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Abstract. Regarding the design of aircraft components, the state-of-art involves the use of extensive mathematical modeling and 
numerical simulation as well as optimization techniques. However, due the high computational costs in fluid dynamics, the search 
for accurate and viable solutions using numerical optimization constitutes a great challenge. This work has to main goals: (i) the use 
of the Immersed Boundary Method as a strategy of modeling and simulation of flows over complex three-dimensional geometries; 
and (ii) the optimization of a winglet using meta-modeling techniques. The Immersed Boundary Method has been developed by the 
Laboratory of Heat and Mass Transfer and Fluid Dynamics (LTCM) of the Federal University of Uberlandia. This technique makes 
use of two independent domains in the solution of the flows over complex geometries: a Eulerian domain, which is discretized using 
Finite Volume Method over a non-uniform mesh to integrate the Navier-Stokes equations and a second-order approximation for 
time and space derivatives. Another important remark is that the Lagrangian domain, which represents the immersed boundary, is 
represented by a superficial unstructured mesh, composed by triangles. In this scenario, meta-modeling is used as a way to 
overcome the high computational cost when dealing with fluid dynamics. The meta-models represent a low-cost approximation 
which can be easily dealt by numerical optimization codes. The in-house parallel code runs on a Beowulf-class cluster, a viable and 
reliable alternative to solve problems that demand very large computational resources. Finally, numerical results show the 
simulation of a three-dimensional flow over several airfoils NACA-0012 and design optimization of winglets aiming the maximum 
lift and minimum drag coefficients. 
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1. INTRODUCTION  
 

In the Immersed Boundary (IB) methods, the presence of a solid or a gaseous interface inside a flow can be 
simulated by adding a source term into the Navier-Stokes equations, which acts as a fluid body force. Actually, the way 
this force is evaluated is the one of main point of this methodology. Furthermore, an important characteristic presented 
by IB methodologies is that the immersed obstacle can be represented by a Lagrangian mesh while the flow domain is 
discretized by an Eulerian grid such as the Cartesian or cylindrical ones. There is, also, an interpolation/distribution 
procedure that promotes the transferring of information from one domain to another. This domain independence allows 
promoting the displacement of the immersed body and/or a deformation relative to the flow grid. 

The development of the IB method was credited to Charles Peskin and his collaborators, aiming to simulate the 
blood flow through cardiac valves. Accordingly to Peskin (1977), the source of the additional force term was due to the 
elastic boundary deformation rate, in which their constitutive points were tied by elastic membranes. More recently, 
Lima e Silva et al. (2003) proposed a model that evaluates the force field by the momentum equation based on a three 
points scheme, similar to what can be viewed in Mohd-Yusof (1997). However, that approach uses a more simplified 
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interpolation scheme requiring less computational resources. The technique has been called Virtual Physical Model 
(VPM) since it employs a momentum equation and models the no-slip condition on the geometry wall in an indirect 
manner (Campregher, 2005).  

Despite advances in computer capacity, the enormous computational cost of running complex engineering 
simulations makes it impractical to rely exclusively on simulation for the purpose of design optimization (Jin et al., 
2001). This scenario is especially common in the computational fluid dynamics (CFD). To cut down the cost associated 
with this codes, surrogate models, also known as meta-models, are constructed from and then used in place of the actual 
simulation models. A variety of meta-modeling techniques exist: polynomial response surface (PRS) methodology (Box 
et al. 1978; Myers and Montgomery 1995) and artificial neural network (ANN) methods (Smith 1993; Cheng and 
Titterington 1994) are two well-known approaches for constructing simple and fast approximations of complex 
computer codes. 

The current work has two proposals. The first one is to present an extension of the VPM to a three-dimensional 
domain and apply it to the flow around NACA-0012 airfoils. This step gives an analysis code for the problem. In 
sequence, this code is used to build a PRS model, which can be used in a design optimization context. Optimization is 
used to reduce drag while maximizes the lift related to the airfoil. 
 
2. MATHEMATICAL AND NUMERICAL MODELING 
 

The Immersed Boundary method uses two distinct domains to evaluate a flow over a complex geometry. An 
Eulerian domain is used to describe the behavior of the mean flow and covers the entire flow domain. For its turn, the 
Lagrangian domain is used to represent the interface fluid/fluid or fluid/solid. 

This is one of the great advantages attributed to Immersed Boundary methods since it is possible to simulate flow 
around complex geometries using a more simplified Eulerian formulation for the fluid and a Lagrangian more versatile 
and simple grid for the interface fluid/solid. The coupling between Eulerian and the Lagrangian domains is done by 
Virtual Physical Model (Lima e Silva et al 2003). 

In this work, Cartesian meshes were used to discretize the flow domain, configuring a simple and easy 
implementation, and at low computational cost. The following describes both domains in more details. 

 
2.1. The Eulerian Domain 
 

The domain was discretized by Finite Volume method over a structured non-uniform mesh. The flow is considered 
incompressible and isothermal. The integral form of the Navier-Stokes for such assumptions becomes: 

 

∫∫∫∫ ΩΩ
Ω+⋅∇Γ=⋅+Ω

∂
∂ dqdSndSnvd
t SS φφρφρφ ,        (1) 

 

where φ is a property being transported, φq  is the term of generation or destruction of φ , and φΓ is the diffusivity of 
φ . 

The time derivative was approximated by a second-order three-time level (Ferziger & Peric, 2002), and the spatial 
derivatives by the Central-Difference Scheme. 

The pressure-velocity coupling was done by the SIMPLEC method (Van Doormal e Raithby, 1984), with no 
relaxation in the velocity components equation. A co-located arrangement of variables was employed, and the Rhie-
Chow (Rhie-Chow, 1983) interpolation method was used to avoid numerical oscillation due to pressure checkerboard 
fields. 

The linear system originated from the velocity components discretization was solved by the SOR method. The SIP 
algorithm was used to solve the linear system generated by the discretization of the pressure correction equation. 

The time and space integration of equation (1) over an elementary volume, after some mathematical arrangements 
leads to the following equation: 
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The first term of the left-hand side of the equation (2) represents the discretization of the transient term by the 
three-time level scheme (Muzaferija and Peric, 1997). This scheme is a second order accurate in time. 
 
2.2. The Lagrangian domain 
 

The Lagrangian approach for analyzing the movement of a particle constitutes of placing a system of coordinates at 
the particle and follow it individually. In other words, the system of coordinates moves through the flow following the 
particle. Thus, at each time step the particle keeps its own system of coordinates relatively to a global system of 
coordinates. 

In the Virtual Physical model the geometry to be simulated is characterized by a Lagrangian set of points (see. Fig. 
(2)). This methodology permits to take advantage of the Lagrangian approximations like the ability to simulate moving 
bodies by just applying translation operations to the set of points. 

 

 
Figure 2: The surface of an airfoil NACA-0012 characterized by Lagrangian points. 

 
The main characteristic of Immersed Boundary method is to simulate the presence of a fluid/solid or fluid/fluid 

interface inside a flow by adding a source term of force f  to the Navier-Stokes equations. In Fig. (3) an arbitrary 
Lagrangian point k  is shown with coordinates kx , as well as an elementary volume of fluid with coordinates x . The 
evaluation of f  differentiates the IB methods among them.  

 

 
Figure 3: Schematic drawing of an arbitrary point k  over a surface, placed on kx , and a element of fluid positioned 

in x  
 
In the Virtual Physical Model, the Lagrangian force is obtained from a balance of momentum over a particle k , 

placed at kx . This particle also has properties pressure kp  and velocity kV . Thus, the force can be evaluated as: 
 

( ) ( ) kkkk
k

k pVVV
t
VF ∇+∇−⋅∇+
∂

∂
= 2μρρ

           (3) 
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The Eq. (3) can be interpreted as the necessary force so that a particle of fluid immediately adjacent to the 
Lagrangian point k  reaches the velocity of this point, imposing a non-slip condition between the fluid and the 
immersed body. 

Each term of the Eq. (3) has a particular meaning. The first term (the transient one) is responsible by the 
acceleration force ( accF ). The other terms, of spatial derivatives, are known as the advective term, the diffusive term 

and the pressure gradient term, respectively. These terms are responsible for inertial forces ( inertF ), viscous forces 

( viscF ), and pressure forces ( pressF ). More details about this model and about each term evaluation can be found in Lima 
e Silva et al (Lima e Silva et al, 2003), and Campregher (2005). 

The properties of the flow in the Eulerian mesh have to be interpolated to the Lagrangian mesh to calculate the 
Lagrangian forces. Once evaluated, the Lagrangian forces must be transferred back to the Eulerian domain. The 
connection between Lagrangian and Eulerian domains is promoted by the force distribution procedure.  

 
2.2.1. The Virtual Physical Model 

 
The discretization of Eq (3) is done by constructing a three-dimensional reference axis, with origin placed at the 

point k , as can be seen in the Fig (4). A Lagrangian polynomial is then used to obtain the space derivatives along each 
coordinate direction. Let m be a number of points employed to construct a polynomial interpolation of order m-1. Thus, 
the value of a property φ  along i direction, at any point p, is given by: 

 
( ) ( )∑=

m
mmi pp φψφ ,              (4) 

 
where, 
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Substituting the m points, according to the stencil on Fig (4), the φ  property value along the x axis (where k , 1k  

and 2k  points lay) one can obtain as: 
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Deriving Eq (6) to x direction one has: 
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and the second derivative results: 
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From the equations above, it is possible to obtain every spatial derivative needed in Eq (3), just substituting the 

point p and the aimed variable φ . 
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Figure 4: Position of the Lagrangian point kx  

 
A detailed view of a triangular element can be obtained in the Fig (5). The element sides are formed by line 

segments 1S , 2S  and 3S , between the vertex points 1P , 2P and 3P . Thus, one has 121 PPS = , 232 PPS =  and 

133 PPS = . 

The kAΔ  is the triangular element surface area, which can be evaluated as: 
 

( )( )( )321 SSSSSSSAk −−−=Δ             (9) 
 

where ( )( )32121 SSSS ++= . The kSΔ is the average length of the triangle sides. It worth noting that each of those 
geometric properties are associated to a Lagrangian point k. 
 
 

 
Figure 5: Detailed view of a triangular element 

 
2.2.2. The distribution procedure 
 

The Lagrangian force term F , calculated at a Lagrangian point (denoted by k ) is then distributed to Eulerian 
domain by means of the Dirac Delta Function. In an N-dimensional this function is defined as: 

 

∫ −=
nR

k
n

kk xdxFxxxf )()()( δ
.           (10) 

 
Applying the Eq. (10) for a volume V of the Lagrangian domain, 
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The δ  function has the following property: 
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where Ω∈V .This function acts as the core of a transformed integral (centered in kx ), which promotes the transposition 
between the Lagrangian and Eulerian domains (Griffith and Peskin, 2005). 

In the Virtual Physical Model for three-dimensional domains, the Lagrangian force field (Fi,k) is distributed over the 
Eulerian mesh using Eq (13). 

 
∑ ΔΔ= kkikii SADFf , .           (13) 

 
The distribution function iD  is evaluated as: 
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where the ϕ  function is defined as: 
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The Distribution function is divided by a volume unit, that cancel out by multiplying for a characteristic area ( kAΔ ) 

and for a characteristic length ( kSΔ ). Thus, it remains the force density that is integrated over the volumeΩ . 

The interface solid/fluid is managed by an indicator function iI , built from: 
 

ii GI ∇=∇2 ,             (17) 
 

where the G function is defined as: 
 

∑ Δ= kkii AnDG
,            (18) 

 
and the kn  is the normal vector on the Lagrangian point k. 

After the discretization of the Eq. (17), the algebraic equation system is evaluated by the MSI algorithm (Schneider 
and Zedan, 1981), a variation of the SIP procedure. By analyzing the Eq. (18), one can see that if the geometry is 
inserted into a non-uniform grid region, the interfacial region may become deformed, i.e., the geometry shell shape 
would be misrepresented. 

Briefly describing, the force field evaluation procedure in the Virtual Physical Model can be stated as: 
(1) With the flow field solved, the velocity components and the pressure are transferred, using the interpolation 

function given by Eq. (18), to the nearest Lagrangian points (k, k1...k6) depicted in Fig. (4); 

(2) Once having kiu , and kip , , evaluates kiF , by Eq. (3); 
(3) Calculates the force field components, due to each Lagrangian point k, via Eq. (13); 
(4) Advances in time; 
(5) The force field is inserted into the source-term of Eq. (1); 
(6) A new flow field is obtained and the procedure re-starts. 
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3. META-MODELING TECHNIQUE AS A DESIGN TOOL 
 

As a way to reduce the computational cost, the use of meta-models to represent the functions involved in an 
optimization problem has become an established approach. The statistical procedure used to generate them can be 
summarized as follows (Biles and Swain, 1980; Box et al. 1978; and Myers and Montgomery, 1995): 

 
1) Choice of a model and experimental design: the nature of the surrogate itself is determined, and then a 

design space, including a range of design possibilities, is sampled in order to reveal its contents and 
tendencies. 

2) Model fitting: the model whose shape is defined is fitted to the collected data. 
3) Verification of model accuracy: the precedent steps are sufficient to build a first tentative model, whose 

overall quality and usefulness has to be evaluated by adequate sets of metrics. Each combination of design 
space sampling, model choice and fitting procedure leads to the use of specific verification procedures. 

 
In the context of PRS, a polynomial function, ( )ˆ ,y βx , is used to approximate the actual function, ( )y x , as can be 

expressed by: 
 

( ) 2
0 1 1

ˆ , k k
i i ij i j ii ii i

i j
y x x x xβ β β β β ε

= =
= + + + + +∑ ∑∑ ∑x …  (19) 

where k  is the number of design variables considered in the problem. 
The order of the polynomial used in the approximation can vary according to the problem, In general, first-order 

and second-order polynomials are the most common. 
To provide a more complete picture of meta-model accuracy, three different metrics are used: the root mean square 

error, RMSE , the 2R , and the generalized mean square cross-validation error, or PRESS  in the PRS terminology 
(Box et al. 1978; Myers and Montgomery, 1995). The equations for these three metrics are given by Eq. (20) to (21), 
respectively: 
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where n  is the number of points provided by the design of experiments, îy  is the corresponding predicted value for the 
observed value iy . The smaller the RMSE , the more accurate the meta-model. 
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where y  is the mean of the observed values. The larger the value of 2R  (i.e., the closer to 1 ), the more accurate the 
meta-model. 

( )2( )
1

1 ˆn i
i ii

PRESS y y
n

−
=

= −∑   (22) 

where ( )ˆ i
iy
−  represents the prediction at ( )ix  using the PRS constructed using all sample points except ( )( ),i iyx . The 

smaller the PRESS  value, the more accurate the meta-model. 
 
While RMSE  represents the departure of the meta-model from the real simulation model, the variance captures how 

irregular the problem is. On the other hand, PRESS  gives an idea about how independent is the model from the 
chosen data. Indeed, it reflects the influence in case of remove one of the points. It is important to point out that only 
the 2R  measurement is non-dimensional. Thus, when using RMSE  and PRESS , it is necessary to consider the 
magnitude of the quantity of interest. 

 
4. RESULTS AND DISCUSSION  
 
4.1. Results of the simulations – Numerical experiments 
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The airfoils used in the simulations are shown in Fig (7). The numerical domain has dimensions length (X) = 
0.88m, width (Y) = 0.342 m and height (Z) = 0.384 m. Such domain was discretized by, 118x111x92 grids in X, Y and Z 
axis, respectively.  

The NACA 0012 airfoils, with winglets are represented by a triangular element mesh. Again, the Immersed 
Boundary methodology requires only the discretization of the surface that represents the fluid/solid interface, i.e. the 
body shell. The airfoil is centered at ( ccc zyx ,, ) = (0.28, 0.34, 0.165) m, having a chord c=0.04m and a width of 4c. 
For every simulation the attack angle α = 0º and the Reynolds number, based on chord, is Re = 10000. 

The boundary condition for velocity components on the Eulerian domain side walls were set as non-slip conditions, 
the inflow at x=0 m had a flat profile with values of IUu =  (inlet velocity), smwv /0== . The outflow was set of 
Neumann conditions. 

 

 
Figure 6: Airfoils used in the numerical experiments discretized using a triangular elements mesh. 

 
The value of the L2 norm was about 10-3, for all simulations, which is acceptable, once that the code has a second 

order in time-space accuracy. 
Figures (7) and (8) show the evolution of the curves of drag coefficient and lift coefficient for all, respectively, 

simulations. 
 

 
(a)        (b) 

Figure 7: Plot of drag coefficient X adimensional time (a). Plot of lift coefficient X adimensional time (b) 
 

 
The adimensional time is given by eq (28): 
 

( )* *t Ut c
∞=             (23) 

 
where c means the chord of airfoil, t is the dimensional time, and U∞  is the free-stream velocity. 
In Figures (8) and (9), one can note the notation CD32, or CD94, or even CL62 etc... In the first case, and similarly 

for the other examples, means the Drag curve for a 30° angle winglet with a length of 0.02m. 
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One can also note, in Fig (8), the significance of length in the drag coefficient, this fact was predicted in the 
analysis of variance. 

 
4.2. Numerical Optimization 

 
In this work, the PRS approach is used to build meta-models for the drag and lift coefficients, obtained from the 

expensive CFD codes previously described. These models will take as design variables the angle and the length of the 
winglet. At the end of the optimization, the drag coefficient must be reduced and the lift coefficient must be increased. 

Following the steps proposed in Section 4, the choice of model and the design of experiments start by taking into 
account the extremely high cost in a single evaluation of the CFD codes (almost seven days, even using parallel 
implementation). Thus, a first order model is used for both lift and drag coefficients. Table 1 and Table 2 show the 
bounds and the design points used for both the angle and the length of the winglet. 

 
 

Table 1. Design space specifications. 
 

Design Space Angle ( 1x ) Length ( 2x ) 
Lower bound 30 0.02 
Upper bound 90 0.04 

 
Table 2 Experimental design. 

 
Angle ( 1x ) Length ( 2x ) Drag ( 1y ) Lift ( 2y ) 

30 0.02 0.16 0.0116 
30 0.04 0.172 0.0154 
60 0.02 0.149 0.0105 
60 0.04 0.169 0.0121 
90 0.02 0.15 0.0087 
90 0.04 0.17 0.0078 

 
Using the previously shown setup, the following meta-models were obtained: 

1 1 20.1560 0.0060 0.0173y x x= − +   (24) 

2 1 20.0129 0.0053 0.0015y x x= − +   (25) 

Table 3 shows the error measurements for both quantities. As can be noticed, the drag coefficient has better 2R  
while both present good values of RMSE  and PRESS  errors when considering the magnitude of the quantities. 

 
Table 3. Error measurements. 

 Drag ( 1y ) Lift ( 2y ) 
2R  0.919395 0.842792 
RMSE  0.003771 0.001387 
PRESS  0.005528 0.002333 

 
After building the meta-models for the responses, the numerical optimization continues by defining the design 

problem according to the following formulation: 

( )  optimize f x    (26) 

subject to: 

,      i = 1, 2, 3, ..., N

( ) 0,          j = 1, 2, 3, ..., M

( ) 0,          k = M + 1, M + 2, M + 3, ..., L
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where: 

•  optimize  can be either finding the minimum or the maximum of ( )f x , 
• ( )f x  is the objective function, 
• ( )jg x  and ( )jh x  are inequality and equality constraints, respectively, and 

• L U
i i i≤ ≤x x x  are the side constraints of the design space. 

 
In the present work, three different formulations are solved using MATLAB functions fmincon and linprog. In the 

first formulation, both drag and lift are considered as objective functions. In this case the optimization consists in 
minimizing the drag and minimizing the lift coefficients. These responses are combined into a functional whose 
minimization, via fmincon, implies that all responses tend to a target value and depart from a non-desirable one. The 
target and avoidable values are not necessarily design goals, but play an important role at the optimization problem by 
defining the tendency of the sought optima with respect to the baseline design. This scheme is known as Compromise 
Programming, better described by Vanderplaats (2005).  

The second and the third formulations make uses of the constrained optimization. In one turn, the drag is taken as 
an objective function to be maximized and the lift as a constraint, on the other turn, the lift is considered as an objective 
function to be minimized and the drag is a constraint. In both cases, the numerical implementation uses linprog, a 
projection method as described in Gill et al. (1981). Basically, linprog implements a variation of the well-known 
simplex method for linear programming. 

After run each o the previously presented formulations, a set of optimal results is obtained. Due the linear nature of 
the meta-models, the results do not vary if one runs a certain formulation starting from a different initial design. 
However, to finish the design optimization, it is necessary to go back to the CFD model and evaluate each of the 
obtained design. Just after that, it is possible to judge which formulation gives the best answer. Table 4 shows the 
results obtained from the optimization using the meta-models and the validation with the CFD codes. 

 
Table 4. Optimization Results 

 
PRS values CFD values Approach Angle Length 

Drag Lift Drag Lift 
Multi Objective 51.12787 0.02 0.153887 0.011043 0.158 0.008 
Minimize Drag 51.50943 0.02 0.153849 0.011010 0.1665 0.017 
Maximize Lift 52.00000 0.02 0.153800 0.010967 0.168 0.016 

 
It is now clear that is necessary to feedback the actual CFD codes with the results obtained from the optimization 

runs. This is important not only for comparison, but also for decision making. As can be viewed in Table 4, the PRS 
values for all approaches are very close to each other. Then, when the CFD values are taken into account, it is possible 
to see that for drag they can be closed, but definitely for lift they are distinct. Finally, the design obtained by the 
minimization of drag seems to be the best among them. 

 
5. CONCLUSION  

 
The main objective of this work was to show that it is possible to make an optimization of geometry, aiming 

aerodynamic efficiency, without the use of embarked methods of optimization in the CFD Solver. This objective was 
achieved successfully. The Immersed Boundary Method have shown great capability in dealing with complexes 
geometries and/or moving bodies, once the Eulerian mesh is a Cartesian mesh, very simple to be created, and there are 
no further difficulties in generating the Lagrangian mesh, which is a advantage if compared with other methodologies 
of studying Fluid-Structure Interaction. 

The use of statistical tool for creating a meta-model was fundamental, and this proceeding shown great results It 
was possible also, to notice that, the meta-model was adjusted well to the problem, with correlations of up to 99%, 
guaranteeing that the reliability of the optimization. Also the meta-modeling have shown an excellent tool for leading 
with multidisciplinary problems, like Fluid Structure Interaction. 

As final remarks, the whole methodology presented in this paper, show the beginning of a methodology for 
designing, operating and optimizing complexes systems. 
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