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Abstract. Implicit formulations for parameter estimation inverse problems in which a cost function is minimized have 
largely been employed in several applications related to heat and mass transfer. Even though gradient based methods 
have been used in most cases, it has been observed an increasing interest in the use of stochastic methods for the 
solution of inverse radiative transfer problems. A hybrid approach with the Particle Collision Algorithm (PCA) – a 
recently developed stochastic method – and the Levenberg-Marquardt (LM) – a deterministic method – has been 
successfully used by the authors for the solution of the inverse problem of participating media radiative properties 
estimation. In such approach it is required the solution of the direct radiative transfer problem which is modeled by the 
linear version of the Boltzmann equation. For that purpose it is used a discrete ordinates method combined with the 
finite difference method. Even though good results have been obtained, it has been observed that the PCA solution, 
which is later used as the initial guess for the LM, shows lower quality when experimental data with low sensitivity to 
the parameters we want to estimate are used. Here we identify and use for the solution of the inverse problem only the 
data with higher sensitivity. This approach yields better results and prevents LM from not converging. 
 
Keywords: Levenberg-Marquardt, Particle Collision Algorithm, Radiative Transfer, Sensitivity Analysis, Inverse 
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1. INTRODUCTION 
 

Direct and inverse radiative transfer problems have several relevant applications such as optical tomography (Kim 
and Charette, 2007), computerized tomography (Carita Montero et al., 2004), coupled atmospheric-ocean models 
(Zhang et al., 2007), hydrologic optics (Chalhoub and Campos Velho, 2001), and radiative properties estimation 
(Nenarokomov and Titov, 2005, Hespel et al., 2003), among many others. A lot of effort has been devoted to the 
estimation of the optical thickness, phase function of anisotropic scattering, and the absorption and scattering 
coefficients (Tinel et al., 2000, Milandri et al., 2002, Zhou et al., 2002, Kudo et al., 2002, Souto et al., 2005, 2006, An et 
al., 2007). 

When formulated implicitly (Silva Neto, 2002, Silva Neto et al., 2007), inverse problems are usually written as 
optimization problems, and the main focus becomes the minimization of a cost function, for example the one given by 
the summation of the squared residues between a calculated and a measured quantity. 

In recent years we have used a number of deterministic, stochastic and hybrid (combined) methods for the solution 
of inverse radiative transfer problems with particular emphasis on: (i) Levenberg-Marquardt method (LM); (ii) 
Simulated Annealing (SA); (iii) Genetic Algorithms (GA); (iv) Artificial Neural Networks (ANN); (v) Ant Colony 
System (ACS); (vi) Particle Swarm Optimization (PSO); (vii) Generalized Extremal Optimization (GEO); (vii) Interior 
Points Method (IPM); and (ix) combinations of the previous methods. 

Sacco and co-workers (2006) proposed a novel stochastic optimization method, the so called Particle Collision 
Algorithm (PCA), which is inspired by the physics of the interaction of nuclear particles inside nuclear reactors. Knupp 
et al. (2007) applied PCA for the estimation of the optical thickness, single scattering albedo and diffuse reflectivities at 
the inner surface of the boundaries of one-dimensional participating media. A hybridization of PCA with the 
Levenberg-Marquardt method, LM, (Marquardt, 1963, Silva Neto and Moura Neto, 2005) was also used, in which the 
former provides an initial guess for the latter. Such approach was denominated PCA-LM (1). In order to speed up PCA 
the same authors have developed a second hybridization of PCA with LM, denominated PCA-LM(2), in which the LM 
is used in the exploitation step of the PCA (Knupp et al., 2007a). 

In the present work we improve the implementation of PCA for the solution of the inverse problem of radiative 
properties estimation by performing a sensitivity analysis and considering only the experimental data with higher 
sensitivity. We implement also a five steps algorithm in which each one of the four unknowns is estimated separately 
with PCA, and in the end of an iterative procedure LM is used for the simultaneous estimation of all four unknowns. 

 
 
 
 



2. MATHEMATICAL FORMULATION AND SOLUTION OF THE DIRECT PROBLEM 
 

Consider a one-dimensional, gray, homogeneous, isotropically scattering, participating medium of optical thickness 
0τ , with diffusely reflecting boundary surfaces which are subjected to external radiation. The mathematical formulation 

for such problem considering no emission inside the medium and azymuthal symmetry is given by (Özisik, 1973) 
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where ( , )I τ µ  represents the dimensionless radiation intensity, τ  is the optical variable, µ  is the cosine of the polar 
angle θ , i.e. the angle formed by the radiation beam and the positive τ  axis, ω is the single scattering albedo, 1ρ  and 

2ρ  are the diffuse reflectivities at boundaries 0τ =  and 0 τ τ= , respectively, and 1 A  and 2 A  represent the strength 
of the external sources. 

The direct problem arises when the geometry, the radiative properties and the boundary conditions are known. In 
that case, problem (1) may be solved yielding the values of the radiation intensity ( , )I τ µ , for 00 τ τ≤ ≤  and 

1 1µ− ≤ ≤ . 
In order to solve the direct problem we have used Chandrasekhar’s discrete ordinates method (Chandrasekhar, 1960) 

in which the polar angle domain is discretized, and the integral term on the right hand side of Eq. (1a) is replaced by a 
gaussian quadrature. We then used a finite-difference approximation for the terms on the left hand side of Eq. (1a), and 
by performing forward and backward sweeps, from 0τ =  to 0τ τ=  and from 0τ τ=  to 0τ = , respectively, ( , )I τ µ  
is determined for all spatial and angular nodes of the discretized computational domain. 
 
3. MATHEMATICAL FORMULATION OF THE INVERSE PROBLEM 
 

In the inverse radiative transfer problem considered in the present work, from the measured experimental data on the 
intensity of the exit radiation we want to obtain estimates for the optical thickness, single scattering albedo, and the 
boundary diffuse reflectivities of one-dimensional homogeneous participating media. That is, we are interested in the 
following radiative properties, which are considered unknowns 

 

0 1 2{ , , , }TZ τ ω ρ ρ=
ur

                                                                               (2) 
 
As mentioned above, measured data on the intensity of the exit radiation at the boundaries 0τ =  and 0τ τ= , i.e., 

, , are considered available, where  represents the total number of experimental data. Because the 
number of measured data, , is usually much larger than the number of estimated parameters, the inverse problem is 
formulated as a finite dimensional optimization problem in which the following cost function is minimized (also 
referred to as the objective function) 
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where 

icalcI  represents the calculated value of the radiation intensity (using estimates for the unknown radiative 

properties Z
ur

) at the same boundary, and at the same polar angle, for which the experimental value  is obtained. iY
For the solution of the inverse problem we have used a variant of a stochastic method recently developed, the 

Particle Collision Algorithm (Sacco et al., 2006), in which the exploitation step of the algorithm, instead of consisting in 
a random search in the vicinity of a promising solution, is replaced by the deterministic gradient based Levenberg-
Marquardt method (Marquardt, 1963, Silva Neto and Moura Neto, 2005). 
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4. THE PARTICLE COLLISION ALGORITHM 
 

The Particle Collision Algorithm (PCA) is loosely inspired in the physics of the interactions of neutrons in a nuclear 
reactor (Duderstadt and Hamilton, 1976), mainly scattering, being an incident particle  scattered by a target nucleus, and 
absorption, being the incident particle absorbed by the target nucleus. Thus, a particle that hits a high-fitness “nucleus” 
would be absorbed, and would perform a search in its neighborhood. On the other hand, a particle that hits a low-fitness 
region would be scattered to another region. This procedure permits the exploration of the search space and the 
exploitation of the most promising areas of the fitness landscape through successive scattering and absorption collision 
events. 

The PCA resembles in its structure that of the Simulated Annealing (SA) (Kirkpatrick et al., 1983), i.e. first an initial 
configuration is chosen, and then a new configuration is obtained by performing a modification in the previous one. The 
quality of the two configurations is compared. A decision is then made on whether the new configuration is 
“acceptable”. If that is the case, it becomes the old configuration for the next step of the iterative procedure. Otherwise, 
the algorithm proceeds with a new different change of the previous old configuration. 

PCA may also be considered a Metropolis algorithm (Metropolis et al., 1953), i.e. a trial solution can be accepted 
with a certain probability even if the new configuration is worse than the old configuration. Such flexibility of the 
algorithm may avoid the convergence to local minima. 

In Fig. 1 is shown the pseudo-code for the PCA in its canonical version for minimization problems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 – P
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The solution of the inverse radiative transfer problem under analysis consists on obtaining estimates for the 
unknowns shown in Eq. (2) by minimizing the cost function given by Eq. (3) using the recently developed stochastic 
Particle Collision Algorithm (PCA) (Sacco et al., 2006), whose pseudo-code is shown in Fig. 1. 

Stochastic methods are known to be time consuming, mainly for the solution of inverse problems in which the 
solution of the direct problem, such as the one modeled by Eqs. (1a-c), is required. Therefore, we have opted to use 
hybrid approaches through the coupling of PCA with the deterministic gradient based Levenberg-Marquardt method. In 
a previous work (Knupp et al., 2007) we used a “weaker” version of PCA (100 iterations in the outer loop, and 10 
iterations in the exploitation loop) in order to generate an initial guess for the LM. Such approach was denominated 
PCA-LM (1). In another work (Knupp et al., 2007a) we replaced the exploitation step with a random search, as shown 
in Fig. 1, by the LM method. Such approach was denominated PCA-LM (2). 

In the present work we use a variation of PCA-LM (1) for the estimation of the unknowns given by Eq. (2), in 
which, as shown in Fig. 2, first an iterative procedure is used being each unknown estimated separately with PCA, but 
in order to improve the results we previously perform a sensitivity analysis and use, for the inverse problem solution, 
only the experimental data with higher sensitivity. The sensitivity analysis is presented in the next section. 

 

 
 

Figure 2. Flow diagram of the developed methodology for the estimation of radiative properties based on a sensitivity 
analysis. 

0
Dτ , Dω , 

1
Dρ  and 

2
Dρ  represent the sets of experimental data with higher sensitivity for each unknown. 

 
 

5. SENSITIVITY ANALYSIS FOR THE INVERSE RADIATIVE TRANSFER PROBLEM 
 

The sensitivity analysis plays a major role in several aspects related to the formulation and solution of inverse 
problems (Beck et al., 1985, Milandri et al., 2002). Here we use the modified or scaled sensitivity coefficients. 
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where jZ  represents a specific unknown, with 1, 2,...,j N= , and  is the total number of unknowns. In the present 
work . 

N
4N =

In order to obtain good estimates, i.e. within reasonable confidence bounds, it is required that the sensitivity 
coefficients be high. Furthermore, when two or more unkowns are estimated simultaneously their sensitivity 
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coefficients must be uncorrelated. Graphically it means that they should not present the same shape, otherwise two or 
more parameters may affect in the same way the observed quantity, 

icalcI , which in fact is measured experimentally.  
In the present work, it has been developed a method based on a sensitivity analysis in a way that the parameters are 

estimated separetely and only the data with higher sensitivity are used in the estimation of each variable, as it can be 
observed in the fluxogram shown in Fig. 2. 

In the flow diagram shown in Fig. 1, 
0

Dτ  , Dω , 
1

Dρ  and 
2

Dρ  represent the sets of data used in the estimation of 0τ , 

ω , 1ρ  and 2ρ , respectively. These data are selected by the user after a sensitivity analysis of the problem under 
consideration. 

As the number of experimental data may be different for the estimation of each property, we define the cost function 
used in the PCA as 
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so that when the properties 0 , ,τ ω ρ  and 2ρ  are estimated the respective cost functions 

0 1
, ,Q Q Qτ ω ρ  and 

2
Qρ  are used. 

0 1
, ,d d dN N Nτ ω ρ  and 

2dN ρ  are the number of experimental data related to 
0 1
, ,D D Dτ ω ρ  and 

2
Dρ , respectively. 

 
6. RESULTS AND DISCUSSION 

 
As real experimental data were not available, we generated synthetic experimental data using  
 

 ( )
i

exacti calc eY I Z rσ= + ⋅
ur

                                                                            (6) 
 
where is a random number, from a uniform distribution, in the range [ 1r ,1]− , exactZ

ur
 is a vector with the exact values of 

the unknowns that we want to estimate, and eσ  simulates the standard deviation of measurement errors. 
We are interested in the estimation of the four unknown radiative properties given in Eq. (2). In order to evaluate the 

performance of the approach presented here we chose a very difficult test case with 
 

{ } {0 1 2, , , 4.00,0.30,0.10,0.90T
exactZ τ ω ρ ρ= =
r

}                                                       (7) 
 
The incident radiation intensity was taken as 0.11 =A  and 0.02 =A  in Eqs. (1b) and (1c), respectively. The ranges 

considered in the PCA for the search of unknowns was [0,5.0] for 0τ , and [0,1.0] for ω , 1ρ  and 2ρ . These are the 

real physical bounds for the unknowns except for 0τ  which may have a higher value than the upper bound considered. 

Nonetheless, it must be stressed that 0 4.0τ =  is already a very high value if one wants to consider the information on 
the transmitted radiation for the inverse problem solution. In Fig. 3 are shown the sensitivity coefficients for the test 
case considered. It can be observed that with the exception of ω , all variables present sensitivity coefficients very close 
to zero for all data, what demonstrates how difficult is the estimation of the parameters in this case. 
 
 



 

 
Figure 3. Sensitivity coefficients for . {4.0,0.3,0.1,0.9}

 
We have considered a angular domain discretization with 20 nodes, as shown in Fig. 4. 
 

 
Figure 4. Angular domain discretization. 
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As experimental data we consider the emerging radiation intensities  with iY 1,2,...,
2
Ni =  being acquired at 0τ τ= , 

at the polar angles related to iµ  with 1,2,...,
2
Ni = , i.e. 0µ > , and the emerging radiation intensities  being acquired 

at 

iY

0τ = , at the polar angles related to iµ  with 1, 2,...,
2 2
N Ni N= + + , i.e. 0µ < . 

Due to the sensitivity analysis performed we then consider the following sets of experimental data for the estimation 
of each unknown with PCA: ; 

0 6 10{ ,..., }D Y Yτ = 11 20{ ,..., }D Y Yω = ; 
1 16 20{ ,..., }D Y Yρ =  and . 

2 6 10{ ,..., }D Y Yρ =

In Tables 1-4 presented next are shown the initial guess for the vector of unknowns obtained with the first run of 
PCA, PCA INIZ −

ur
, the estimates obtained with PCA and the sets of data with higher sensitivity as shown in the flow 

diagram of Fig. 2, PCA SAZ −

ur
, being in this case each unknown estimated separately, and the estimates obtained with the 

Levenberg-Marquardt method (LM), LMZ
ur

, using PCA SAZ −

ur
 as the initial guess. In LM all unknowns were estimated 

simultaneously and all experimental data available was considered, i.e.  with iY 1, 2,...,i N= . In Tables 2-4 are also 
shown the average, µ , and the standard deviation, σ , of the runs. 

In Table 1 are presented the results obtained with noiseless data, in a single run. From the second and third columns 
it can be observed the improvement in the estimates with respect to the ones obtained with PCA and all experimental 
data as shown in the first column of the table. 

 
 

Table 1. Estimations obtained with noiseless experimental data for {4.0,0.3,0.1,0.9}Z =
ur

. 

Parameters PCA INIZ −

ur
 PCA SAZ −

ur
 LMZ

ur
 

τ  2.19 4.10 4.00 

ω  0.33 0.31 0.30 

1ρ  0.23 0.13 0.10 

2ρ  0.91 0.89 0.90 

( )Q Z
ur

 5.25E-4 1.0E-6 0 
 
In Tables 2-4 are shown the results obtained in five runs using noisy experimental data with up to 5%, 8% and 11% 

error, respectively. 
 

Table 2. Estimations obtained in five runs with noisy experimental data with up to 5% error. . {4.0,0.3,0.1,0.9}Z =
ur

Run PCA INIZ −

ur
 ( )Q Z

ur
 PCA SAZ −

ur
 ( )Q z

r
 LMZ

ur
 ( )Q z

r
 

1 {2.16,0.34,0.23,0.92} 5E-4 {3.92,0.29,0.05,0.90} 2E-5 {3.43,0.30,0.13,0.87} 7E-6 
2 {1.86,0.34,0.33,0.95} 6E-4 {3.27,0.34,0.21,0.95} 8E-5 {3.35,0.32,0.17,0.95} 3E-6 
3 {2.82,0.42,0.46,0.91} 2E-4 {4.04,0.28,0.26,0.90} 3E-3 {3.92,0.28,0.08,0.90} 2E-6 
4 {3.76,0.40,0.34,0.47} 1E-3 {4.68,0.28,0.39,0.79} 8E-3 {5.00,0.34,0.32,0.75} 3E-5 
5 {3.01,0.38,0.33,0.80} 5E-4 {4.37,0.28,0.02,0.85} 1E-5 {3.15,0.25,0.01,0.95} 2E-5 
µ  {2.39,0.38,0.34,0.81}  {4.06,0.29,0.19,0.88}  {3.77,0.30,0.14,0.88}  
σ  {0.75,0.04,0.08,0.20}  {0.53,0.03,0.15,0.06}  {0.74,0.03,0.12,0.08}  

 
 

Table 3. Estimations obtained in five runs with noisy experimental data with up to 8% error. . {4.0,0.3,0.1,0.9}Z =
ur

Run PCA INIZ −

ur
 ( )Q Z

ur
 PCA SAZ −

ur
 ( )Q z

r
 LMZ

ur
 ( )Q z

r
 

1 {3.80,0.37,0.27,0.79} 4E-4 {4.88,0.34,0.27,0.78} 4E-5 {3.50,0.29,0.04,0.94} 1E-5 
2 {3.64,0.50,0.52,0.74} 6E-4 {4.80,0.28,0.02,0.75} 4E-5 {3.15,0.32,0.18,0.96} 5E-6 
3 {3.78,0.35,0.33,0.65} 6E-4 {4.91,0.29,0.47,0.73} 9E-3 {4.23,0.24,0.01,0.86} 2E-5 
4 {4.46,0.44,0.51,0.40} 4E-4 {4.85,0.29,0.05,0.76} 1E-5 {3.13,0.31,0.15,0.96} 9E-6 
5 {3.61,0.51,0.56,0.80} 6E-4 {3.45,0.28,0.01,0.95} 1E-5 {3.40,0.31,0.15,0.95} 7E-6 
µ  {3.86,0.43,0.44,0.68}  {4.58,0.30,0.16,0;79}  {3.48,0.29,0.11,0.93}  
σ  {0.35,0.07,0.13,0.17}  {0.63,0.03,0.20,0.09}  {0.45,0.03,0.08,0.04}  



 
 

Table 4. Estimations obtained in five runs with noisy experimental data with up to 11% error. . {4.0,0.3,0.1,0.9}Z =
ur

Run PCA INIZ −

ur
 ( )Q Z

ur
 PCA SAZ −

ur
 ( )Q z

r
 LMZ

ur
 ( )Q z

r
 

1 {4.25,0.37,0.35,0.51} 5E-4 {4.23,0.28,0.34,0.87} 6E-3 {3.52,0.32,0.08,0.98} 5E-5 
2 {3.37,0.38,0.29,0.70} 9E-4 {3.12,0.28,0.01,0.95} 6E-5 {3.11,0.34,0.01,0.94} 9E-5 
3 {4.25,0.50,0.55,0.41} 9E-4 {4.81,0.27,0.51,0.73} 9E-3 {5.67,0.26,0.43,0.81} 3E-5 
4 {4.04,0.43,0.49,0.86} 1E-4 {4.77,0.41,0.02,0.77} 9E-3 {5.01,0.37,0.30,0.72} 4E-5 
5 {3.83,0.42,0.41,0.50} 8E-4 {4.67,0.28,0.05,0.97} 5E-5 Did not converge - 
µ  {3.95,0.42,0.42,0.60}  {4.32,0.30,0.19,0.86}  {4.33,0.32,0.21,0.86}  
σ  {0.37,0.05,0.11,0.18}  {0.71,0.06,0.23,0.11}  {1.21,0.05,0.19,0.12}  

 
In Tables 2-4 it can be observed that in the second step of the process, i.e. when the estimations are performed 

separately, using only the experimental data with higher sensitivity coefficients, the estimates of ω , the only property 
with reasonable sensitivity coefficients, are much better than the estimates obtained when all properties were estimated 
simultaneously using PCA. 

It can also be noticed that the Levenberg-Marquadt method (LM) converged in most cases and obtained reasonable 
estimates for all properties, especially ω , as it was expected. It is important to stress once more that the test case 
considered here is a very complicated one and a good initial guess is needed for LM to converge. 

Some tests using the first column estimates (standard PCA) directly as the initial guesses for LM have also been 
performed. Although LM converged and yielded good estimates in most runs, it was not able to converge more 
frequently than when it was used the sensitivity analysis approach presented in this work. 

Some tests considering radiative properties for which the sensitivity coefficients were higher have also been 
performed using the same approach shown in Fig. 2, but in these cases the estimates did not present significant 
improvement. 

 
7. CONCLUSIONS 

 
The results obtained in the present work suggest the feasibility of the estimation of radiative properties separetely 

using only the data with better sensitivity coefficients. It has been intentionally considered a very difficult test case and 
the proposed approach was able to yield good estimates for the only property with reasonable sensitivity. 

A version of Levenberg-Marquardt (LM) estimating simultaneously the properties using a set of data with 
sensitivity to all unknown radiative properties has been tried, but no significant improvement has been verified. Further 
investigations should be performed on this subject in order to evaluate the influence of estimating the properties 
separately. 
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