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Abstract. Surrogate-based optimization (SBO) methods are frequemtiployed in engineering design optimization of
complex systems by replacing complete numerical modetsr Ui¥e is convenient in the case of numerical models built
with experimental data, models in which the analysis or ity analysis is very expensive, models with discontinu
ous derivatives or with no available derivatives, and vemynplex optimization problems. The methodology commonly
employed for optimal design with surrogated models is ugltdrative. It begins by defining an initial approximated
model (surrogate model) that is optimized by the algoritteen a new model is constructed in the approximated opti-
mum previously obtained. This procedure is repeated urdtbaping criterion is satisfied. The main drawbacks of this
approach include the inability to prove global convergertbe oscillation, in practice, of intermediate solutioasd the
difficulty in obtaining feasible designs. The purpose of ilwestigation is to obtain a rigorous feasible point optiation
technique for nonlinear constrained optimization, whiobud ensure global convergence. In practice, this means tha
all intermediate designs are feasible and the objectivetion is reduced at every iteration. In this contributioretsur-
rogates are linear programs. Instead of using the optimuth@furrogates as a new design, a search direction is defined
and a line search is performed to decrease the objectivaifumcThe proposed algorithm is applied to shape optimarati

of two-dimensional elastic structures. The sensitivitglgsis are avoided and the numerical results are encouggin
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1. INTRODUCTION

Surrogate-based optimization (SBO) has been shown to b&eutiee approach for the design of computationally
expensive models such as those found in the design of aut@naerospace and consumer products. Frequently, single
discipline simulations used for analysis are being coufidgdther to create complex coupled simulation systenstlit
case of multidisciplinary design optimization (MDO) prehis. The computational cost of executing a single complex
simulation makes these problems very expensive for opditiciz, so the algorithms of direct optimization are rarely
used. As solution to this problem are required approximatedels with low computational cost (known asrrogate
modelsor metamodels The approximated models are based on limited number Isftoathe high fidelity models. Once
constructed, the substitute modelifrogat® can substitute the exact original model for optimizationgmses.

In some cases, the engineer has to design under a time é¢ohatrd therefore the optimization process may be ter-
minated prematurely. In this case an algorithm that pravaléeasible design at each iteration would be desirable.

The methodology commonly employed for optimal design withr@gate models is usually sequential. The basic con-
cept is to apply nonlinear optimization to the minimizatifran local or global approximation of the objective funatio
and constraints. The approximations implemented coulchipeoba wide range of models (metamodels). Once built the
metamodel or surrogate model, it is included on the origprablem providing second order information (in the case
of Taylor series approximations) or substituting entiréflgt functions. Then is solved an minimization subprobldm o
the approximations. The process continue with the construof new approximations or upgrading they and following
again the same scheme until attain a condition of finalipatio

Optimization methods employing approximation models wagimated since 1970’s (Schmit Jr. and Miura 1976) and
have become more popular within the engineering commuitynerous surveys of these methods exist (Barthelemy
and Haftka 1993; Sobieszczanski-Sobieski and Haftka 1997)

The models used for approximation can be classified bagigatier two criteria related to the response approximation.
According thenumber of pointsn the design space included at the simulation, can mefpointor of multiple points
According thescopeof the approximation, can becal or global depending if are made for represent a part of the design
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space or all him.

There are too other kind of methods that instead of appraingghe original response, approximate the subproblem
response, one example of this kind of techniques are calldtilevel optimization(Sobieski 2000).

Figure 1 shows a general review of the main approximatiorhout in optimization, illustrating its corresponding
classification.
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Figure 1. Main Approximation Methods in Optimization

2. SURROGATE-BASED OPTIMIZATION (SBO)

Surrogate-based optimization (SBO) methods have becotalklisbed as effective techniques for engineering design
problems through their ability to tame non-smoothness addge computational cost.

A number of surrogate model selections are possible. Rhstsurrogate may be of th#ata fittype, which is a
non-physics-based approximation typically involvingeirntolation or regression of a set of data generated fromrige o
inal model. Data fit surrogates can be further characterigethe number of data points used in the fit, where local
approximations (e.g., first or second-order Taylor sensg) data from a single point, multipoint approximationgj.(e.
two-point exponential approximations (Fadel and Barttmgld.990) (TPEA) or two-point adaptive nonlinearity approx-
imations (Xu and Grandhi 1998) (TANA)) use a small number atiadpoints often drawn from the previous iterates of
a particular algorithm, and global approximations (e.glypomial response surfaces, kriging, neural networksiata
basis functions, splines) use a set of data points distibaver the domain of interest, often generated using amesig
computer experiments. A second type of surrogate isrtbdel hierarchytype (also called multifidelity, variable fidelity,
etc.). In this last case, a model is still physics-baseddaof lower fidelity (e.g., coarser discretization, reduckearent
order, relaxed solver tolerances, omitted physics) is @sethe surrogate in place of the high-fidelity model. A third
type of surrogate model involvesduced-order modelingchniques such as proper orthogonal decomposition (P®D) i
computational fluid dynamics or spectral decompositiontincsural dynamics. These surrogate models are generated
directly from a high-fidelity model through the use of a reeldidasis and projection of the original high-dimensional
system down to a small number of generalized coordinatessd burrogates are still physics-based (and may therefore
have better predictive qualities than data fits), but do aqtire multiple system models of varying fidelity (as reqdir
for model hierarchy surrogates).

The general nonlinear optimization problem is

min f(z)
S.tgi(x) <0;i=1,2,....,m Q)
hl( ):Ov’L: 32,00,
T ST S Ty,
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wherez € R"™ is the vector of design variables, affidg andh are smooth functions iR™ and at least one of these
functions is nonlinear. The corresponding surrogateagtimization (SBO) algorithm may be formulated in several
ways. In all cases, SBO solves a sequenck approximate optimization subproblems; however, manyedifit forms
of the surrogate objectives and constraints in the appratdrsubproblem can be explored (Eldred and M. 2006). In
particular, the subproblem objective may be a surrogatbebtiginal objective or a surrogate of a merit function (tnos
commonly, the Lagrangian or augmented Lagrangian), andubproblem constraints may be surrogates of the original
constraints, linearized approximations of the surrogatsstraints, or may be omitted entirely. Each of these coatliins
is shown in Tab. 1, where black indicates an inappropriatelination, gray indicates an acceptable combination, and
blue indicates a common combination (Eldred and M. 2006).

Table 1. SBO approximate subproblem formulations.

Original Objective| Lagrangian | Augmented Lagrangia

No constraints

Linearized constrainty  EJOlEEEI[IN

Original constraints [BIESRNUC ] | IPTRSAO
*Technigue presented by the authors

In Tab. 1, the approach in the row 1, column 3 is known as th&-negion augmented Lagrangian (TRAL). While
this approach was provably convergent, convergence @at@nstrained minima have been observed to be slowed by the
required updating of Lagrange multipliers and penalty peaters (Pérez and Watson 2004). Prior to converging these
parameters, SBO iterates did not strictly respect cométbaiundaries and were often infeasible. A subsequent appro
(IPTRSAO (Pérez and Watson 2004)) that sought to directlyess this shortcoming added explicit surrogate conggrain
(row 3, column 3in Tab. 1).

While this approach does address infeasible iterates]lisbtres the feature that the surrogate merit function may
reflect inaccurate relative weighting of the objective aadstraints prior to convergence of the Lagrange multiplard
penalty parameters. That is, one may benefit from more fieaisitermediate iterates, but the process may still be slow
to converge to optimality. The concept of this approachrisilar to that of SQP-like SBO approaches (Alexandrov and
Newman 2000) which use linearized constraints.

In that the primary concern is minimizing a composite maritdtion of the objective and constraints, but under the
restriction that the original problem constraints may netildly violated prior to convergence of Lagrange mulépli
estimates. Here, the merit function selection of the Lagjemfunction is most closely related to SQP, which includes
the use of first-order Lagrange multiplier updates that Ehoanverge more rapidly near a constrained minimizer than
the zeroth-order updates used for the augmented Lagrangian

The SQP-Feasible Directions Interior Point Algorithm (SRPIPA)(row 2, column 2 in Tab. 1) presented by the au-
thors is also related to SQP. Where subproblems (Quadratip@ns) define a feasible descent direction, and the feasibl
solutions are guaranteed on each iteration due the includithe real constraints in the line search. Here the firstiord
information is obtained from a data fit model (Response $ajfan each iteration.

All of these previous constrained SBO approaches involwcagting of the approximate subproblem objective and
constraints as a function of the original objective and tanst surrogates. A more direct scheme has been termed the
direct surrogate approach since it optimizes surrogatéseodriginal objective and constraints (row 3, column 1 ib.Ta
1) without any recasting. It is attractive both from its sliojy and potential for improved performance.

On each of thé: iterations in the SBO strategy, an step is predicted aloresaeht directioa” := (z — z*) or within
a trust region. This completes an SBO cycle, and the cyctesantinued until either soft or hard convergence criterga a
satisfied.

3. SURROGATE-BASED FEASIBLE DIRECTIONS INTERIOR POINT ALG ORITHM

Sequential Quadratic Programming (SQP), that is at the mbthe largest employed method for nonlinear con-
strained optimization, is a quasi-Newton technique basedmoidea proposed by Wilson (Wilson 1963) and interpreted
by Beale (Beale 1967).

A Quadratic Progranis a class of constrained optimization problems such thabthjective is a convex quadratic
function and the constraints are linear. Efficient techegjto solve this problem are available, even when inequality
constraints are included. The exact solution is obtained affinite number of iterations (Luenberger 1984). To stiee
problem
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min  f(x)
x
s.t.g(x) <0 2
h(z) =0,

Wilson proposed to define the search directieand new estimates of the Lagrange multipli®rznd . by solving at
each iteration

min 3d"Bd+ V7T (z)d
d
s. . VgT()d + g(z) <0 (3)
VAT (2)d + h(z) = 0.

Since the quadratic programming problem 3 is a convex pnoldgiadratic programm witth € R™ as unknown) based
on Taylor series approximations for the objective (quadmpproximation) and the constraints (linear approxiongti
the global minimum satisfies the Karush-Kuhn-Tucker oplitpaonditions.

Wilson’s is a Newton algorithm. Garcia Palomares and Maagas proposed later a quasi-Newton technique (Gar-
cia Palomares and Mangasarian 1976), Han obtained a glatiaivergent algorithm (Han 1977) and Powell proved
superlinear convergence (Powell 1978).

An exact penalty function is taken as the objective of the imarch.

In Sequential Quadratic Programming algorithms, the mafris defined as a quasi-Newton approximation of the
Hessian of the Lagrangian. Most of the optimizers employfeiewing BFGS rule modified by Powell:

Letbed =tdandy = V L(z + td, \g) — V. L(z, o).

wr  Bé§TB

Bi=—p4 D05
5Ty T 5TBs

4)
The asymptotic speed of convergence has similar propexsiegiasi-Newton algorithms for equality constrained op-
timization and Maratos’ effect can also occur.

Feasible directions algorithms are an important class ¢haus for solving constrained optimization problems. At
each iteration, the search direction is a feasible diraatiothe inequality constraints and, at the same time, a désce
direction of the objective or an other appropriate functioh constrained line search is then performed to obtain a
satisfactory reduction of the function without loosing fleasibility.

The fact of giving feasible points makes feasible dirediafgorithms very efficient in engineering design, where
functions evaluation is in general very expensive. Sinog,iatermediate design can be employed, the iterations ean b
stopped when the cost reduction per iteration becomes smaligh.

There are also several examples that deal with an objectivetibn, or constraints, that are not defined at infeasible
points. This is the case of size and shape constraints iatstal optimization. When applying feasible directionscalg
rithms to real time problems, as feasibility is maintained aost reduced, the controls can be activated at eachaterat

Taking into account the previous considerations, an dlgworiof feasible directions based on SQP is a very good
choice as an efficient and robust optimization approach. d¥ew the approximations in Taylor series expansion usdd an
it mathematical demonstration are based on the suppos®adth functionswhich is not the case in many engineering
problems. Also, frequently the function derivatives areamailable or its calculations are very expensive.

Following these reasoning, the algorithm developed onilrisstigation follow the idea of the SQP feasible direcsion
algorithm developed by Herskovits in (Herskovits 1983) émgdHerskovits and Carvalho in (Herskovits and Carvalho
1986), where the first order information is obtained of theam®del acquired byglata fitusing constrained least squares
(attaining the consistency requirement), i.e. based orRésponse Surface Methodology (RSM)(Myers R. H. 1995;
Simpson and Allen 2001).

Algorithm: Surrogate-Based Feasible Directins Interior Point Algorithm
Parametersr > 0, ¢ > 0 anda € (0, 1).

Data: Initialize x € R" feasible.
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STEP 1.0btain the surrogates and its corresponding derivatives.

Solve the following linear constrained least square prokléor the objective and each constraints respectively.

min || Xb—¢|2
b ®)
s. t. f(z) = f(x).

WhereX e R"*("+1) js the matrix of the levels of the design variables,{ = 1, ..., n) in theleast squares normal
equationsotation;ne is the number of objective function evaluations requireghike the fith € R(»+1)*1 s the vector
of the regression coefficients, andc R"¢*! is the vector with the response value, thatiis= f(z;) Va; € E(z) :=
{z U Rand(ne, z,r)}, where

Rand(ne, z,r) is a set compound bye random points generated within a neighborhood of half siaad center,

i. e., space filling experiment.

g(z) = by + brx1 + baxa + ... + bz,  isthe linear model for each constraint (6)
Fl@)=bo+ ) bjaj+> bjat+ > Y bz, @)
j=1 j=1 i<j
1 74 ~ . . L .
= EITSI + fTz+ fo isthe quadratic model for the objective function, (8)
where S is the approximated Hessian gf 9)

STEP 2.Computation of a descent directidp and an estimate of the Lagrange multipliggs
Solve the quadratic program ify
min %dOTBdO + VfT (x)dy

do (20)
s. t. VT (z)do + g(x) <0

STEP 3.Computation of the search directidr(feasible and descent).

i) Letthe active set bd(x) o {j€1,2,...,m| Xg; >0} and

9s(@) € lg; (@), j € J(x).
If g7 (z)[Vgt(x)B~1Vg,(z)] 'e <0, find

(1 — Oé)Vf;T(QZ, )\Q)do

" F@IVE @B Vi @) e -
where the Lagrangiah? (z,\) = f(z) + ATg(z) ande £[1,1,...,1]T
ii) Let the inactive set bel(z) &' {j € 1,2,...,m | Ag; = 0}.
For eachj € J(z), if
(V4] (x)B 'V, (2)[Vg]) (@) BV, (x)]'e -1} <0,
find
b= g(z) + Vg] (x)dy 12)

VT (2)B=1V g (x)[V g5 (2) B-1V gy (x)]te — 1
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iii) Setp = inf{plldol?, ps,pj,j € J()}.

iv) Solve the quadratic program ih

min 3d”Bd + V{7 (z)d
d (13)
s. t. VgL (z)d + g (z) = —pe

STEP 4.Line search.

Find a step length satisfying a given constrained line search criterion onLifigrangian functior.(x, A¢) and such
that(x + td) is a feasible point of the exact nonlinear program.

STEP 5.Update:B (the approximated Hessian of the Lagrangian), and
Letbed =tdandy = V,L(x 4 td, \g) — V. L(z, \o).

) If 67 < 0.267 B§, then compute
b= 0.867 B§
6T Bo — 0T

and sety = ¢y + (1 — ¢)BJ.

ii) Set
T » T
B::B—f—%—B&SAB
0y §TBS
and
r:=x+td

STEP 6.Go back to Step 1.

4. EXAMPLES OF APPLICATIONS

The following examples have been performed implementiagthrogate-based interior point algorithm in the Ma®ab
program.

4.1 Barnes test problem

The Barnes problem (Wujek 1997) is a test problem with twdicoous design variables and three nonlinear inequal-
ity constraints.

Starting from the feasible point (30,40) the algorithm cenge to a local minimizer in 30 iterations, it is, the same
order of iterations that the derivatives enhanced versisim¢) exact derivatives for both objective and constraints

The Fig. 2(a) show the contour plot for the Barnes functiohe Fig. 2(b) show the convergence of the algorithm to
the local minimizer with decrement of the objective funati@lue in each iteration (no oscillates are present).

4.2 Structural shape optimization of a bracket

Figure 3 shows geometry and the design parametrizationmempdnse analysis results for a bracket problem. A total
of five design variablese = [r1,r2,73, 21, 22]) have been selected to change the inner/outer boundary bfélket,
while maintaining symmetry. The plane stress formulat®nsed with a thickness 6004 m. The bracket is made of
steel withE = 200 GPa, and’ = 0.33. The force applied i = 6 x 10—3 MN, and the magnitude aof = 0.02 m.
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Figure 2. Results for the Barnes function using SBO with tQ&S-DIPA.
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Figure 3. Geometry, design variables, and finite elemerysisaesult of bracket.
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The structural shape optimization problem is formulatediioh a way that the total volume of the structure is mini-
mized with respect to its shape design variables, with desigstraints defined as the von Mises stress, as

min  Vol.(x)
@ (14)
S.t.opax <350 MPa

The optimization problem converged in fourth iterationgufe 4 shows the analysis results at the optimum design.
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Figure 4. Analysis result at optimum design. von Mises stied/Pa.

Optimal volume is reduced from.3382 x 10> m? to 5.10083 x 10~®> m3. A total of 92 response analyses were
carried out during the fourth optimization iterations. WHe&EM is used with re-meshing precess (quadratic triangular
elements).

5. CONCLUSIONS

This research present a new algorithm based on approximdgas which make use of the efficiency and robustness
of the SQP approach in a version more attractive for the eeging field which enables the capability of generate féasib
points and always decrease the objective avoiding oseillat

Other capabilities was included from the surrogate-badeds such as the possibility of lead with non-smooth func-
tions and, work with experimental data.

Our approximation in all senses (Taylor series expansiadhenSQP, and data fit for the surrogate model) are local,
and the algorithm presented on this investigation convergegocal minima.

Our results are encouraging, mainly in fields with few desigriables (e. g. Shape Structural Optimization), because
the high number evaluations of the real function to mininfee variance of the model due to data fit adjust required to
guaranty minimal variance in the model.

Future works could be the use of other scheme that allow mamg design variables without decrease the quality of
the approximation.
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