V.71 pp. 745-755.

McDiarmid D. L., 1991, “A general criterion for Higcycle multiaxial fatigue failure”Fatigue & Fracture of
Engineering Materials and Structures 14 (4), ppo-4453.

Papadopoulos, 1.V., 1998, “Critical plane approadnehigh-cycle fatigue:on the definition of the @itude and
mean value of the shear stress acting on thearjilane”,Fatigue & Fracture of Engineering Materials and
Structures 21 (3) ,pp 269-285

Susmel, L., Lazzarin, 2002, “A bi-parametric Wohlarrve for high cycle multiaxial fatigue assessment
Fatigue & Fracture of Engineering Materials and &ttures 25 (1) , pp 63-78.

Bin Li, Santos, J. L., Freitas, M. A., 2000, “A Wed Numerical Approach for Multiaxial Fatigue Limi
Evaluation”,Mechanics Based Design of Structures and MachMelsime 28, Issue 1, pp. 85— 103.

Zouain, N., Mamiya, E. N., Comes, F. C., 2006, figsienclosing ellipsoids in multiaxial fatigue stgém
criteria”, European Journal of Mechanics - A/Solids, Volumel&uel, pp.51-71.

Aragjo, J. A. & Mamiya E. N., 2002, “Fatigue liminder multiaxial loadings: on the definition of thguivalent
shear stressMechanics Research Communications, Volume 29,4$53¢ pp. 141-151.

Gongcalves, C. A., Aradjo, J. A. & Mamiya, E. N.,0) “Multiaxial fatigue: a stress based criteri@m hard
metals”, International Journal of Fatigue, Volume 27, Isyepp. 177-187.

Araujo, J. A., Mamiya, E. N. & Dantas, A. P., 20®ubmitted), “The prismatic hull as a measure efsistress
amplitude in multiaxial fatigue”Proceedings of the Eigth International ConferenceMultiaxial Fatigue
and Fracture, Edited by Upul Fernando, Sheffield, England.

Dang Van, K., Griveau, B., Message, O., 1989 EQEdted by M. W. Brown and K. J. Miller), “On a new
multiaxial fatigue limit criterion: theory and ajigation”, Mechanical Engineering Publications, London, pp.
479-496.

Goldberg D.E., 1989, “Genetic Algorithms in SearCiptimization and Machine LearningKluwer Academic
Publishers, Boston, MA

Nishihara T, & Kawamoto M., 1945, “The strengthroétals under combined alternating bending anddorsi
with phase difference”Memoirs of the College of Engineering, Kyoto Imaktniversit, 11: pp. 85-112

Heidenreich, R., Zenner, H. & Richter, |., 1985atigue Strength under Nonsynchronous Multiaxiab&tes”,
Z.Werkstofftech, Volume 16, no 3, pp. 101-112.

8. RESPONSIBILITY NOTICE

The authors are the only responsible for the pdimaterial included in this paper.



