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Abstract.
The study of vortex shedding in the flow over obstacles is crucial to a variety of engineerings problems. However, it is very
hard to perform computational simulations of these phenomena due the computational effort. In this paper, we describe
the use of an Immersed Boundary Method, to simulate the flow over an oscillating cylinder with low Reynolds number. The
main idea of this method is to transfer the fluids properties in the cylinder’s boundary directly to the mesh, what enables
the use of regular meshes, reducing the computational effort. The governing equations were written in vorticity-velocity
formulation. The spatial derivatives were calculated by high order finite difference schemes. The time integration was
performed by a fourth order Runge-Kutta scheme. A control volume was implemented and the lift and drag coefficients
obtained were compared with the forcing terms of the governing equations. The results obtained were in good agreement
with previous numerical / experimental works.

Keywords: Immersed Boundary Method, low Reynolds number, forcing terms, vorticity-velocity formulation, lift and drag
coefficients.

1. INTRODUCTION

The understanding of the characteristics of flow over obstacles is of great importance in engineering applications.
However, performing these computational simulations can be very hard due the computational effort required by the use
of irregular meshes. A solution for this problem is the use of the Immersed Boundary Method, that requires a fixed
Cartesian mesh instead of a conforming mesh. In this method a forcing term is added to the governing equations. The
Immersed Boundary Method’s founding father is Peskin (1972), who developed the technique to study blood flow in
human heart valves. The information about the boundary position and the elastic force is transferred to the Cartesian
mesh in order to obtain a flow solution.

The flow over a circular cylinder has been studied by a number of authors. Braza, Chassaing and Minh (1986)
investigated the interaction between the pressure and velocity fields in the flow over a circular cylinder. The Navier-Stokes
equations were solved by a predictor-corrector pressure implicit procedure. They performed simulations for Reynolds-
number values of 20, 40, 100, 200 and 1000 and the drag and lift coefficients were evaluated. The vortex shedding was
generated by a physical perturbations imposed numerically. For Re = 20 e Re = 40 two attached vortices were formed
behind the cylinder. For Re = 20 the drag coefficient Cd were between 1.8 and 2.4. For Re = 40, the lift coefficient
value Cd were between 1.4 and 1.8. For others Reynolds values, the perturbations introduced correspond to a clockwise
rotation of the cylinder followed by a counterclockwise rotation. They found a phase opposition of the pressure relative
to the velocity inside and outside the wake.

Góis and Souza (2006) have accomplished a numerical simulation of the flow over a steady cylinder with variation
in the inflow velocity and over a oscillating cylinder with constant velocity inflow. The Reynolds number adopted was
Re = 185. The oscillation frequency was ω = 0.9 and the amplitude oscillation was A = 0.2. The results for the cylinder
oscillating with inflow velocity constant were in good agreements with the case with the stationary cylinder with velocity
inflow variation. These results were compared with experimental results from Gu, Chyu and Rockwell(1994), validating
their code.

Góis and Souza (2007) studied the Lock-in phenomena of the fluid flow over a cylinder of circular section. This
study was based on a two-dimensional simulation of the fluid flow with low Reynolds numbers over a cylinder that
may be stationary or periodically moved with given frequency and amplitude. The objective was to capture the Lock-
in phenomena. The Lock-in Phenomena occur when the obstacle oscillates with a given frequency and amplitude and
the flow can be influenced by this oscillation. These phenomena are of particular interest and were discovered over
three hundred years ago when Christian Huygens observed that two pendula placed next to each other had a tendency to
synchronize their movements. For Re = 190, they tested different values of oscillations frequency ω: ω = 0.5, ω = 1.5,
ω = 2.0 and ω = 3.0. The Lock-in phenomena were captured for frequencies F = 1.5 and F = 2.0. These numerical
results of lock-in phenomena agrees with experimental results from Griffin and Ramberg (1976).

The purpose of the work reported in this paper is to study the 2D unsteady flow over a stationary or moving periodically
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circular cylinder at low Reynolds. It is studied the drag and lift coefficients, respectively Cd and Cl. The simulations were
performed for Re = 20, Re = 40 and Re = 190. The cylinder can be either oscillatory or stationary. The results were
validated and verified, with good agreements with the literature.

2. METHODS

2.1 The Governing Equations and Immersed Boundary Method

In this study, the governing equations are the incompressible, unsteady Navier-Stokes equations with constant density
and viscosity. They consist of the momentum equations for the velocity components (u, v), given by:
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and the continuity equation:
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where u is the velocity component in the streamwise direction x, v is the component velocity in the streamwise normal
direction y, ρ is the density, p is the pressure,∇ is given by:
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and Fx and Fy are the forcing terms used by the immersed boundary technique.
The vorticity is here defined as the negative curl of velocity vector. Taking the curl of the momentum equations, the

vorticity transport equation can be obtained:
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From the definition of vorticity and the continuity equation, the Poisson equation for v velocity component can be
obtained:
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∂y2
= −∂ωz

∂x
. (6)

The boundary conditions adopted are: at the inflow boundary in the integration domain (x = x0), the velocity and
vorticity components are specified. At the outflow boundary (x = xmax), the second derivative of the velocity and
vorticity components in the streamwise direction are set to zero. At the upper (y = ymax) and lower (y = 0) boundaries,
the derivatives of v in the y direction are set to zero.

Three damping zones were used in the simulations to force the disturbances to gradually decay to zero. The basic idea
is to multiply the vorticity components by a ramp function f2(x) after each step of the integration scheme. This technique
has been proved by Kloker (1998) to be very efficient in avoiding reflections that could come from the boundaries when
simulating flows with disturbances. Using this technique, the vorticity components are taken as:

ωz(x, y) = f2(x)ω(x, y, t) (7)

where ω(x, y, t) is the disturbance vorticity component that comes out from the time integration scheme and f2(x) is a
ramp function that goes smoothly from 1 to 0. The implemented function, in the x direction, was:

f2(x) = f(∈) = 1− 6 ∈5 +15 ∈4 −10 ∈3 (8)

where ∈= (i−i3)
i4−i3

for i ≤ i ≤ i4 corresponds to the positions x3 and x4 in the streamwise direction respectively. To ensure
good numerical results, a minimum distance between x4 and the end of domain xmax should be specified.

The spatial derivatives were calculated using a 6th order compact finite difference scheme (Souza et al. (2005)). The
v-Poisson was solved using a Full Approximation Scheme (FAS) multigrid a v-cycle working with 4 grids. The forcing
terms were calculated using the following equations:

Fx(i, j) = δfr(velu − velcil), (9)
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Figure 1. Control surface

Fy(i, j) = δfr(velv − velcil), (10)

where fr is the relaxation term, here fr = −300, u an v are the velocity components in the streamwise and normal
directions respectively and δ is a value that varies from δ(i, j) = 0 outside the immersed body to δ(i, j) = 1 at the
boundary and inside the immersed body. In the case for stationary cylinder, velcil = 0.

The time integration is calculated using a fourth-order Runge-Kutta scheme, and the numerical procedure works as
described next. At each step of the Runge-Kutta scheme the following instructions are necessary:

1. Compute the spatial derivatives of the vorticity transport equation;

2. Calculate the forcing terms Fx and Fy;

3. Calculate the rotational of the forcing terms;

4. Integrate the vorticity transport equation over one step (or sub-step) of the scheme using the values obtained in steps
1 and 3;

5. Calculate v from the Poisson equation;

6. Calculate u from the continuity equation;

7. Verify the values of the velocity components at the immersed boundary, if they are below a predefined value con-
tinue, otherwise go to step 2

This scheme is repeated until a stable or a time periodic solution is reached. The next section shows the results obtained
for steady or oscillating cylinder using the numerical code described here.

2.2 The Control Volume Method

The calculus of the drag and lift coefficients Cl and Cd were done by means of the Control Volume method. This
method is based on the determination of an arbitrary volume in the space over which the fluid flows. The geometric
boundary of the control volume is named “control surface”. In this work, the control surface remains fixed around the
cylinder, which is used as an obstacle to the flow. Figure 1 shows the adopted control surface.

The temporal term ∂
∂t , the convective terms−→u∇−→u , the diffusive terms∇2 and the pressure terms P were implemented

separately. The control volume was defined as a rectangular shape. The diffusive, convective, and pressure terms are
calculated at each of the faces, and the integrals are solved using the trapezoidal rule.

To perform the computation in the control volume, the drag and the lift coefficients can be calculated as:
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Figure 2. Drag coefficient for Re = 20
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Figure 3. Drag coefficient for Re = 40

3. RESULTS

The simulations were carried out with Re = 20, Re = 40 and Re = 190. The drag and lift coefficients Cl and
Cd were evaluated. For Re = 20, Re = 40 the cylinder remained fixed in space. For Re = 190, the case with the
cylinder oscillating in the flow direction was simulated. Four frequency oscillation values were tested, namely: ω = 0.5,
ω = 1.5, ω = 2.0 and ω = 3.0. Results obtained for the drag and lift coefficients were compared with the results obtained
considering the forces from the fluid over the cilinder in x and y directions, namely Fx e Fy . These forces have the same
intensity of the drag and lift coefficients, calculated using control volume techniques.

The graphs presented in Fig.2 and Fig.3 describe the behavior of Cd as function of non dimensional time for Re = 20
and Re = 40, respectively. For Re = 20 the value of drag coefficient was Cd = 2.28 and for Re = 40 the drag coefficient
was Cd = 1.72. This results are in agreement with numerical and experimental results given by Braza, Chassaing and
Minh (1986).

Figure 4 describes the vorticity contours of flow over a stationary cylinder for Re = 190. A simple vortex shedding
occurs. Figure 5 shows the result obtained for the Cd, Fx, Cl and Fy with an stationed cylinder. It can be observed that
the Cd and Fx give the same result while Cl and Fy showed some differences.

Figure 6 shows the vorticity contours for the simulation using Re = 190 and frequency oscillation ω = 0.5. The
amplitude was A = 0.2. It can be verified in this figure that the vortex shedding is almost the same obtained with no
oscillation. The result obtained for the Cd, Fx, Cl and Fy are shown in Fig. 7. Again, it can be observed that the Cd and
Fx have the same result while Cl and Fy showed some differences.
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Figure 4. Vorticity contours with an stationed cylinder
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Figure 5. Cd, Fx, Cl and Fy with an stationed cylinder
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Figure 6. Vorticity contours for ω = 0.5 with an oscillating cylinder
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Figure 7. Cd, Fx, Cl and Fy for ω = 0.5 with an oscillating cylinder
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Figure 8. Vorticity contours for ω = 1.5 with an oscillating cylinder

The vorticity contours for Re = 190 and frequency oscillation ω = 1.5 are shown in Fig. 8. The amplitude was also
A = 0.2. In this figure it can be observed that the vortex shedding had a different pattern, and more vortices can be seen
in the same space, if compared with Fig. 6. Figure 9 shows the results obtained for the Cd, Fx, Cl and Fy . It can be
observed that the Cd and Fx have the same result while Cl and Fy showed some differences. Here it can be seen that the
coefficients have a different frequency, showing that the lock-in phenomena has occurred, as expected by experiments of
Griffin and Ramberg (1976).

Figure 10 shows the vorticity contours for Re = 190 and frequency oscillation ω = 2.0. The amplitude in this case
was kept the same used for previous results (A = 0.2). The vortex shedding pattern with this frequency is different
from the previous results. This wake is formed by a pair of co-rotating vortices that are delivered each time the cylinder
changes the moving direction. The values of Cd, Fx, Cl and Fy are shown in Fig. 11 Here, again, the values of Cl and Fy

presented some differences. The frequency of the coefficients can again show the lock-in phenomena. This was expected
for this frequency (Griffin and Ramberg, 1976).

For the oscillation frequency ω = 3.0, a complex vortex street formation was found, as it can be observed in Fig.12.
Near the cylinder the formation of two vortices with opposite signs occurs. These vortices in each side of the cylinder
merge with the next vortex, developing new large-scale vortices. Figure 13 shows the Cd, Fx, Cl and Fy for oscillation
frequency ω = 3.0. The lock-in phenomena do not occur for this oscillation frequency.
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Figure 9. Cd, Fx, Cl and Fy for ω = 1.5 with an oscillating cylinder
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Figure 10. Vorticity contours for ω = 2.0 with an oscillating cylinder
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Figure 11. Cd, Fx, Cl and Fy for ω = 2.0 with an oscillating cylinder
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Figure 12. Vorticity contours for ω = 3.0 with an oscillating cylinder
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Figure 13. Cd, Fx, Cl and Fy for ω = 3.0 with an oscillating cylinder
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4. CONCLUSIONS

In the present work a numerical simulation of a flow over a cylinder was performed. An immersed boundary method
was adopted, enabling the use of regular meshes, reducing the computational effort. The governing equations were written
in vorticity-velocity formulation. The spatial derivatives were calculated by high order finite difference schemes. The time
integration was performed by a fourth order Runge-Kutta scheme. A control volume was implemented and the lift and
drag coefficients obtained were compared with the forcing terms of the governing equations.

The results obtained for the drag and lift coefficients for Re = 20 and Re = 40 simulations were in good agreement
with previous numerical / experimental works. The results of vorticity contour of the simulations with an oscillating
cylinder showed the occurrence of the lock-in phenomena and that this phenomena can also be shown by the drag and lift
coefficients.
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