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Abstract. In the context of passive control of noise and vibration the use of viscoelastic materials is an interesting 
means of achieving effective mitigation in various types of industrial applications, where these materials can be 
applied either as discrete devices or surface treatments at a relatively low cost. A natural extension of modelling is the 
optimization of the viscoelastic devices aiming the reduction of cost and/or maximization of performance. In the field of 
optimization strategies much interest has been devoted to multiobjective evolutionary algorithms (MOEA) since they 
provide the possibility of addressing tradeoffs between multiple objective functions by sampling a number of Pareto 
solutions. In general, optimization methods can be classified in two main categories: deterministic and stochastic. 
Deterministic approaches neglect the effects of uncertainties in the design space, and the solutions may violate the 
physical reality when the design is actually realized. It is then said that the solutions lack robustness. As an alternative, 
the method implemented in this paper consists in finding the robust optimal solutions by introducing additional cost 
functions (known as robustness functions) for each original objective function, defined on the basis of  the dispersions 
of the original cost functions. During the optimization process, the robustness and the original cost functions are 
evaluated simultaneously, in order to find the robust optimum. To take into account the uncertainties on the  design 
variables, one proposes to use Monte Carlo sampling combined with a parametric approach which directly uses the 
variation on the design parameters. The interest in reducing the computational burden involved in multiobjective 
optimization based on large finite element models motivates the use of condensation method adapted for the 
viscoelastic structures. For the purpose of illustration, the suggested methodology is applied to a stiffened panel 
treated with constraining damping layer. 
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1. INTRODUCTION 
 

The use of viscoelastic materials has been regarded as a convenient strategy in many types of industrial applications, 
where these materials can be applied either as discrete devices, such as translational and/or rotational mounts, or surface 
treatments (free or constrained layers) at a low cost of application (Nashif et al., 1985; Samali and Kwok, 1995; Rao, 
2001). Another interesting strategy consists in incorporating viscoelastic materials as a means of adding damping to 
vibration neutralizers (Espíndola et al., 2005). In the last decades, much effort has been devoted to the development of 
finite element models capable of accounting for the typical dependence of the viscoelastic behavior with respect to 
frequency and temperature (Balmès and Germès, 2002). As a result, it is currently possible to perform finite element 
modeling of complex real-world engineering structures such as automobiles, airplanes, communication satellites, tall 
buildings and space structures. 

A natural consequence of the modeling capability is the optimization of the viscoelastic devices aiming at the 
reduction of cost and/or maximization of performance. In the quest for optimization, the engineers are frequently faced 
with conflicting objectives. Such situations are conveniently dealt with by the so-called multi-objective or multicriteria 
optimization approach (Eschenauer et al., 1990). In general, optimization methods can be classified in two main 
categories: deterministic approaches that neglect the effects of uncertainties in the design space, and the solutions may 
violate the physical reality when the design is actually realized. It is then said that the solutions lack robustness; the 
second class is the one of stochastic approaches, in which the uncertainties and variations of design variables are 
considered. The uncertainties are normally associated to variability in materials properties (Young modulus, density, 
etc.) and tolerances in the manufacturing processes (thickness, other geometrical variables, etc.). Some authors (Lee and 
Park, 2001) proposed a method of optimization in which an additional objective function is defined having the same 
mean and standard deviation as the original objective function. The principal disadvantage of this method is the use of a 
weighting method of these functions. The weakness of the weighting method is that not all of the Pareto optimal 
solutions can be found unless the problem is convex. In reference (Lee and Park, 1996), the authors completed similar 
work by using the Taguchi method, where the robustness is evaluated only at the end of the optimization process. 

The method proposed in this paper consists in finding the robust solutions by introducing additional cost functions 
(known as robustness functions) for each original objective function, defined on the basis of the dispersions of the 



original cost functions (Ait Brik et al., 2003). During the optimization process, the robustness functions and the original 
cost functions are evaluated simultaneously by using an evolutionary multiobjective algorithm with sharing technique, 
in order to find all the optimal and robust Pareto solutions. To take into account the uncertainties on the design variables 
of the viscoelastic damping treatment, one proposes to use Monte Carlo sampling combined with a parametric approach 
which directly uses the variation of the design parameters. The interest in reducing the computational burden involved 
in multiobjective optimization based on large finite element model composed by a free-free stiffened panel treated with 
passive constraining damping layer motivates the use of a robust condensation methodology adapted for the viscoelastic 
structures (Lima et al., 2006). 
 
2. STOCHASTIC MULTIOBJECTIVE OPTIMIZATION 
 

A general multiobjective optimization problem (MOP) involve simultaneous optimization of multiple objective 
functions, which may be in conflict with each other, and the goal is to find the best design solutions, which lead to the 
minimum or maximum values of the objective functions. In general, in a multiobjective optimization problem there is 
no single optimal solution and the interaction among different objectives gives rise to a set of compromised solutions, 
known as the Pareto optimal solutions (Ait Brik et al., 2003). Since none of these Pareto optimal solutions can be 
identified as better than the others without any further consideration, the interest is to find as many Pareto optimal 
solutions as possible. A deterministic multiobjective problem includes a set of k  parameters (decision variables) and a 
set of n  objective functions ( 2n ≥ ), and can be summarized as follows: 
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where [ ]Tk21 x,,x,x K=x  is a the vector of design variables and kRC ∈  is the decision space. For a practical design 
problem, ( )xF  is non-linear, multi-modal and not necessary analytical.  
 

In a classical deterministic optimization process, the uncertainties in the design variables are not considered, and the 
Pareto optimal solutions are not insensitive to the variations on the design variables. In the question of evaluating the 
robustness of the optimal solutions, the problem posed is not to find only the optimum but the robust optimum by taking 
into account the uncertainties during the optimization process. In mechanical structures, uncertainties result from 
several sources, including the errors associated to the modeling procedure of physical phenomena, the materials 
characteristics adopted such as Young modulus, mass density, Poisson ratio, etc., the finite element assembling process, 
the tolerances in the manufacturing processes (thickness, stiffness of junctions…), etc. Classically, the robustness of the 
optimal solution is evaluated starting from the deterministic optimization process, supposing that the deterministic 
design space contains the robust solutions obtained by the introduction of a stochastic criterion.  

To mitigate the difficulty in evaluation the robustness optimal solutions, Lee and Park (1996; 2001) proposed an 
optimization methodology in which an additional objective function is defined having the same mean and standard 
deviation of the original objective function, by using a weighting method. The main disadvantage of the proposed 
methodology is that not all of the Pareto optimal solutions can be found unless the problem is convex. Other authors 
proposed similar work by using the Taguchi method, in which the robustness of the optimal solutions is evaluated only 
at the end of the optimization process. In this paper, one proposes a different methodology to evaluate the robustness of 
the optimal solutions, by supposing that an optimal and robust solution is not necessarily a solution of the deterministic 
design space. The principal idea is that the robustness is introduced as an additional objective function, defined to have 
the dispersion of each original cost function, and during the optimization process, both robustness and original cost 
functions are evaluated simultaneously. To introduce the uncertainties on the design variables, one uses Monte Carlo 
(MC) sampling. Since the computational effort required to perform a structural uncertainty analysis with MC simulation 
is normally very high, the so-called Latin-Hypercube (LHC) method is used instead, with the aim of reducing the 
number of samples required to evaluate the dispersion on the design variables. 

The stochastic optimization is performed by using an evolutionary multiobjective algorithm with sharing technique 
[9] in order to find the Pareto optimal solutions, known as Non-dominated Sorting Genetic Algorithm (NSGA), 
originally developed by Srinivas and Deb (1993). The NSGA differs from the classical multiobjective genetic 
algorithms in the way that a selection operator is used to classify the nondominated individuals for each iteration 
process. The robustness of the objective functions is defined as follows: 
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where vf  is the dispersion (vulnerability) of the cost function f ; [ ]fEf =µ  and ( )( )[ ]2
f ffEE −=σ are, respectively,  
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the mean and the standard deviation, computed by taking into account n  samples ( ) ni1if ≤≤  of the cost function f  by 
performing a Monte Carlo simulation. 
 

In the stochastic multiobjective optimization problem, the robustness function rf  associated with a cost function f  
is introduced as an additional cost function that must be maximized simultaneously with the original cost functions. In 
this case, the initial multiobjective optimization problem composed by N  cost functions is transformed into a stochastic 
optimization problem with N2  objective functions. To evaluate the uncertainties on a design variable x , one considers 
the parametric approach, by assuming that all design variables have normal distribution as illustrated on Fig. 1. 
 

tolerance  ∆ x tolerance  ∆ x

µ −  3σx x +  3σµ x xµ x  
 

Figure 1. Mean standard deviation and the tolerance of design variables (Lee and Park, 2001). 
 

The probability density function of the normal distribution is expressed as follows: 
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where xµ  is the mean or nominal value of x , and xσ  is the standard deviation, in such a way that 99.73% is the 
probability of having x  located in the interval [ ]σµσµ 3,3 xx +− . The tolerance x∆  is equal to x3σ . The proposed 
methodology is applied with the aim of obtaining the robust optimal solutions of objective functions according to the 
variations on the design variables expressed in Fig. 1 
 
3. SURFACE VISCOELASTIC TREATMENT 
 

One considers in this paper the surface viscoelastic treatment modelled by a three-layer sandwich plate FE, 
according to the original development made by Khatua and Cheung (1973). Figure 2 illustrates a rectangular plate FE 
formed by an elastic base-plate (1), a viscoelastic core (2) and an elastic constraining layer (3), whose dimensions are 
denoted by a  and b , respectively. The FE model is composed by 4 nodes and 7 degrees-of-freedom per node, 
representing the nodal longitudinal displacements of the base-plate middle plane in directions x  and y  (denoted by 1u  
and 1v ), the nodal longitudinal displacements of the constraining layer middle plane in directions x  and y  (denoted by 

3u  and 3v ), the transverse displacement, w , and the cross-section rotations about axes x  and y , denoted by xθ  and 

yθ . 
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Figure 2. Illustration of the three-layer sandwich plate finite element. 
 



The stiffness matrix of the FE model can be expressed into the following form : 
 

( ) ( )T,T, ωω ve KKK +=                                                                                                                                                 (3) 
 

with: 
 

( ) ( )31
e KKK += ;  ( ) ( ) ( )2

v KK T,GT, ωω =      ( ( )2K : constant matrix)                                                                            (4) 
 
where eK  and ( )T,ωvK  are the stuffiness matrices corresponding to the elastic and viscoelastic layers, respectively. 
 

Details of the formulation and the finite element modeling procedure are given by Kathua and Cheung (1973) and 
Lima et al. (2003).  

The viscoelastic damping can be introduced into the viscoelastic matrix, by using a viscoelastic model that takes into 
account the frequency and temperatures dependence. The frequency and the temperature are recognized as being the 
most important factors which exerts influence upon the properties of viscoelastic materials. Thus, it becomes important 
to account for the variations of these parameters in the modeling of structural systems containing viscoelastic materials. 
This can be done by making use of the so-called Frequency-Temperature Superposition Principle – FTSP, which 
establishes a relation between the effects of the excitation frequency and temperature on the properties of the 
thermorheologically simple viscoelastic materials (Nashif et al., 1985). This implies that the viscoelastic characteristics 
at different temperatures can be related to each other by changes (or shifts) in the actual values of the excitation 
frequency. This leads to the concepts of shift factor and reduced frequency. Symbolically, the FTSP is expressed as: 

 
( ) ( ) ( )0T0r T,GT,GT,G ωαωω =′= ;  ( ) ( )0T0r T,T, ωαηωη =                                                                                                  (5) 

 
where ( )ωαω TTr =  is the reduced frequency, ω  is the excitation frequency, Tα  is the shift factor, and 0T  is a reference 
value of temperature. Figure 3 illustrates the FTSP, showing that having the modulus and loss factor of a given 
viscoelastic material for different temperature values, 1T− , 0T , 1T , if horizontal shifts along the frequency axis are 
applied to each of these curves, all of them can be combined into a single one, called master curves. 
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Figure 3 – Illustration of the frequency-temperature superposition principle 
 

The functions ( )rG ω  and ( )TTα  can be obtained from experimental tests for specific viscoelastic materials (Nashif et 
al., 1985). As the result of a comprehensive experimental work, Drake and Soovere (1984) suggest analytical 
expressions for the complex modulus and shift factor for various commercial viscoelastic materials. The following 
equations give these functions for the 3M ISD112™ viscoelastic material, which is considered in the numerical 
application that follows, as provided by those authors: 

 
( ) ( ) ( ) 46 B
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B
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Figure 4 depicts the standardized curves representing the variations of the storage modulus, loss modulus and loss 

factor as functions of the reduced frequency, and a plot of the shift factor as a function of temperature for 3M ISD112™. 
 

 
 

Figure 4 – Master (left) and shift factor curves (right) for the 3M ISD112TM. 
 
4. NUMERICAL APPLICATION 

 
The following numerical example is presented to illustrate the application of the proposed method to obtain a robust 

design of a stiffened panel treated with constraining damping layer. Figure 5 depicts the test structure consisting of a 
free stiffened panel containing 4 stringers, whose geometric dimensions, in millimeters are: internal radius: 938, length: 
720, arc length: 680, thicknesses of the panel and the stringers: 1.5 and 0.75, respectively, and height of stringers: 30. 
The material properties for both panel and stringers are: Young modulus E=2.1×1011 N/m2, mass density ρ=7800 Kg/m3 
and Poisson’s ratio, υ=0.3. The FE without viscoelastic treatment is composed by 928 shell finite elements having 6840 
d.o.f, and the viscoelastic treatment is composed by 10 viscoelastic patches, each one composed by 16 three-layer 
sandwich plate FE developed accordingly to the theory previously presented. Material properties for the base-plate and 
the constraining layer are the same of the stiffened panel, and for the viscoelastic core, one uses the modulus function of 
the ISD112 3M (ρ=950Kg/m3), as shown in Fig. 4. The design parameters and their admissible variations are illustrated 
on Table 1. These ranges were chosen arbitrarily in such a way to avoid large variations from the nominal values. Only 
the ranges of continuous variables are taken as constraints. 

 

 
Figure 5. FE model of the stiffened panel 

treated with PCLD. 

 
Table 1. Design variables and their admissible variations 

 
Design 

parameters 
Nominal 
values Variations Uncertainties 

2h  0.0254 mm ± 60% %10h2 =∆  

3h  0.5 mm ± 30% %10h3 =∆  
T  25ºC ± 15% %5T =∆  

2h  : thickness of the viscoelastic core ; 3h  : thickness of the 
constraining layer; T : temperature of the viscoelastic material 

 
The deterministic optimization problem is composed by two objective functions: the first cost function is the sum of 

the amplitudes of the FRFs of the damped system corresponding to the natural frequencies of modes 10 (M10) and 11 
(M11), respectively, and the second objective function is the total mass of the viscoelastic treatment.  
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The FRFs are computed for an excitation force applied at point P, and the responses acquired at the same point, 
which is indicated on Fig. 5. The stochastic optimization problem is composed by the defined objective functions (7) 
and the additional robustness functions associated with each cost function, expressed by equation (8). The interest is to 
minimize the cost functions and to maximize the robustness functions simultaneously.  
 

( ) ( ) ( ) ( ) 1
22

v
2

1
11

v
1

v
22

v
11 f;fwheref,f,f,fx:imizemin −− === µσµσF                                                                  (8) 

 
The parameters of NSGA are defined in Table 2.  

 
Table 2. NSGA parameters 

 
Probability of selection 0.25 
Probability of crossover 0.25 
Probability of mutation 0.25 
Number of generations 100 
Number of individus/generation 30 
Sharing coefficient (σ ) 0.2 

 
The FRFs of the damped system are computed based on the reduced viscoelastic model, in which the nominal basis 

of reduction is composed by 115 vectors (60 eigenvectors, 1 vector related to the static residue, and 54 vectors related to 
the viscoelastic forces). Details of the robust condensation adapted to viscoelastic systems are given in (Lima et al., 
2006). 

Figure 6 shows the NSGA solutions obtained by applying the proposed robust method, representing the cost 
functions and their vulnerabilities. In practice, the vulnerability functions consist in minimizing the dispersion around 
each cost function. By this figure, one can notice that the interval of dispersion for each cost function is: 

 
• From 0.04% to 0.14% for the optimal solutions corresponding to the first cost function 1f ; 
• From approximately 0% to 0.07% for the optimal solutions corresponding to the second cost function 2f ; 

 

   
 

Figure 6 – NSGA solutions and the first front of Pareto for both objective and vulnerability functions 
 
Figure 7 enables to compare the robust solutions and the deterministic solutions. One can conclude that the 

deterministic solutions exhibit better performance than the robust solutions. Nevertheless, the deterministic solutions are 
not robust enough with respect to uncertainties on the design parameters.   
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Figure 7 – Comparison between the deterministic solutions and the robust solutions 
 

For the robust optimal solutions corresponding to points A, B and C (indicated in Fig. 7) and listed on Tab. 3, one 
can compare the amplitudes of the driving point FRFs of system, related to point P (see Fig. 5) with and without 
viscoelastic treatment. By comparing Figs. 8(c) and 7 and Tab. 3, one can conclude that point B is the best optimal 
robust solution. In the opposite, point A, is the best solution in terms of  damping performance, but it is the less robust 
in the first front of Pareto, as indicated in Tab. 1. 
 

   
                               (a)                                                            (b)                                                            (c) 
 

Figure 8 – Amplitudes of FRFs for the robust optimal design solutions A (a), B (b) and C (c) 
 
 

Table 3 – First front of Pareto for the objective functions (Fig. 7) 
 

 1f : Amplitude [dB] 2f : Mass [Kg] v
1f  v

2f  
Point A 15.129 0.1739 0.1002 0.0415 
Point B 19.234 0.1357 0.0738 0.0274 
Point C 27.848 0.1171 0.0768 0.0330 

 
For the deterministic and robust set of solutions corresponding to points D and B indicated in Fig. 7, one can check 

the robustness (in terms of the level of dispersion) of the frequency responses (FRFs) of the viscoelastic system. To 
introduce uncertainties on the optimal and robust solutions, one uses the Latin Hyper Cube (HCL) simulation, by 
generating 200 samples for each design variable that will be evaluated to generate the response envelopes. The amount 
of uncertainties introduced for each design variable is: %5h3 =∆  for the thickness of the constraining layer; %2T =∆  
for the temperature; %5h2 =∆  for the thickness of the viscoelastic layer. 

Figure 9 shows that the robust solutions (Fig. 9.a) are more robust when compared with the deterministic solutions 
(Fig. 9.b), as demonstrated by the minimal dispersion (vulnerabilities) of the minimal and maximal responses around 
mean response. 
 
 
 
 



  
(a) (b) 

 
Figure 9 – Envelopes of dynamic responses for robust optimal solutions (a) and deterministic optimal solutions (b) 

 
5 CONCLUSIONS 
 

In this paper a stochastic multiobjective optimization algorithm method which takes into account uncertainties on 
the design variables was suggested and implemented. The originality of the optimization methodology suggested 
consists in introducing robustness functions as additional objective functions to be maximized. Each robustness function 
is associated to an original objective function and is defined to be inversely proportional to the dispersion. Uncertainties 
on the design variables are introduced directly through a parametric approach, by performing a Monte Carlo simulation. 

In the numerical application, an optimization problem involving two objective functions and two robustness 
functions was considered with the interest oriented towards a relatively complex engineering structure. The choice of 
the design parameters (thicknesses of the viscoelastic and constraining layers and temperature of viscoelastic material) 
is based on previous knowledge that these parameters of the multilayer sandwich plate FE are those that influence the 
most the effectiveness of the viscoelastic damping treatments. This fact can be confirmed by a sensitivity analysis as 
demonstrated in reference (Lima et al., 2005).  
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