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Abstract: In this work, a stochastic collocation technique is applied to solve of interior acoustic problems in the 

frequency domain driven by stochastic input data. A finite element formulation is used to approximate the Helmholtz 

equation with sthocastic impedance boundary conditions in a tri-dimensional space. This FE model represents a room 

with the walls covered by a layer of sound absorbing material. The impedance of this layer is considered random and 

have a statistical description. The computation of statistical moments and the probability density function of the output 

pressure will be carried out by the Non-Intrusive Stochastic Galerkin (NISG) method, a collocation technique which 

uses a finite element mesh to represent the random support space and the joint probability distribution function of 

input random variables. The NISG statistical data is analyzed concerning error and convergence rate and compared 

with Monte Carlo technique. 
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1. INTRODUCTION 

The active and passive controls of noise are an active area of research. This research reflects an industrial need of 

reducing the sound intensity in some regions of an environment like vehicles cabins or increasing the intensity of the 

sound in acoustic rooms. The passive control of sound is a technique used to reduce the sound intensity in an enclosure 

by damping the sound energy using acoustic absorbers, placed in the walls of the enclosure. This technique has an ex-

cellent cost-benefit relationship (Cox and D’Antonio, 2004). 

The analysis of time dependent sound propagation in incompressible fluids is done by the wave equation. In fre-

quency domains, this equation can be transformed in the very well known Helmholtz equation, which can be solved by 

analytical means in few cases. Unfortunately, for a number of boundary conditions and domain geometries only nu-

merical solutions are available for this problem. The finite element method is a very powerful technique which can be 

applied to obtain an approximate solution to Helmholtz equation. The FE solution to the Helmholtz equation has also 

been an object of study concerning the error estimation and propagation (see Ihlenburg and Babuška 1995a, 1995b and 

the references therein). 

Since exact information about the nature of dissipation in most absorbers is very poor (the measurement of admit-

tance of absorbing materials is a very complicated task as long as it depends of angle of the wave that hit the absorber, 

flow conditions in the environment, temperature, the interaction of the absorbing panel with the supporting structure 

etc.) we look for more robust models that take into account the random nature of this fluid structure interaction. The 

probabilistic modeling of mechanical properties can be used to this end. In this case, the probabilistic nature of physical 

parameters is considered in mathematical model, and the results obtained included some statistical information which 

can be used in design. 

The Monte Carlo technique is a very powerful method to treat systems with random parameters. In this method, a 

large number of samplings of input variables are calculated and then the problem is solved for each sample of input 

variables. With the solution populace obtained, some statistical properties can be calculated. Unfortunately, this tech-

nique has poor convergence for mean and standard deviation of the solution, requiring a large number of samples to 

achieve good precision in results (Roberts and Spanos, 2003).  

Another way to include the input statistical description in the mathematical formulation is using a stochastic collo-

cation technique. In this case, an analytical treatment of stochastic input is done, and the input random field are repre- 



 

sented by a Karhunen-Loève (KL) expansion (Sampaio and Volter, 2001, Ghanem and Spanos, 1991). The solution is 

obtained in the Non-Intrusive Stochastic Galerkin (NISG) analysis by finite element representation of stochasticquanti-

ties in a support space defined by the domain of input random variables obtained in KL expansion (Acharjee and Zaba-

ras, 2007). For each point in support space a deterministic solution is calculated. As the number of these points is much 

smaller than the number of samples needed by Monte Carlo technique, the solution is much faster. 

In this work, the NISG will be applied to the stochastic modeling of impedance of an absorbing material. A two-

dimensional cavity propagation problem will be solved by the finite element method in the spatial dimension. The 

Helmholtz equation with Dirichlet and Robin boundary conditions will be used to represent this physical domain. 

2. MATHEMATICAL MODEL 

In a compressible ideal fluid, with small perturbations of acoustic pressure p , the sound propagation is described, in 

the time domain, by the wave equation (Ihlenburg, 1998)  
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Figure 1 – Model description 

A closed domain 
f

Ω  is shown in figure 1. c represents the velocity of sound propagation in the medium. This do-

main is limited by a boundary Γ  divided in three part where the following relations hold 
N D R

Γ = Γ ∪ Γ ∪ Γ  and 

D N D R N R
Γ ∩ Γ = Γ ∩ Γ = Γ ∩ Γ = ∅ . In the frequency domain, we obtain the Helmholtz equation: 

 ( )2 2
p k p f x∇ + =  (2) 

This represents the wave propagation of harmonic waves. ( )f x  could represents loads likes sources or body 

forces. Where 12k cω π λ −= =  and ω and λ  are the angular frequency and wavelength of sinusoidal wave, respec-

tively. At the boundary surfaces, three kinds of boundary conditions can be set (Irimie and Bouillard, 2001) 
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Where ρ  is the fluid density, n  is the vector normal to the boundary surface, 
n

p  is the prescribed pressure at 

boundary
D

Γ , 
n

Z  is the impedance at boundary 
R

Γ ,
n

v is the fluid velocity in the boundary 
N

Γ . 

We consider in this analysis a two dimensional domain shown in fig. 1. This domain represents a cavity with a 

pressure source in one of the corner. 



 

 

Figura 2 – Two-dimensional cavity with an absorption boundary 

We consider that in this closed domain, one of the boundaries is covered with a layer of absorption material and all 

others boundary are rigid walls. In one of the corners a pressure source generates harmonic waves in this domain. This 

is a square cavity with size of 1L = . To this problem, the mathematical formulation with Helmholtz eq.(2) can be set as 

 ( )2 2
p k p f x∇ + =  (4) 
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Where Z is the impedance of absorbing material. A simple model to represent this impedance is a viscoelastic 

model could be (Gamallo, 2002) 

 
f f

Z α β= ⋅ + ⋅u n v n  (6) 

In this case, the relation between pressure and velocity in the boundary is giving by two terms: one proportional to 

displacement of the fluid, representing an elastic response of this material and a second component, proportional to the 

velocity of the fluid, representing the viscous damping. In frequency domain, this condition simplify to 

 Z j
α

β
ω

= −  (7) 

The two material constants  e β α  are strictly positive and can be experimentally measured. In this work, we use 

the experimental data given by Bermúdez and Rodríguez (1999) for glass wool Manville. 

3. FINITE ELEMENT FORMULATION 

The finite element formulation is based in a weak form of eq. (4). To obtain this weak form we multiply eq. (4) by a 

test function 
q

q V∈  and integrate in the domain 
f

Ω . After some mathematical operation, the problem can be stated as: 

find 
p

p V∈ such 
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The functional space V  will be such that 
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And ( )1

fH Ω  is the Sobolev space given by the set of function with complex values with derivatives square inte-

grable in 
f

Ω : 
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We look for a FE approximation of eq.(8). Suppose that the domain could be split in a set of Nel elements, and each 

element will have his piece of domain represented by 
e

Ω  as depicted in fig.(3). The parameter N  controls the number 

of finite elements used in each direction.  

 

Figure 3 – Quadrilateral mesh used in discretization of domain 

Let the approximate spaces 
h

S V⊂ . The domain is the sum of all quadrilateral elements and in every element the 

interpolate function are lagrangian polynomial function of degree 1, corresponding to the functional space 1,0

h
S . So the 

approximate problem could be stated as: find 
h h

p V∈  such as 

 ( ) ( ), ,
h h

h h h h P h q
p q q p S q S= ∈ ∀ ∈B L  (13) 

As usual in the FE method, we set an interpolation matrix as 

 ( ) ( )p =x H x P  (14) 

Which will result in the following linear system, 

 ( )2
jk k+ − =K C M P F  (15) 

And the matrices are given by 

 

( )

( )
R

T T

T

n

d d

c
d f x d

Z

ρ

Ω Ω

Γ Ω

= ∇ ∇ Ω = Ω

= Γ = Ω

∫ ∫

∫ ∫

K H H M H H

C H H F H

 (16) 

The Helmholtz equation has been studied by several researchers (Strouboulis et al., 2006, Ihlenburg and Babuška, 

1995a-b, Ihlenburg, 1998, Paulino and Rochinha, 2005, Irimie and Bouillard, 2001). The error dispersion in FE mesh, 

pollution due to operator loss of ellipticity, post processing are very well analyzed. In this work, we just use the infor-

mation obtained by these researches to keep the error in FE solution low. This will allow us to focus our attention in the 



 

error in stochastic formulation. We consider that the relative error in 1H  seminormis bound by the following equation 

(Ihlenburg and Babuška, 1995a)  

 3 2

1 2h
e C kh C k h< +  (17) 

Where 
1 2
 e C C  are two constants independent of wave number and element size h . 

The constant physical values and fluid properties that will be used in the numerical solution are shown in tab.(1). 

Table 1 – Physical parameters used 
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4. NON INTRUSIVE STOCHASTIC FORMULATION 

Some natural phenomena are intrinsically random. Some examples are the formation and position of voids in forged 

metal components, turbulence if flows with high Reynolds numbers, the distribution of fibers in glass wool etc. Other 

source of randomness is the value of some physical property of material. In vast majority of cases, it is impossible to 

know the exact value of these properties. An accurate experimental value can be obtained for some properties, like the 

Young modulus of elasticity in solids. Unfortunately, there is no way to accurate measure the sound absorption coeffi-

cient for a large range of sound insulating materials. This property depends of factor like humidity of air (in porous ma-

terials), flow velocity, sound wave incident angle, temperature etc. In order to achieve a better design this random na-

ture should be take into account in modeling phase. 

If complete statistical information about the random processes or random field is available, we can use a spectral 

expansion like the Karhunen-Loève expansion to include this information of random properties in the mathematical 

formulation. The KLE is an expansion of the stochastic process by a denumerable set of random variables (see Ghanem 

and Spanos (1991) for further details) and has some desirable properties: is unique, optimal in least squares sense, 

which means that the error in representation is minimized, and is almost surely convergent for Gaussian processes.  

If statistical information is not known a priori, one can use the Polynomial Chaos (Ghanem and Spanos, 1991) or 

the Stochastic Collocation Method (SCM) (Keese, 2003, Babuska et al., 2004). In this work, we will use the Non intru-

sive stochastic Galerkin approach developed by Acharjee and Zabaras (2007), which was derived directly from Stochas-

tic Collocation Method. 

Consider that the two constants eα β representing the impedance given by (7) are random variables so  

 ( )
( )
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α θ

β θ
ω

= −  (18) 

Consider also that they are uniformly distributed. For any frequency ω  given it is available the mean and standard 

deviation of eα β  so 
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,α βµ µ  are the mean, ,α βσ σ  are the standard deviation values of eα β .  e α βξ ξ  represents two normalized uni-

form variables with range [ ]1,1− . This range represents the support space for each normalized random variable. 

Now, consider eq.(15), if the impedance is as a stochastic variable this naturally leads to 

 ( )( ) ( )2
jk kθ θ+ − =K C M P F  (20) 

The NISG is a technique can be described as follow: 

1) With the pdf of input random variables, calculate the joint pdf ( )Z
f ξ . Here, as the two variables are independent 

and uniform in the interval [ ]1,1− , we have 1

4
( )Zf f f

α βξ ξ= =ξ  

2) Determine the dimensionality of support space. Apply the FEM to discretize this space (in this work this space is 

a square region [ ] [ ]: 1,1 1,1Θ − × − ); 



 

3) For each element in support space FE mesh, calculate the gauss integration points for this element and the corre-

spondent value of  e α βξ ξ  in this point. Calculate ( ) ( ),  e ,α θ ω β θ ω  in this point and solve (20) with these val-

ues. This is a deterministic solution. Store this solution in the vector ( , )
h

j
p ωx . j  should index all integration 

points in the mesh. 

4) Using least squares, calculate the value of ( , )h

i
p ωx  at nodes of support FE mesh. Using this nodal information, 

the solution in any point of mesh could be calculated with the use of interpolation functions 
i

Φ  
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5) The sth statistical moment could be calculated as 

 ( )( , , ) ( )
s
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Θ
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Using the FEM representation considered in eq.(21) results 
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The transformation above is possible since the functions 
i

Φ  are locally supported. We calculate the integral in eq. 

(23) using the quadrature rule with the points j  defined in step 3 
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s
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In the above equation, e

i
θ  and 

i
w  represent the abcissae and weight of integration point. ( , )h

i
p ωx  is the determi-

nistic evaluation obtained using e

i
θ . This solution involves no change of the preexistent computational codes: all the 

statistical data are obtained using the output of FEM software, which can be considered a non-intrusive approach. This 

representation leads to several advantages: the solution is obtained using uncoupled determinist evaluations, can easily 

deals with non-linearities in the input data and the stochastic representation closely follow the FEM theory, concerning 

the convergence and error analysis. 

5. RESULTS AND DISCUSSIONS 

The mean value used in the impedance of absorbing layer will be taken from Bermúdez and Rodríguez (1999). As 

long as we have no information regarding others statistical properties we will consider that the standard deviation is 

±20% of this mean value and the stochastic distribution is uniform. So eq.(19) can be read 
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And  eα βξ ξ  are uniformly distributed in the range [ ]1,1− . Figure 3 shows this variation in the frequency range 

used: 



 

 

Figure 4 – Data used to stochastic model of Z  

All calculations for NISG were done with MATLAB 6. The Deterministic finite element code for Helmholtz equa-

tion was written in FORTRAN 90. A mesh of 20x20 Finite elements has been used in the spatial domain. Table 1 show 

the numerical values obtained for different numbers of elements in support space for a point at the center of cavity. It 

should be observed the excellent convergence obtained for frequency 400f Hz= , the highest used in this work. For 

frequency 180f Hz=  the convergence is not so good, but it should be noted that this frequency is near a resonant fre-

quency of this model (see figure 8). Compared with the Monte Carlo technique, this results shows good agreement. 

However, the number of deterministic solutions is just a small fraction of the number of solutions needed by Monte 

Carlo method. 

In this work we used 4x4 elements in the two dimensional stochastic dimension, which implies the solution of 64 

deterministic problems (4 gauss points in each element). 

Tabela 2 – Mean Pressure and standard deviation at 0.5, 0.5x y= =  for different numbers of elements in support space 

  Frequency = 180Hz  Frequency = 400Hz  

s
N  Mean Pressure Std. Deviation Mean Pressure Std. Deviation 

1 1×  0.926318374 - 0.080427994i 0.344119974 0.785426092+ 0.035077524i 0.061918480 

2 2×  0.956325938 - 0.095279371i 0.452627359 0.785425326+ 0.035077784i 0.061932046 
NISG 

4 4×  0.963091996 - 0.100435849i 0.490351715 0.785425273+ 0.035077802i 0.061932929 

Monte Carlo 

(2× 10
5
 samples) 

0.964387815 - 0.101365122i 0.498141994 0.785555120 + 0.035132683i 0.061827349 

 

Figure 5-7 shows the mean values and calculated to frequency of 50, 200 and 400 Hz. The pressure distribution for 

mean is very similar to the ones obtained when we use a deterministic model. The standard deviation values are low 

compared with mean values obtained, but it strongly depends of the frequency used. 

 

 

Figure 5 - Pressure distribution (Absolute mean value and std. deviation) for frequency 50f Hz=  



 

 

Figure 6 - Pressure distribution (Absolute mean value and std. deviation) for frequency 200f Hz=  

 

Figure 7 - Pressure distribution (Absolute mean value and std. deviation) for frequency 400f Hz=  

 

Figure 8 – Sound Pressure level ( )( )10 0( ) 20 logSPL dB mean p p= for point  

0.6x =  and 0.35y = : Mean value and deviation from mean. 



 

Figure 8 show the sound pressure level at the point located at 0.6x =  and 0.35y = . As can be seen, the standard 

deviation values can be very high (compared to the mean values) in the regions near the resonance frequencies. In fre-

quencies higher than 350Hz , this uncertainty level also has a significant values. 

Another way to quantify the level of uncertainty is calculate the ratio between standard deviation and mean values 

in a given point. This is shown in figure 9 for the point located at 0.6, 0.35x y= =  and 0.25, 0.2x y= = . The dotted 

line represents the level of uncertainty of input values (20%). As said before, the uncertainty level grows with frequency 

and it can show high values in the vicinity of resonance frequencies. 

 

  

Figure 9 – Ratio /
x x

σ µ  for points 0.6, 0.35x y= = (a) and 0.25, 0.2x y= = (b). 

6. CONCLUSIONS 

In this work, the Non-Intrusive Stochastic Galerkin (NISG) approach is applied to the solution of acoustic prob-

lem in a two dimensional rigid cavity, with an absorbing layer at one boundary. The impedance at this boundary is con-

sidered a stochastic variable with known probabilistic distribution. The spatial two-dimensional domain was discretized 

using the finite element technique, followed by FE discretization of stochastic support space. The statistical data ob-

tained shown that the uncertainty level of output can be higher than the uncertainty level of input for frequencies near 

the resonant ones. Besides this, higher values of frequencies had shown an increase of this uncertainty output level. The 

technique developed here can be used to obtain the statistics of output of interest using only a small number of determi-

nistic solutions.  
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