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Abstract. Surrogate-based optimization (SBO) methods are frequently employed in engineering design optimization of
complex systems by replacing complete numerical models. Their use is convenient in the case of numerical models built
with experimental data, models in which the analysis or sensitivity analysis is very expensive, models with discontinu-
ous derivatives or with no available derivatives, and very complex optimization problems. The methodology commonly
employed for optimal design with surrogated models is usually iterative. It begins by defining an initial approximated
model (surrogate model) that is optimized by the algorithm,then a new model is constructed in the approximated opti-
mum previously obtained. This procedure is repeated until astopping criterion is satisfied. The main drawbacks of this
approach include the inability to prove global convergence, the oscillation, in practice, of intermediate solutions,and the
difficulty in obtaining feasible designs. The purpose of this investigation is to obtain a rigorous feasible point optimization
technique for nonlinear constrained optimization, which would ensure global convergence. In practice, this means that
all intermediate designs are feasible and the objective function is reduced at every iteration. In this contribution the sur-
rogates are linear programs. Instead of using the optimum ofthe surrogates as a new design, a search direction is defined
and a line search is performed to decrease the objective function. The proposed algorithm is applied to shape optimization
of two-dimensional elastic structures. The sensitivity analysis are avoided and the numerical results are encouraging.

Keywords: Optimization Methods, Shape Optimization, Mathematical Programming, Metamodelling, Surrogate Based
Optimization (SBO)

1. INTRODUCTION

Surrogate-based optimization (SBO) has been shown to be an effective approach for the design of computationally
expensive models such as those found in the design of automotive, aerospace and consumer products. Frequently, single
discipline simulations used for analysis are being coupledtogether to create complex coupled simulation systems, it is the
case of multidisciplinary design optimization (MDO) problems. The computational cost of executing a single complex
simulation makes these problems very expensive for optimization, so the algorithms of direct optimization are rarely
used. As solution to this problem are required approximatedmodels with low computational cost (known assurrogate
modelsor metamodels). The approximated models are based on limited number of calls to the high fidelity models. Once
constructed, the substitute model (surrogate) can substitute the exact original model for optimization purposes.

In some cases, the engineer has to design under a time constraint and therefore the optimization process may be ter-
minated prematurely. In this case an algorithm that provides a feasible design at each iteration would be desirable.

The methodology commonly employed for optimal design with surrogate models is usually sequential. The basic con-
cept is to apply nonlinear optimization to the minimizationof an local or global approximation of the objective function
and constraints. The approximations implemented could be any of a wide range of models (metamodels). Once built the
metamodel or surrogate model, it is included on the originalproblem providing second order information (in the case
of Taylor series approximations) or substituting entirelythat functions. Then is solved an minimization subproblem of
the approximations. The process continue with the construction of new approximations or upgrading they and following
again the same scheme until attain a condition of finalization.

Optimization methods employing approximation models was originated since 1970’s (Schmit Jr. and Miura 1976) and
have become more popular within the engineering community.Numerous surveys of these methods exist (Barthelemy
and Haftka 1993; Sobieszczanski-Sobieski and Haftka 1997).

The models used for approximation can be classified basically under two criteria related to the response approximation.
According thenumber of pointsin the design space included at the simulation, can be ofone pointor of multiple points.
According thescopeof the approximation, can belocal or global depending if are made for represent a part of the design
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space or all him.
There are too other kind of methods that instead of approximating the original response, approximate the subproblem

response, one example of this kind of techniques are calledmultilevel optimization(Sobieski 2000).
Figure 1 shows a general review of the main approximation methods in optimization, illustrating its corresponding

classification.
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Figure 1. Main Approximation Methods in Optimization

2. SURROGATE-BASED OPTIMIZATION (SBO)

Surrogate-based optimization (SBO) methods have become established as effective techniques for engineering design
problems through their ability to tame non-smoothness and reduce computational cost.

A number of surrogate model selections are possible. First,the surrogate may be of thedata fit type, which is a
non-physics-based approximation typically involving interpolation or regression of a set of data generated from the orig-
inal model. Data fit surrogates can be further characterizedby the number of data points used in the fit, where local
approximations (e.g., first or second-order Taylor series)use data from a single point, multipoint approximations (e.g.,
two-point exponential approximations (Fadel and Barthelemy 1990) (TPEA) or two-point adaptive nonlinearity approx-
imations (Xu and Grandhi 1998) (TANA)) use a small number of data points often drawn from the previous iterates of
a particular algorithm, and global approximations (e.g., polynomial response surfaces, kriging, neural networks, radial
basis functions, splines) use a set of data points distributed over the domain of interest, often generated using a design of
computer experiments. A second type of surrogate is themodel hierarchytype (also called multifidelity, variable fidelity,
etc.). In this last case, a model is still physics-based but is of lower fidelity (e.g., coarser discretization, reduced element
order, relaxed solver tolerances, omitted physics) is usedas the surrogate in place of the high-fidelity model. A third
type of surrogate model involvesreduced-order modelingtechniques such as proper orthogonal decomposition (POD) in
computational fluid dynamics or spectral decomposition in structural dynamics. These surrogate models are generated
directly from a high-fidelity model through the use of a reduced basis and projection of the original high-dimensional
system down to a small number of generalized coordinates. These surrogates are still physics-based (and may therefore
have better predictive qualities than data fits), but do not require multiple system models of varying fidelity (as required
for model hierarchy surrogates).

The general nonlinear optimization problem is























min
x

f(x)

s. t.gi(x) ≤ 0; i = 1, 2, . . . ,m

hi(x) = 0; i = 1, 2, . . . , p

xl ≤ x ≤ xu,

(1)
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wherex ∈ R
n is the vector of design variables, andf, g andh are smooth functions inRn and at least one of these

functions is nonlinear. The corresponding surrogate-based optimization (SBO) algorithm may be formulated in several
ways. In all cases, SBO solves a sequence ofk approximate optimization subproblems; however, many different forms
of the surrogate objectives and constraints in the approximate subproblem can be explored (Eldred and M. 2006). In
particular, the subproblem objective may be a surrogate of the original objective or a surrogate of a merit function (most
commonly, the Lagrangian or augmented Lagrangian), and thesubproblem constraints may be surrogates of the original
constraints, linearized approximations of the surrogate constraints, or may be omitted entirely. Each of these combinations
is shown in Tab. 1, where black indicates an inappropriate combination, gray indicates an acceptable combination, and
blue indicates a common combination (Eldred and M. 2006).

Table 1. SBO approximate subproblem formulations.

Original Objective Lagrangian Augmented Lagrangian
No constraints TRAL

Linearized constraints SQP-FDIPA*
Original constraints Direct surrogate IPTRSAO

*Technique presented by the authors

In Tab. 1, the approach in the row 1, column 3 is known as the trust-region augmented Lagrangian (TRAL). While
this approach was provably convergent, convergence rates to constrained minima have been observed to be slowed by the
required updating of Lagrange multipliers and penalty parameters (Pérez and Watson 2004). Prior to converging these
parameters, SBO iterates did not strictly respect constraint boundaries and were often infeasible. A subsequent approach
(IPTRSAO (Pérez and Watson 2004)) that sought to directly address this shortcoming added explicit surrogate constraints
(row 3, column 3 in Tab. 1).

While this approach does address infeasible iterates, it still shares the feature that the surrogate merit function may
reflect inaccurate relative weighting of the objective and constraints prior to convergence of the Lagrange multipliers and
penalty parameters. That is, one may benefit from more feasible intermediate iterates, but the process may still be slow
to converge to optimality. The concept of this approach is similar to that of SQP-like SBO approaches (Alexandrov and
Newman 2000) which use linearized constraints.

In that the primary concern is minimizing a composite merit function of the objective and constraints, but under the
restriction that the original problem constraints may not be wildly violated prior to convergence of Lagrange multiplier
estimates. Here, the merit function selection of the Lagrangian function is most closely related to SQP, which includes
the use of first-order Lagrange multiplier updates that should converge more rapidly near a constrained minimizer than
the zeroth-order updates used for the augmented Lagrangian.

The SQP-Feasible Directions Interior Point Algorithm (SQP-FDIPA)(row 2, column 2 in Tab. 1) presented by the au-
thors is also related to SQP. Where subproblems (Quadratic Programs) define a feasible descent direction, and the feasible
solutions are guaranteed on each iteration due the inclusion of the real constraints in the line search. Here the first order
information is obtained from a data fit model (Response Surface) on each iteration.

All of these previous constrained SBO approaches involve a recasting of the approximate subproblem objective and
constraints as a function of the original objective and constraint surrogates. A more direct scheme has been termed the
direct surrogate approach since it optimizes surrogates ofthe original objective and constraints (row 3, column 1 in Tab.
1) without any recasting. It is attractive both from its simplicity and potential for improved performance.

On each of thek iterations in the SBO strategy, an step is predicted along a descent directiondk := (x−xk) or within
a trust region. This completes an SBO cycle, and the cycles are continued until either soft or hard convergence criteria are
satisfied.

3. SURROGATE-BASED FEASIBLE DIRECTIONS INTERIOR POINT ALG ORITHM

Sequential Quadratic Programming (SQP), that is at the moment the largest employed method for nonlinear con-
strained optimization, is a quasi-Newton technique based on an idea proposed by Wilson (Wilson 1963) and interpreted
by Beale (Beale 1967).

A Quadratic Programis a class of constrained optimization problems such that the objective is a convex quadratic
function and the constraints are linear. Efficient techniques to solve this problem are available, even when inequality
constraints are included. The exact solution is obtained after a finite number of iterations (Luenberger 1984). To solvethe
problem
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min
x

f(x)

s. t.g(x) ≤ 0
h(x) = 0,

(2)

Wilson proposed to define the search directiond and new estimates of the Lagrange multipliersλ andµ by solving at
each iteration















min
d

1
2dT Bd + ∇fT (x)d

s. t.∇gT (x)d + g(x) ≤ 0
∇hT (x)d + h(x) = 0.

(3)

Since the quadratic programming problem 3 is a convex problem (quadratic programm withd ∈ R
n as unknown) based

on Taylor series approximations for the objective (quadratic approximation) and the constraints (linear approximation),
the global minimum satisfies the Karush-Kuhn-Tucker optimality conditions.

Wilson’s is a Newton algorithm. Garcia Palomares and Mangasarian proposed later a quasi-Newton technique (Gar-
cia Palomares and Mangasarian 1976), Han obtained a globally convergent algorithm (Han 1977) and Powell proved
superlinear convergence (Powell 1978).

An exact penalty function is taken as the objective of the line search.
In Sequential Quadratic Programming algorithms, the matrix S is defined as a quasi-Newton approximation of the

Hessian of the Lagrangian. Most of the optimizers employ thefollowing BFGS rule modified by Powell:
Let beδ = td andγ = ∇xL(x + td, λ0) −∇xL(x, λ0).

B := B +
γγT

δT γ
−

BδδT B

δT Bδ
. (4)

The asymptotic speed of convergence has similar propertiesas quasi-Newton algorithms for equality constrained op-
timization and Maratos’ effect can also occur.

Feasible directions algorithms are an important class of methods for solving constrained optimization problems. At
each iteration, the search direction is a feasible direction of the inequality constraints and, at the same time, a descent
direction of the objective or an other appropriate function. A constrained line search is then performed to obtain a
satisfactory reduction of the function without loosing thefeasibility.

The fact of giving feasible points makes feasible directions algorithms very efficient in engineering design, where
functions evaluation is in general very expensive. Since, any intermediate design can be employed, the iterations can be
stopped when the cost reduction per iteration becomes smallenough.

There are also several examples that deal with an objective function, or constraints, that are not defined at infeasible
points. This is the case of size and shape constraints in structural optimization. When applying feasible directions algo-
rithms to real time problems, as feasibility is maintained and cost reduced, the controls can be activated at each iteration.

Taking into account the previous considerations, an algorithm of feasible directions based on SQP is a very good
choice as an efficient and robust optimization approach. However, the approximations in Taylor series expansion used and
it mathematical demonstration are based on the suppose ofsmooth functions, which is not the case in many engineering
problems. Also, frequently the function derivatives are noavailable or its calculations are very expensive.

Following these reasoning, the algorithm developed on thisinvestigation follow the idea of the SQP feasible directions
algorithm developed by Herskovits in (Herskovits 1983) andby Herskovits and Carvalho in (Herskovits and Carvalho
1986), where the first order information is obtained of the metamodel acquired bydata fitusing constrained least squares
(attaining the consistency requirement), i.e. based on theResponse Surface Methodology (RSM)(Myers R. H. 1995;
Simpson and Allen 2001).

Algorithm: Surrogate-Based Feasible Directins Interior Point Algorithm

Parameters:r > 0, ϕ > 0 andα ∈ (0, 1).

Data: Initialize x ∈ R
n feasible.
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STEP 1.Obtain the surrogates and its corresponding derivatives.

Solve the following linear constrained least square problems for the objective and each constraints respectively.







min
b

‖Xb − c‖2

s. t. f̂(x) = f(x).
(5)

WhereX ∈ R
ne×(n+1) is the matrix of the levels of the design variables (xi, i = 1, . . . , n) in theleast squares normal

equationsnotation;ne is the number of objective function evaluations required tomake the fit;b ∈ R
(n+1)×1 is the vector

of the regression coefficients, andc ∈ R
ne×1 is the vector with the response value, that is,ci = f(xi) ∀xi ∈ E(x) :=

{x ∪ Rand(ne, x, r)}, where
Rand(ne, x, r) is a set compound byne random points generated within a neighborhood of half sizer and centerx,

i. e., space filling experiment.

ĝ(x) = b0 + b1x1 + b2x2 + . . . + bnxn is the linear model for each constraint. (6)

f̂(x) = b0 +

n
∑

j=1

bjxj +

n
∑

j=1

bjjx
2
j +

∑∑

i<j

bijxixj (7)

≡
1

2
xT Ŝx + f̃T x + f0 is the quadratic model for the objective function, (8)

where Ŝ is the approximated Hessian off. (9)

STEP 2.Computation of a descent directiond0 and an estimate of the Lagrange multipliersλ0.

Solve the quadratic program ind0







min
d0

1
2dT

0 B̂d0 + ∇f̂T (x)d0

s. t.∇ĝT (x)d0 + g(x) ≤ 0
(10)

STEP 3.Computation of the search directiond (feasible and descent).

i) Let the active set beJ(x)
def
= {j ∈ 1, 2, . . . ,m | λ0j > 0} and

gJ(x)
def
= [gj(x)]T , j ∈ J(x).

If gT
J (x)[∇ĝT

J (x)B̂−1∇ĝJ (x)]−1e < 0, find

ρJ =
(1 − α)∇L̂T (x, λ0)d0

gT
J (x)[∇ĝT

J (x)B̂−1∇ĝJ (x)]−1e
(11)

where the LagrangianLT (x, λ) = f(x) + λT g(x) ande
def
= [1, 1, . . . , 1]T

ii) Let the inactive set beJ(x)
def
= {j ∈ 1, 2, . . . ,m | λ0j = 0}.

For eachj ∈ J(x), if

{∇ĝT
j (x)B̂−1∇ĝJ (x)[∇ĝT

J (x)B̂−1∇ĝJ (x)]−1e − 1} < 0,

find

ρj =
gj(x) + ∇ĝT

j (x)d0

∇ĝT
j (x)B̂−1∇ĝJ (x)[∇ĝT

J (x)B̂−1∇ĝJ (x)]−1e − 1
. (12)
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iii) Set ρ = inf{ϕ‖d0‖
2, ρJ , ρj , j ∈ J(x)}.

iv) Solve the quadratic program ind






min
d

1
2dT B̂d + ∇f̂T (x)d

s. t.∇ĝT
J (x)d + gJ (x) = −ρe

(13)

STEP 4.Line search.

Find a step lengtht satisfying a given constrained line search criterion on theLagrangian functionL(x, λ0) and such
that(x + td) is a feasible point of the exact nonlinear program.

STEP 5.Update:B̂ (the approximated Hessian of the Lagrangian), andx.
Let beδ = td andγ = ∇xL̂(x + td, λ0) −∇xL̂(x, λ0).

i) If δT γ < 0.2δT B̂δ, then compute

φ =
0.8δT B̂δ

δT B̂δ − δT γ

and setγ = φγ + (1 − φ)B̂δ.

ii) Set

B̂ := B̂ +
γγT

δT γ
−

B̂δδT B̂

δT B̂δ

and

x := x + td

STEP 6.Go back to Step 1.

4. EXAMPLES OF APPLICATIONS

The following examples have been performed implementing the surrogate-based interior point algorithm in the MatlabR©

program.

4.1 Barnes test problem

The Barnes problem (Wujek 1997) is a test problem with two continuous design variables and three nonlinear inequal-
ity constraints.

Starting from the feasible point (30,40) the algorithm converge to a local minimizer in 30 iterations, it is, the same
order of iterations that the derivatives enhanced version (using exact derivatives for both objective and constraints).

The Fig. 2(a) show the contour plot for the Barnes function. The Fig. 2(b) show the convergence of the algorithm to
the local minimizer with decrement of the objective function value in each iteration (no oscillates are present).

4.2 Structural shape optimization of a bracket

Figure 3 shows geometry and the design parametrization, andresponse analysis results for a bracket problem. A total
of five design variables(x = [r1, r2, r3, x1, x2]) have been selected to change the inner/outer boundary of thebracket,
while maintaining symmetry. The plane stress formulation is used with a thickness of0.004 m. The bracket is made of
steel withE = 200 GPa, andν = 0.33. The force applied isP = 6 × 10−3 MN, and the magnitude ofa = 0.02 m.
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Figure 2. Results for the Barnes function using SBO with the SQP-FDIPA.

(a) Problem definition.

(b) Initial FEA result. von Mises Stress in MPa.

Figure 3. Geometry, design variables, and finite element analysis result of bracket.
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The structural shape optimization problem is formulated insuch a way that the total volume of the structure is mini-
mized with respect to its shape design variables, with design constraints defined as the von Mises stress, as







min
x

V ol.(x)

s. t.σMAX ≤ 350 MPa
(14)

The optimization problem converged in fourth iterations. Figure 4 shows the analysis results at the optimum design.

Figure 4. Analysis result at optimum design. von Mises stress in MPa.

Optimal volume is reduced from7.3382 × 10−5 m3 to 5.10083 × 10−5 m3. A total of 92 response analyses were
carried out during the fourth optimization iterations. WhenFEM is used with re-meshing precess (quadratic triangular
elements).

5. CONCLUSIONS

This research present a new algorithm based on approximation ideas which make use of the efficiency and robustness
of the SQP approach in a version more attractive for the engineering field which enables the capability of generate feasible
points and always decrease the objective avoiding oscillate.

Other capabilities was included from the surrogate-based ideas such as the possibility of lead with non-smooth func-
tions and, work with experimental data.

Our approximation in all senses (Taylor series expansion inthe SQP, and data fit for the surrogate model) are local,
and the algorithm presented on this investigation convergeto a local minima.

Our results are encouraging, mainly in fields with few designvariables (e. g. Shape Structural Optimization), because
the high number evaluations of the real function to minimizethe variance of the model due to data fit adjust required to
guaranty minimal variance in the model.

Future works could be the use of other scheme that allow many more design variables without decrease the quality of
the approximation.
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