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Abstract. The shape optimization problem consists of looking for the geometry that minimizes an objective function, like
mass or compliance, subject to mechanical constraints. The Boundary Element Method (BEM) is used for the structural
analysis. For linear elasticity problems, it needs only a mesh on the boundary of the structure. This characteristic makes
the BEM a natural method for shape optimization, since only the boundary is needed to define the optimization problem
and to carry out the structural analysis. The Simultaneous Analysis and Design formulation (SAND) is used here to define
the shape optimization problem. It considers the state variables as unknowns of the optimization problem and includes
the equilibrium equations as equality constraints. In this way, it is not necessary to solve the equilibrium equation per
iteration; the equilibrium is only obtained at the end of the optimization process.
Three different models for shape optimization are studied. The first one minimizes the compliance of the structure subject
to a constraint on the volume. The second one minimizes the maximal von Mises stress on the boundary. The third model
looks for a full stress design minimizing the mean value on the boundary of the square of the von Mises stress minus a
reference value.
The optimization problems are solved employing a feasible interior point method for nonlinear programming. Here, the
discrete sensitivity analysis is used to compute first and second derivatives of the functions arising in the formulations.
Numerical results for several two-dimensional linear elasticity examples are presented. A comparison among the three
models is done for the presented examples.
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1. INTRODUCTION

The shape optimization problem consists of looking for the geometry that minimizes an objective function, like mass
or compliance, subject to mechanical constraints. It is a traditional field in Structural Design, and there are many books
and surveys dealing with it and related fields (Sokolowski and Zolesio, 1992; Bendsøe, 1995; Choi and Kim, 2004; Kwak,
1994; van Keulen et al., 2005; Haftka and Grandhi, 1986; Pedersen, 2000).

The Boundary Element Method (BEM) is a widely employed numerical method for structural analysis (Brebbia et al.,
1984; París and Cañas, 1998; Beer and Watson, 1992; Brebbia and Dominguez, 1992). It is based on an integral form of
the equilibrium equations. For linear elasticity problems the BEM just needs a mesh for the boundary of the structure. The
state variables are the nodal displacements and stresses in this boundary. This feature makes the BEM a natural method
for shape optimization since the discretization on the boundary is enough to define the optimization problem and to
perform the structural analysis. For this reason, the BEM has been widely studied for applications in Shape Optimization
(Parvizian and Fenner, 1997; Tafreshi, 2002; Burczyński, 1993; Wessel et al., 2004; Cerrolaza et al., 2000; Bialecki et al.,
2005; Kita and Tanie, 1997; Barra, 1990; Martin and Dulikravich, 2004; Sfantos and Aliabadi, 2006; Meric, 1995).

The Simultaneous Analysis and Design formulation (SAND) is frequently used in structural design (Haftka, 1985;
Haftka and Kamat, 1989; Wang and Arora, 2004; Herskovits et al., 2005). It considers the state variables of the structural
model as unknowns for the optimization problem and includes the equilibrium equations as equality constraints. One of
the difficulties when using the SAND formulation is due to the large increase in the number of variables and constraints of
the optimization problem. Luckily, it generally turns easily the computation of function derivatives and several methods
for large applications have been presented. In references (Haftka, 1985; Haftka and Kamat, 1989; Wang and Arora, 2004;
Herskovits et al., 2005) the SAND formulation that uses the Finite Element Method (FEM) is studied. In that situation,
the sparsity of the functions arising in the SAND formulation is of main importance, then, optimization algorithms that
uses effectively such property allows the optimization be possible in large applications. In reference (Herskovits et al.,
2005) an optimization algorithm for SAND formulation is proposed and used effectively to solve some examples, it also
has the advantage of being able to use existent codes for the analysis and computation of derivatives.

When the BEM is used for the structural analysis, an important reduction in the number of state variables is obtained
when compared with the FEM. Unfortunately, the matrices of derivatives of the functions arising in the formulation
are not sparse any more. Furthermore, in large applications there are still a large number of state variables. Then, the
optimization algorithm to be used with this SAND formulation should ideally be efficient for such large scale problems.
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Recent works indicate Primal-Dual interior point algorithms as well-suited to solve large scale optimization problems
(Benson et al., 2001; Morales et al., 2002; Dolan and Moré, 2004). As pointed out in these references, this kind of
algorithms reduce significantly the computer run time. Unfortunately, these algorithms need second derivatives which are
generally too expensive in shape optimization. Consequently, most of the works using the BEM does not make use of the
SAND formulation and employ algorithms that use, at most, first derivatives (Parvizian and Fenner, 1997; Tafreshi, 2002;
Burczyński, 1993; Wessel et al., 2004; Cerrolaza et al., 2000; Bialecki et al., 2005; Kita and Tanie, 1997) and, sometimes,
algorithms which do not employ any sensitivity information as in references (Wessel et al., 2004; Cerrolaza et al., 2000;
Bialecki et al., 2005; Kita and Tanie, 1997). Because of that, most of the works dealing with sensitivity analysis using
BEM discuss the numerical computation of first derivatives only (Burczyński, 1993; Barra, 1990; Martin and Dulikravich,
2004; Sfantos and Aliabadi, 2006; Meric, 1995).

In (Canelas et al., 2007) the authors took advantage of the partial separability property of the functions arising in
the SAND formulation that is still present when using the BEM. This property makes possible to define routines which
compute the first and second derivatives (and next order derivatives too) with the same complexity in terms of number of
basic operations as the complexity of computing the functions themselves. In (Canelas et al., 2007) it is shown that the
mass, equilibrium and compliance are described by function which satisfy the partial separability property. That is also
true for the von Mises stresses present on the boundary and is shown later on this paper.

The method for shape optimization presented in (Canelas et al., 2007), which is based on the SAND formulation
and uses the BEM for the analysis and a feasible primal-dual interior point algorithm for the solution of the optimization
problem, is employed here. This paper extends the results obtained in (Canelas et al., 2007) considering shape optimization
models that take into account the von Mises stresses on the boundary of the structure.

Numerical results for several two-dimensional linear elasticity examples are studied. A comparison among three
employed models for shape optimization is presented.

2. BOUNDARY ELEMENT METHOD

The linear elasticity problem in two dimensions consists in finding the functions u and σ that define the displacements
and stresses, respectively, on points of the domain of an elastic solid Ω included in the two-dimensional Euclidean space.
The boundary conditions are given by the functions ū and p̄ defined over complementary regions on the boundary Γ of Ω
(see Fig. 1).

Figure 1. Linear elasticity problem.

The Boundary Element Method (BEM) is based on an integral equation that is known as Somigliana’s identity for the
displacements. For null body forces, it can be written in matrix form as:

c(ξ)u(ξ) =
∫

Γ

u∗(ξ,x)p(x) dΓ−
∫

Γ

p∗(ξ,x)u(x) dΓ (1)

Here, the source point ξ will be taken on the boundary Γ. The matrix c is a function of the boundary geometry at the point
ξ and the second integral on the right in Eq. (1) must be calculated in the Cauchy principal value sense.

The function u∗ represents the fundamental solution for the linear elasticity problem, the function p∗ is its corre-
sponding surface stress or traction. For plane strain the fundamental displacements and tractions, in index notation, are
given by:

u∗ij(ξ,x) =
−1

8π(1− ν)G
{(3− 4ν) log(r)δij − r,ir,j} (2)

p∗ij(ξ,x) =
−1

4π(1− ν)r

{
[(1− ν)δij + 2r,ir,j ]

∂r

∂n
− (1− ν)(r,inj − r,jni)

}
(3)
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where r = r(ξ,x) is the distance between the source point ξ and the field point x, r = ‖x − ξ‖, and the derivatives
r,i = ∂r/∂xi. G and ν are the shear modulus and the Poisson’s ratio, respectively, of the elastic material and n is the
outward normal vector to Γ at the point x. For plane stress the Poisson’s ratio v must be replaced by ν̄ = ν/(1 + ν).

The BEM discretization consists in dividing the boundary Γ in a set of elements Γ(j), 1 ≤ j ≤ ne. The geometry and
the functions u and p are defined through interpolation of the nodal values. In the following, ξi, ui and pi will denote the
position, displacement and traction at node i, ξ(j), u(j) and p(j) will denote the vectors of nodal values for the element j.
For linear elements, the functions in Γ(j) are given by:

ξ(η) = Φ(η)ξ(j)

u(η) = Φ(η)u(j)

p(η) = Φ(η)p(j)

; Φ(η) =
(

φ1(η) 0 φ2(η) 0
0 φ1(η) 0 φ2(η)

)
; φ1(η) = (1/2)(1− η)

φ2(η) = (1/2)(1 + η) (4)

Applying Eq. (1) to the node ξi and assuming the boundary was divided in ne elements, the resulting equation is:

c(ξi)ui =
ne∑

j=1

{∫

Γ(j)
u∗(ξi,x)Φp(j) dΓ

}
−

ne∑

j=1

{∫

Γ(j)
p∗(ξi,x)Φu(j) dΓ

}
(5)

The element matrices are defined by:

ĥij =
∫

Γ(j)
p∗(ξi,x)ΦdΓ; gij =

∫

Γ(j)
u∗(ξi,x)ΦdΓ (6)

With these definitions, Eq. (5) can be written as:

c(ξi)ui +
ne∑

j=1

ĥiju(j) −
ne∑

j=1

gijp(j) = 0 (7)

The first term can be summed to the second one to obtain:

ne∑

j=1

hiju(j) −
ne∑

j=1

gijp(j) = 0 (8)

where hij was defined implicitly. Applying Eq. (8) to all the nodes, it results in the BEM system of equations which can
be written as:

H(ξ)u−G(ξ)p = 0 (9)

where the vectors ξ, u and p define the position, displacement and tractions on all the nodes of the boundary.

2.1 Stresses on the boundary

Here, the stresses are evaluated only on the boundary of the structure. That can be done expressing displacements and
tractions on the element in local coordinates and employing Hooke’s law for determining the components of the stress
tensor. Employing the local coordinates shown by Fig. 2, the strain component ε̄11 can be obtained as (Brebbia et al.,
1984):

ε̄11 =
∂ū1

∂x̄1
(10)

where, the derivative is applied to Eq. (4) that define the displacements on the boundary. For plane strain problems the
required three components of the stress tensor are given by (Brebbia et al., 1984):

σ̄11 =
1

1− ν
(νσ̄22 + 2Gε̄11); σ̄12 = p̄1; σ̄22 = p̄2 (11)

The same formulas are valid for plane stress if ν is replaced by ν̄.
The von Mises stress σM on the element can be calculated employing Eq. (12) where the component σ̄33 must be

taken σ̄33 = ν(σ̄11 + σ̄22) for plane strain and zero for the case of plane stress.

σM =
√

σ̄2
11 + σ̄2

22 + σ̄2
33 − σ̄11σ̄22 − σ̄11σ̄33 − σ̄22σ̄33 + 3σ̄12 (12)
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Figure 2. Local coordinate system at the stress point.

3. THREE MODELS FOR SHAPE OPTIMIZATION

3.1 Model 1 - Compliance optimization

The first model considered here is the largely employed model in topology optimization that consists in minimizing
the compliance of the structure subject to a constraint in the volume. The following optimization problem is solved:

minimize c(u,p)
subject to: h(ξ(q),u,p) = 0

ui = ūi i ∈ Iu
pi = p̄i i ∈ Ip
v(ξ(q)) ≤ v0

(13)

Here, q is the vector of the variables that define the geometry of the boundary. In order to define its geometry, the
well known B-Spline curves are used (Samareh, 1999; Braibant and Fleury, 1984), these curves are represented in Eq.
(13) by the linear function ξ(q) that gives the nodal coordinates of a mesh with respect to the spline parameters q.
Vectors u and p define the displacements and stresses on the boundary. The compliance function c can be defined
as: c(u,p) =

∫
Γ
u(x)T p(x) dΓ. The function v represents the volume of the body which must be less than the positive

parameter v0. Function h is defined as: h(ξ(q),u,p) = H(ξ(q))u−G(ξ(q))p. This function represents the equilibrium
and compatibility equations derived from the integral equation described in Section 2.. Vectors ū and p̄ and the sets of
indices Iu and Ip define the boundary conditions for the elasticity problem.

In reference (Canelas et al., 2007) the partial separability property for the performance functions c, h, and v was
proven. This property makes possible to code very efficient procedures for the computation of the function derivatives
required by the optimization algorithm.

3.2 Model 2 - Minimization of the maximal von Mises stress

This model consists in minimizing the maximal von Mises stress on the boundary of the structure considering a
constraint in the total volume. In order to avoid non-differentiable functions, an auxiliary variable z is employed and the
problem is formulated as:

minimize z
subject to: h(ξ(q),u,p) = 0

ui = ūi i ∈ Iu
pi = p̄i i ∈ Ip
z ≥ σM

j (u,p) j ∈ IM

v(ξ(q)) ≤ v0

(14)

where σM
j represent the von Mises stress at element j which, in this SAND formulation, depends on vectors u and p

only. The set IM is the set of points where the von Mises stress is considered. It is defined as a subset of the nodes of the
employed mesh (It can contain all the nodes of the mesh).

As shown by Section 2., the von Mises stresses on element j depend only on the variables related to this element, then,
each inequality constraint considering the von Mises stress depends on variables ξ(j), u(j), p(j) and z. Then, the partial
separability property of these constraints is straightforward.
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3.3 Model 3 - Mean value optimization of the von Mises stress

This model consists in minimizing the integral of the square of the difference of the actual von Mises stress and a
reference value as proposed by Herskovits et al. (1996). It also considers a constraint in the volume. Then, the shape
optimization problem can be expressed as:

minimize f(ξ(q),u,p) =
∫
Γ

(σM (x)− σR)2 dΓ
subject to: h(ξ(q),u,p) = 0

ui = ūi i ∈ Iu
pi = p̄i i ∈ Ip
v(ξ(q)) ≤ v0

(15)

In Eq. (15) the function f depends on variable q through the domain Γ of integration, and σR is a reference value defined
a priori. It can be an admissible value of the von Mises stress for the employed material.

Function f has also the partial separability property. This can easily seen expressing f as a sum of ne integrals over
the elements. Each integral depends only on variables ξ(j), u(j) and p(j).

4. EXAMPLES

This section presents results for three examples of plane stress shape optimization problems. The three described
models were employed for each example. The feasible interior point algorithm for nonlinear optimization described in
(Canelas et al., 2007) was employed here for finding the optimal solution. A linear elastic material with Young’s modulus
E = 1.0 N/m2 and Poisson’s ratio ν = 0.3 was used in all the examples.

The first example consists of looking for the optimal shape of a hole in a plate as is depicted by Fig. 3. The measures
of Fig. 3 as the ones of Figs. 5 and 9 are in meters. The values of the applied tractions are: P1 = 1.5 N/m and P2 = 1.0
N/m. The three models for shape optimization give, in this case, similar results. Figure 4 shows the von Mises stresses
obtained with Model 1 for one quarter of the plate. The second example is shown by Fig. 5. There, the fillet that is looked
for is drawn in dashed lines. The entire fillet must be located between the vertical dash-dot lines. The value of the applied
traction is P = 1.0 N/m. The obtained results are shown for a half of the fillet by Figs. 6, 7 and 8 for the three employed
models. The third example is depicted by Fig. 9. In this example the geometry of a plane frame is looked for. Points A,
B, C and D of Fig. 9 are fixed and points E and F can move horizontally. The obtained results are shown for a half of the
frame by Figs. 10, 11 and 12.

The parameters of the models and the results of the final area of the structure and maximal value of the von Mises
stress are shown by Table 1. The reference value σR of Model 3 was chosen equal to 3.0 N/m2 for the plate which is an
intermediate value between the maximal von Mises stresses obtained for models 1 and 2. For the fillet and the frame it
was chosen equal to the applied tractions.

The main conclusions about the results are: 1) Model 1 worked well for the plate but presented solutions with high von
Mises stresses for the fillet and the frame. That seems to be due to the constraints imposed to the optimal shape: the fillet
has to be between the vertical dash-dot lines of Fig. 5 and the frame has points A and B of Fig. 9 fixed. This model always
made use of all the available material as is shown by Table 1 and put the material where the higher stresses were. That
reduces the compliance for these examples but is not the best strategy for reducing the von Mises stresses. For example,
Model 2 did not employ all the available material for the fillet, i.e., the area constraint is not active at the solution. For
the frame, Model 1 put the material around point A of Fig. 9, that reduces the compliance significantly but at the same
time increases the von Mises stress at this point. The best strategy for this example, followed by Model 2, is to put the
material on the opposite side, i.e., around point E of Fig. 9 where the smaller von Mises stresses are. That reduces the
stresses effectively around point A. 2) Model 2 presented the best solutions for all the examples in terms of maximal von
Mises stress. The main disadvantage of this model is that it is much more time consuming than the other models. That
is mainly due to the large number of inequality constraints related to the von Mises stresses. 3) Model 3 worked better
than Model 1, it presented good solutions for all the examples. Compared with Model 2 it presented higher maximal von
Mises stresses because it did not reduce the stress concentration completely on the right of the fillet and did not make use
of all the material in the case of the frame. However, it could find these relatively good solutions being much less time
consuming than Model 2.
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Figure 3. Optimization of a plate with a hole.
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Figure 4. Von Mises stresses in the plate - Model 1.

Figure 5. Optimization of a Fillet.
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Figure 6. Von Mises stresses in the fillet - Model 1.
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Figure 7. Von Mises stresses in the fillet - Model 2.
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Figure 8. Von Mises stresses in the fillet - Model 3.

Figure 9. Optimization of a plane frame.
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Figure 10. Von Mises stresses in the frame - Model 1.
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Figure 11. Von Mises stresses in the frame - Model 2.
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Figure 12. Von Mises stresses in the frame - Model 3.
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Table 1. Parameters and obtained values for the presented examples.

Example v0 (m2) σR (N/m2) Final area (m2) σM
max (N/m2)

Plate - Model 1 3.60 - 3.600 3.16
Plate - Model 2 3.60 - 3.600 2.83
Plate - Model 3 3.60 3.0 3.427 3.02
Fillet - Model 1 0.58 - 0.580 2.97
Fillet - Model 2 0.58 - 0.559 1.15
Fillet - Model 3 0.58 1.0 0.578 1.83
Frame - Model 1 0.70 - 0.700 38.92
Frame - Model 2 0.70 - 0.700 1.70
Frame - Model 3 0.70 1.0 0.671 2.26

5. CONCLUSIONS

This work extend the application of the shape optimization method proposed in (Canelas et al., 2007) to models
considering performance functions related to the von Mises stresses present on the boundary of the structure. In particular,
it was shown that these performance functions have the partial separability property required for efficient evaluation of
the function derivatives. Three models for shape optimization were tested: Model 1 minimizes the compliance of the
structure subject to a constraint on the volume, Model 2 minimizes the maximal von Mises stress on the boundary and
Model 3 minimizes the mean value on the boundary of the square of the von Mises stress minus a reference value. It was
shown that Model 1 can present solutions with high von Mises stresses if constraints on the shape are imposed. Model 2
presented the best results in terms of the maximal von Mises stress but is, unfortunately, much more time consuming than
the other models. Model 3 presented relatively good solutions for the studied examples being much less time consuming
than Model 2.
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