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Abstract. Many methods can be used to determine characteristics of vibrations in mechanical structures. In general, 

the methods use inputs and output signals. Currently, many researches and text books have been published in this area. 

In this context, this paper propose to identify modal parameters trhough orthogonal functions. Generally, papers 

present stifiness, mass  and damping identification considering the motion equations like a second order differencial 

equation. In this situations input forces are necessary in all degree of freedom (dof). Modal parameters also can be 

identified using orthogonal functions and state space realization (SSR). This formulation presents some advantages as: 

small number of expansion terms; is necessary only once input sensor, etc. However, it was not found in literature, 

information about cases with noises effects in input and output signals. This paper presents a modal parameters 

identification using orthogonal functions considering the motion equations represented by the state space realization. 

Noise effects are considered in the output signals and Legendre and Chebyshev orthogonal functions are used. The 

paper concludes with a numerical application. 
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1. INTRODUCTION  

 

Modal Analysis comprises nowadays a vast range of different areas, like Modal Correlation and Updating, Modal 

Testing methods, Nonlinear Modal Analysis, Sub structuring, Structural Modification, to name some of them. However, 

one of the fundamental areas is, precisely, the identification of the dynamic properties of a structure from the measured 

data. In the seventies and more so in the eighties one has witnessed the development of a vast range of identification 

methods and techniques. Some of the best-performing have been integrated into commercial software, and nowadays 

one can find entire modal analysis packages running in computers linked to modal testing systems and doing not only 

modal parameter estimation but also other pre-processing and post-processing calculations, like geometry definition, 

mode animation, structural modification prediction, coupling of substructures, etc (Maia et al., 1997). 

During the last three decades or so, many researchers have devoted their efforts to the development of techniques 

that aim to produce a reliable identification of the dynamic properties of structures. Those efforts have been fruitful due 

largely to the introduction of the Fast Fourier Transform (FFT) and to the development in recent years of very powerful 

multi-channel spectrum analysers, computers and instrumentation in general that permit the acquisition and treatment of 

large quantities of data. In this way, it was possible to evolve from very simple techniques, where analyses were based 

on data from single-input excitation and single-output response to highly sophisticated ones, where data from multi-

input excitation and multi-output responses are treated simultaneously. In this context, modal parameters identification 

by orthogonal functions has been considered in many applications (Melo, 1992; Pacheco, 2001; Pacheco and Steffen, 

2004). Morais (2006) showed the application of orthogonal functions series for excitation force identification in a 

robotic arm. 

With orthogonal functions the main idea is to use integration and derivation properties. These properties perform a 

key role in the identification procedure, since, through it’s application, it’s possible to transform a set of differential 

equations of motion into a set of algebraic equations, facilitating the identification of the unknown parameters. This can 

be considered as the characteristic of the present method, which differs form other orthogonal function based on 

identification techniques (Pacheco and Steffen, 2004). Many orthogonal functions series are found in the literature as: 

Fourier, Legendre, Chebyshev, Jacobi, Block-Pulse and others; and also many works were published proving the 

efficiency of this methodology (Chang and Wang, 1985; Melo and Steffen, 1993). This paper presents the modal 

parameters identification in a system represented by a state space model, recently shown in Marqui et al., 2006, 

considering noises effects in the input and output signals. 

 

 

 

 



2. ORTHOGONAL FUNCTIONS 

 

A set of real functions 3... 2, ,1 ),( =ktkϕ  defined in the interval [ ]ba, ℜ∈  . The set is said orthogonal in the same 

interval if (Spiegel, 1976): 

 

∫ =
b

a

nm Kdttt )()( ϕϕ                                                       (1) 

 

where K  is a constant equal zero if nm ≠  and different of zero if nm = . 

The set of functions )(tkφ  is said orthonormal if will be valid the relation (Spiegel, 1976): 

 

∫ =
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where
mnδ , is the Kronecker delta, i. e. “0” if nm ≠  or “1” if nm =  and )(tkφ is the set of functions orthonormal. 

The set )(tkϕ is orthonormal with respect to the weight function )(tw  in which w(t)≥ 0, then the set of orthonormal 

functions is whiting by: 

 

3,... 2, 1,k                               ),()()( == ttwt kk ϕφ                                                   (3) 

 

and verify the relation: 

 

∫ =
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a
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If a function )(tf  is continuous or partially continuous in the interval [a,b], then )(tf  can be expanded in series of 

orthogonal functions, that is: 
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Such series, called orthonormal series, constitute the generalizations of the Fourier series. Admitting that the sum in 

Equation (5) converges to )(tf , we can multiply both for )(tmφ and, integrating in the interval [a,b]. In this equation cn 

are the generalized coefficients of Fourier. The following property, related to be successive integration of the vectorial 

basis, holds for a set of r orthonormal functions in the interval [0,t]: 
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where T
rm tttt )}(  ...  )(  )({)}({ 10 φφφφ = is the finite set of orthogonal series, [P] is a square matrix of order “r” with 

constants elements called operational matrix integration. 

Tables 1 and 2 describe the main characteristics and the operational matrix integration of Legendre and Chebyshev 

orthogonal functions, respectively. 
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Table 1. Main characteristics of Legendre series. 
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Table 2. Main characteristics of Chebyshev series. 
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2. STATE SPACE MODEL IDENTIFICATION USING ORTHOGONAL FUNCTIONS 

 

A mechanical system can be represented using the state space realization efficiently (Equation (7)). Using input and 

output signals, in general, this representation is obtained through methods as: ERA (Eigensystem Realization 

Algorithm); N4SID (Numerical Subspace State Space System Identification); PEM (Prediction Errors Method); CE 

(Complex Exponential); or orthogonal functions. 

 

)()()( tButAxtx +=&                                                       (7) 

 

)()( tCxty =                                                                              (8) 

 

where A, B and C, shown in Equation (9), are the dynamic, input and output matrices, respectively; also, x(t) is the state 

vector, y(t) is the output vector and u(t) is the input vector. 
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where A is 2n x 2n, B is 2n x s, C is r x 2n; n is the number of modes, s is the number of inputs and r is the number of 

outputs. The matrix of input position, B0, is n x s, Coq is the displacement output matrix (r x n) and Cov is the velocity 

output matrix (r x n); and n is the number of degree of freedom. 



Integrating the Equation (7) in the interval [0,t], it can obtain:  
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The displacement responses x(t) and the vector of exciting forces u(t) can be expanded in “r” number of terms 

truncated series orthogonal functions as follows: 
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where X and U are the matrix of the coefficients of expansion. Substituting in Equation (10), it can obtain: 
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Applying 1=e
Tφ(t) and the integral property given by Equation (7), it can obtain: 
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Developing the Equation (13) and grouping in matrices systems, have the following equation: 
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Considering Hss = [A B x(0)e
T
];  Jss = [XP UP e

T
]

T
; and Ess = [X] it is possible to write HssJss = Ess. Solving this 

equation it is possible obtain Hss and, so, obtain the triple (A, B, C). 

 

3. NUMERICAL APPLICATION  

 

The proposed methodology was numerically applied in a mass-spring system, as shown in Figure (1). The values of 

physical parameters were considered as 20 Kg, 1000 N/m and 20 Ns/m, for mass (M1 = M2), stiffness (K1 = K2) and 

damping coefficient (C1 = C2), respectively. It was considered random noises of 2% and 5% of energy in the output 

and input signals. Three sines with 5 Hz, 15 Hz and 25 Hz were considered as input excitations separately, all located 

on mass M1. 

 

 
 

Figure 1. Mechanical system with two degree of freedom. 
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Using Legendre series, Table 3 presents the real and estimated natural frequency for the first and second vibration 

modes. It is possible observe that relative errors between them was small when was considered the first case of noises 

effect. Considering 5 % of the energy as noises the relative errors were smaller when it was considered the input 

excitation with low frequency. There is the relative error of approximately 13 % in the second estimated natural 

frequency when it was used the input excitation with 25 Hz. Table 3 also shows the optimal number of terms used to 

expansion of the signals. This number was obtained minimizing the RMS between the real and the expanded signal.  

Table 4 shows identified damping factors for the first and second modes, considering the same noises effects; excitation 

inputs and terms of expansion. Also, it is possible observer the relative errors Ef1 and Ef2 – in percentage.  

  

Table 3. Natural frequencies (Hz) identified using Legendre. 

Noise 

(%) 

Frequency 

Excitation 

(Hz) 

Terms of 

Expansion 

( r ) 

1ª Natural 

Frequency 

(Real) 

1ª Natural 

Frequency 

(Estimated)  

E1  

(%) 

2ª Natural 

Frequency 

(Real) 

2ª Natural 

Frequency 

(Estimated) 

E2 

(%) 

5 60 1.1240 0.1275 1.9356 0.6986 

15 65 1.1344 0.8037 1.9523 0.1546 

2 

25 80 1.1274 0.1770 1.9028 2.3817 

5 95 1.1360 0.9383 1.9070 2.1653 

15 100 1.1456 1.7935 1.8067 7.3134 

5 

25 90 

1.1254 

1.1280 0.2297 

1.9492 

1.6993 12.821 

 

Table 4. Damping factors identified using Legendre. 

Noise 

(%) 

Frequency 

Excitation 

(Hz) 

Terms of 

Expansion 

( r ) 

1° Damping 

Factor 

(Real) 

1° Damping 

Factor 

(Estimate)  

Ef1  

(%) 

2° Damping 

Factor 

(Real) 

2° Damping 

Factor 

(Estimate) 

Ef2 

(%) 

5 60 0.0664 6.0436 0.1038 15.285 

15 65 0.0664 6.0342 0.1122 8.4111 

2 

25 80 0.0695 1.6948 0.1187 3.1037 

5 95 0.0562 20.524 0.0610 50.194 

15 100 0.0641 9.3444 0.973 20.573 

5 

25 90 

0.0707 

0.0625 11.612 

0.1225 

0.0883 27.925 

 

Only for a comparison, Figures 2a and 2b show the identification realized using the Legendre series without and 

with noises, respectively. The signal is correctly estimated using the orthogonal series when there is not noise, but 

considering one the results are not very good. So, the noises effects can generate errors in the modal parameters 

identification. In this first test was considered in each input and output signal 2 % of the energy as noises and an input 

excitation with 15 Hz; also, the number of terms expansion used was r = 74. Figures 3 and 4 show the displacement and 

the velocity of the first and second degree of freedom (dof), respectively. To use the orthogonal series to represent the 

real signals is the most important step for a good identification process using this methodology. 

 

  
                                       Figure 2a                                                                                        Figure 2b  

 

Figure 2. Signals identified by Legendre – (a) without noises; (b) with noises (2 % of the energy and input excitation 

with 15 Hz). 



 
 

Figure 3. Signals identified by Legendre – 2 % of noise for 5 Hz. Displacement of the first dof. 

 

 
Figure 4. Signals identified by Legendre – 5 % of noise for 5 Hz. Velocity of the second dof. 

 
Using Chebyshev series, Table 5 presents the real and estimated natural frequency for the first and second vibration 

modes. It is possible observe that using this orthogonal series, the relative errors between real and estimated was small 

when was considered the first case of noises effect. Considering 5 % of the energy as noises there is considerable 

identification errors in the second natural frequency for all input excitations. Table 5 also shows the optimal number of 

terms used to expansion of the signals, obtained minimizing the RMS between the real and the expanded signal.  Table 

4 shows identified damping factors for the first and second modes, considering the same noises effects; excitation inputs 

and terms of expansion. Also, it is possible observer the relative errors Ef1 and Ef2 – in percentage.  

 

Table 5. Natural frequencies (Hz) identified using Chebyshev. 

Noise 

(%) 

Frequency 

Excitation 

(Hz) 

Terms of 

Expansion 

( r ) 

1ª Natural 

Frequency 

(Real) 

1ª Natural 

Frequency 

(Estimated)  

E1  

(%) 

2ª Natural 

Frequency 

(Real) 

2ª Natural 

Frequency 

(Estimated) 

E2 

(%) 

5 85 1.1227 0.2417 1.9512 0.1029 

15 105 1.1282 0.2536 2.0515 5.2449 

2 

25 95 1.1281 0.2396 1.8779 3.6592 

5 95 1.1139 1.0223 1.7036 12.604 

15 105 1.0911 3.0511 1.5035 22.869 

5 

25 95 

1.1254 

1.0642 5.4347 

1.9492 

1.3650 29.972 

 

 

 

Table 6. Damping factors identified using Chebyshev. 
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Noise 

(%) 

Frequency 

Excitation 

(Hz) 

Terms of 

Expansion 

( r ) 

1° Damping 

Factor 

(Real) 

1° Damping 

Factor 

(Estimate)  

Ef1  

(%) 

2° Damping 

Factor 

(Real) 

2° Damping 

Factor 

(Estimate) 

Ef2 

(%) 

5 85 0.0565 20.141 0.0733 40.125 

15 105 0.0368 47.934 0.0166 86.410 

2 

25 95 0.0587 16.937 0.0897 26.772 

5 95 0.0649 8.1548 0.0156 87.302 

15 105 0.0840 18.742 0.0107 91.259 

5 

25 95 

0.0707 

0.1687 138.64 

0.1225 

0.0153 87.521 

 
Figures 5a and 5b show the identification realized using the Chebyshev series without and with noises, respectively, 

as was shown in Figure 2a. In this test was considered in each input and output signal 2 % of the energy as noises and 

an input excitation with 5 Hz; also, the number of terms expansion used was r = 80. Figures 6 and 7 show the 

displacements of the first and dof, respectively. 

 

 
                                       Figure 5a                                                                                        Figure 5b  

 

Figure 5. Signals identified by Chebyshev – (a) without noises; (b) with noises (2 % of the energy and input 

excitation with 5 Hz). 

 

 
 

Figure 6. Signals identified by Chebyshev – 2 % of noise and input excitation with 5 Hz (Displacement of first dof). 

 

 

 

 

 

 



 
 

Figure 7. Signals identified by Chebyshev – 2 % of noise and input excitation with 15 Hz (Displacement of second dof). 

 

4. FINAL REMARKS 

 

In this paper a methodology of parameters identification through orthogonal functions series in the state space model 

was applied in a mechanical system. In the input and output signal were considered random noises of 2% and 5% of the 

energy of signals. The results showed that the methodology efficient for systems identifications using experimental data 

with noises. There was limitation to identify the damping factors. It is a complex problem and further work will be done 

to verify if it is a draw back of this methodology. In future works others series of orthogonal functions will be analyzed 

to minimize the difference between natural frequencies from experimental data and numerical model. 
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