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Abstract. The dual boundary element formulation using the tangential differential operator in the boundary integral
equation (BIE) for tractions was study in [1] and a good accuracy of the obtained results with expected values of the
literature was shown even considering the reduction of the order of the singularity due to the use of the operator. The
collocation point position is analyzed in the present study for dual formulations with the strong singularity in the
traction BIE as well asthat using the tangential differential operator. |soparametric linear elements are employed with
same expressions in shape functions for conformal and non-conformal interpolations. Conformal interpolations are
applied on the crack surface and the obtained results are compared with solutions available from the literature.

Keywords: Tangential Differential Operator, Dual Boundary Element Method, Stress Intensity Factor.
1. INTRODUCTION

The presented study began when the implementatiesepted in [Portela, Aliabadi and Rooke (1992)k wa
revisited in [Almeida and Palermo (2004)] with gharpose to apply conformal interpolations alongdheck surface.
Portella et alli employed non-conformal interpatat along the crack surface using isoparametridngtia elements
and collocation points positioned at the elemerdeso The strategy in [Almeida and Palermo (2004gdusame
expressions for shape functions in conformal and-cunformal interpolations, collocations pointsfd to the
interior of the elements and nodal parameters fizedhe ends of boundary elements. The obtainedtsewith
guadratic and linear elements had a good agreemiinthose presented in the literature when therival position §)
of the collocation point wag'=+0.67 in the range (-1, 1). The next step was thmduction of the tangential
differential operator (TDO) in the traction BIE teduce the order of the strong singularity. Thenkkpf the integral
containing the TDO employs displacements derivatisad several studies in the literature introducether shape
function to map the displacements derivatives. $hape function employed to approximate displacesnent the
elements was differentiated in [Palermo et all @00The use of linear elements carried to a caondtanction for the
displacement derivative and the efficiency of TD@hwow order elements was the background purpdshe last
paper.

Different positions for collocation points on opfieslements at the crack surfaces are studidakiptesent paper.
The nodes of elements placed along one face otithek are the positions for a set of collocatiomntsowhereas
internal points of elements along the opposite faeee the positions for another set of collocatumints. A short
explanation on the basic steps to obtain the duahtdbary element method and the TDO will be presenéxt.

The differentiation of the kernels of integralgiie displacement BIE to obtain one for stresse®ase the order of
kernel singularities and require special treatnodnimproper integrals when the integrations ardqrered. The use of
the tangential differential operator (TDO) in Keltype fundamental solutions reduces the stronguanity in the BIE
for stresses. The BIE for the gradient at an irlepoint x is next written using the differentiatiin terms of field
variables:
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Ui (x, y) and T (x, y) are the displacement and the traction, @epely, in the direction j at the boundary pagnt
due to a singular load in the direction i at théamation point x, according to the Kelvin solutifor two-dimensional
problems. |fy) and {(y) are the displacement and the traction at tile fpoint, respectively.

The first and the second integrals of eq. (1) egilar for internal points and exhibit singulastief order 1/ and
1/r, respectively, when the field point approactiescollocation point. The introduction of the T® the first integral
of the right member of eq. (1) reduces the ordehefstrong singularity (. After some algebraic manipulation and
employing properties of Kelvin type fundamentaluians, the TDO is obtained from integration bytpgBonnet
(1999), Palermo et all (2006)] and the BIE for ¢nadient at an internal point x with TDO is given b
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Dy( ) is the tangential differential operator, whitds the following definition:
Drns U ()] = N (¥) 1 6.(¥) = 1 ()} m(¥) 3)

The integrals of eq. (2) are regular for internalnts and exhibit singularities of order 1/r whdw ffield point
approaches the collocation point. The BIE for striesobtained from eq. (1) or eq. (2) using the lkéotensor and the
symmetry property of Jn, (X, y). The limiting form of the stress BIE at internal point when it is letb a point on the
boundary defines the BIE for stresses at a boungaingt, which has the following expression at tlwnp X’ on a
smooth boundary:
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Caxim Is the Hooke tensor for isotropic mediais the Poisson ratio andis equal to the shear moduldg.is the
Kronecker delta

It is important to note on the continuity requiramhér the derivative of the displacement functarihe collocation
point x". The traction BIE is obtained from eq. ¢4)(5) when the stress tensor at the boundaryt gbia multiplied by
direction cosines of the outward normal at thisnpdn’;). The corresponding traction BIEs from eq. (4) &pare
given by:
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2. THE DUAL BOUNDARY INTEGRAL EQUATIONS

The boundary integral formulation is degenerated structure containing a mathematically sharpkcthe to the
coincidence of the two crack surfaces. The sameng&@ position of collocation points positioned each face of the
crack surface is the main challenge to presenbtlimdary element method directly. Several strasegie shown in the
literature to treat this problem like partitionitige domain into multi-domains, the use of cracke@ig functions, the
displacement discontinuity technique and the deaindary element method (DBEM). The DBEM employsrale
domain formulation to treat general mixed-mode knamblems by using the displacement BIE appliedne of the
crack surfaces and the traction equation to therotkithough the integration path is the same fincident points on
the crack surfaces, the respective boundary integreations are now distinct. The collocation paieeded to perform
the traction boundary integral equation and thategyy used to treat improper integrals are thendistdeatures of the
formulation. The displacement BIE used in the DBElE the following expression for the collocatiorinb@mn a
smooth boundary:
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The continuity requirements for each BIE have ta#isfied at the collocation point position. Thinuity of the
displacement function at x’, required for the dé&sm@ment BIE, is satisfied for collocation pointgtsl to the interior
of the boundary element or placed at the endseoetément in case of conformal interpolations. Thetinuity of the
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displacement derivative at x’, required for thectian BIE, is satisfied for collocation points pii@ned at the interior of
the element for usual shape functions [Bonnet (J]J999

The integrals of eq. (9) exhibit singularities atler 1/r and In(1/r). The improper integral regsitae use of the
Cauchy principal value sense and the applicatioth@ffirst order finite part results in an analgtiexpression for the
singular term and a numerical integration using@agiss-Legendre scheme for the regular term. Censglthe local
parametric co-ordinaté defined in the range (-1, 1), the collocation pgiosition§’ [Portela, Aliabadi and Rooke
(1992); Almeida and Palermo (2004)] and displacdrmemponents;iapproximated in the local co-ordinate system in
terms of nodal valuesiuthe first order finite-part integral expressedtia local co-ordinat& is:
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The regular functionf(€) is the product of the fundamental solution, the shapetifan, the Jacobian of the co-
ordinate transformation and the ter&g(). The first integral of the right hand side of eq. (iDjegular and the second
can be integrated analytically [Portela, Aliabadi and Rooke (1.992)

The order of singularities in the traction BIE using T(¥Q. 8) is 1/r in both kernels of the boundary integrée
improper integrals are similar to that shown in eq. (10)ragdire the use of the first order finite part.

The integrals of eq. (7) exhibit singularities of orderatid 1/f. The strong singularity (£rrequires the use of the
Cauchy and the Hadamard principal-value integral. The applicafithe second order finite part results in analytical
expressions for singular terms and a numerical integratiog tlee Gauss-Legendre scheme for the regular term. The
term containing the strong singularity written in the lazadrdinate, has the following expression:
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The regular function §;(€) is the product of the fundamental solution, the Hoekesdr, the shape function, the
Jacobian of the co-ordinate transformation, the direction cosifigse outward normal and the ter@&&)>2 The
integral of the right-hand side of eq. (11) can be transfd with the aid of the first term of Taylor's expamsbf the
function g‘kij around the collocation poigt.
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g ‘l)kij (&) is the first derivative of §; at&’. The first integral of the right hand side of eq. (I2)egular whereas the
second and the third require analytical expressions. [Portéddnadli and Rooke (1992)].

3. BOUNDARY ELEMENTS AND COLLOCATION POINTS

The present study employed isoparametric linear boundary efen@mnformal and non-conformal interpolations
employed the same shape functions with nodal parameterfopeditat the ends of the elements. The nodes of the
elements were the positions of collocation points in aondb interpolations with displacement BIEs whereas non-
conformal interpolations employed internal points of thenelgt. On the other hand, the internal points of the elements
were the positions of collocation points in conformal nan-conformal interpolations with traction BIEs. Three
positions of internal collocation point&’Yin the range (-1, 1) were consideréd:+0.5;§'=+0.67 and'=+0.75.

The position of collocation points in conformal interpaatwith displacement BIEs was the main changing of this
study with reference to former papers [Almeida and Palermd4j2@Palermo et alli (2006)]. The crack analyses in
those papers have always employed internal positions farcetitbn points, which were according to positions used in
[Portela, Aliabadi and Rooke (1992)] with non-conformateipolations along the crack. This study recovers the
meaning of the BEM formulation with the displacement BABjch does not require internal points for collocation
points in conformal interpolations, and shows that cracdyais using DBEM only requires the basic continuity
conditions for the displacement and the traction BIE.

The traction BIE employed collocation points positioned rdérnal points of the elements as the continuity
condition requires, which were not necessarily the same grusitised on the opposite surface for collocation points of
the displacement BIE. The diagonal terms were functions edfctilocation point position and the shape function
without using the rigid body motion.



The present analysis considered two computer codes: a codethsimgll-known traction BIE with the strong
singularity and another code with TDO in the traction Blke present study used the derivatives of the adopted shape
function for displacements (linear functions) in the tracgguation as required for the TDO and the tangent deiévativ
has yielded to constant values with opposite signs.

A revision in eq. (8) was required due to the use of camformal interpolations. The eq. (8) is rewritten next t
include the effect of the discontinuity in case of a mesh digcontinuity in displacements at one point [Palermol et al
(2006)]:

%tk (x') = ni (X )Cax mjaibj (X, ¥) Dy [Uj (Y)]dr(Y) — Ny (X')I Tiak (X' Y)tj (y)dr(y)+...
r r (13)
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The term between brackets of eq. (13) includes the effect afrtthe from the integration by parts used to obtain
TDO and is a multiplier of displacements’ @nd uj, which are at the backward and at the forward side of the
discontinuity respectively. It is important to note that apd uj have the same geometrical coordinates according to
the strategy for non-conformal interpolation in thisdst

4. STRESS INTENSITY FACTOR EVALUATION

The analysis of stresses in the crack neighborhood did arsiesesof stress intensity factors using the near-tip
displacement extrapolation, as explained in [Portela, Atlatand Rooke (1992), Almeida and Palermo (2004)].
Considering a polar coordinate systenBjrcentered at the crack tip, such that the crack surfaces couldifeddsith
0 = z1t The displacement field on the crack surface has the followipgessions considering the first term of
William’s expansion:

1
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The stress intensity factors for deformation madlesd | are Kll and Kl, respectively; the parameatds equal to
3-4n; n is equal toy for plane strain problems and equabt(l+v) for plane stress problems The near-tip displaceéme
extrapolation works with eq. (14) and (15) to obttie stress intensity factors when the displacésrene known. The
situation is shown in Figure 1, where opposite elets share the crack tip at nodes B and C. TheHavfghe linear
element is equal to I. The expressions for thesstir@ensity factors are given by:

Vs
KO = (up -qu)K‘il,\/E_ T (16)
T
KDE = (uP —UF)KLH-\/E- = (17)
Dé B,
+ 5
E C
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Figure 1: Crack tip at points B dhd
5. NUMERICAL EXAMPLES

The obtained results with both computer codes (wneg the well-known DBEM formulation, eq. (7) a8}, and
other using TDO, eqg. (8) and (9)) did not preseghicant differences as noted in [Palermo et(2D06)]. The
differences in the obtained results from each dwalee disappeared when the round off was introdtezeadatch the
precision of this paper. Nevertheless, differergitoans of internal collocation points carried tiffetent results. The
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traction BIEs and double nodes required the usetefal position for collocation points. Three easvere studied and
a conformal interpolation was applied along theckrsurfaces with double nodes introduced at theersrand at the
crack tips.

A rectangular plate containing a single horizorgdfe crack shown in Figure 2a used a mesh withinéarl
elements plus 8 elements on each crack surfacB.@4. The crack length is a, the plate width ismd the height is
2h. A uniform traction in the height direction wagmmetrically applied at the ends. Results obtafbedhe ratio h/w
equals to 0.5 are shown in Table 1. Three ratiesvegre considered: 0.2, 0.4, and 0.6. The stréessity factor was
obtained with eq. (16).
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b) Certaht Crack §=45°). ¢) Central Kinked Crack.

a) Single edge crack.

Figure 2: Analyzed cracks.

Table 1: Results for the single edge crack withigar elementsK, /(t./77a)

alw Civilek and Erdogan &'=0.5 £'=0.67 £'=0.75
(1982)

0.2 1.488 1.637 1.642 1.418

0.4 2.324 2.601 2.328 2.221

0.6 4.152 4.759 4.209 4513

A rectangular plate containing a central slant kistwown in Figure 2b had a mesh with 48 linear eleisiplus 12
elements on each crack surface (72 B.E.). The desgkh is 2a, the plate width is 2w and the heigt#h. A uniform
traction in the height direction was symmetricallyplied at the ends. Results obtained for the hfi@ equal to 2 are
shown in Table 2. Three a/w ratios were conside@e?l: 0.4, and 0.6. The stress intensity factorevedtained with
eg. (16) and eq. (17).

Table 2. Results with 72 linear elements.

alw Mode I: K, /(t,/77) Mode II: K,, /(t,/77)
Murakami £=0.5 §&=0.67 &=0.75 Murakami &=0.9 &=0.671 &=0.75
(1987) (1987)
0.2 0.518 0.559 0.512 0.478 0.507 0.546 0.501 0.468
0.4 0.572 0.62( 0.566 0.525 0.529 0.570 0.522 0.486
0.6 0.661 0.730 0.658 0.605 0.567 0.610 0.557 0.518

A rectangular plate containing an internal kinkealck shown in Figure 2c had a mesh with 96 linéements plus
10 elements on each horizontal crack surface aetbi®ents on each inclined crack surface (132 B@ng of the
segments of the crack is horizontal with length lalevthe other segment makes an angle of 45 degvéhsthe
horizontal and has length b; the horizontal prajecof the total crack is given by 2c=b+2}/2. The kink of the crack
is at the center of the plate, the plate widthvisald the height is 2h. Three a/b ratios were camnsed: 0.2, 0.4 and 0.6.
The results obtained for b/w equal to 0.1 are showhables 3 and 4. Stress intensity factors wértained with eq.
(16) and eq. (17).



Table 3. Results at P with 132 linear elements.

alb Mode I: K, /(t,/7rc) Mode II: K, /(t/7rc)
Murakami|  £'=0.5 £=0.671 &=0.75 Murakami|  £'=0.5 £=0.67 £=0.75
(1987) (1987)
0.2| 0.995 1.074 0.988 0.923 0.028 0.032| 0.028 0.024
0.4/ 0.990 1.068 0.984 0.921 0.033 0.038| 0.035 0.033
0.6] 0.986 1.066 0.982 0.918 0.030 0.035| 0.032 0.031
Table 4. Results at Q with 132 linear elements.
alb Mode I: K, /(ty/7rc) Mode II: K, /(ty/7rc)
Murakami  &=0.5 £=0.67 £=0.75 Murakamii  &'=0.5 £'=0.67 £'=0.75
(1987) (1987)
0.2] 0.598 0.708 0.630 0.558 0.557 0.661 0.591 0.537
04| 0574 0.671 0.603 0.546 0.607 0.711| 0.635 0.571
0.6] 0.568 0.661 0.595 0.539 0.627 0.734| 0.655 0.588

The obtained values closer to the literature wedddd in Tables 1 to 4. The best internal posi{ghin the range
(-1, 1) for the collocation point wals=+0.67. The adopted meshes were the similar to teagdoyed in [Portela,
Aliabadi and Rooke (1992)], [Almeida and Palerm@®02)] and [Palermo et all (2006)]. The obtainedifms is
according to the best position obtained in [Almeéshal Palermo (2004) in spite of the changing ofgbsition of the
collocation point in conformal interpolations whitre displacement BIE was applied. It is importanttention on the
behavior of the obtained results with the tractBi& using the TDO, which had similar values to #nabtained with
the strong singularity even when the position efebllocation point was changed.

6. CONCLUSION

The numerical implementation of the present papgyleyed the displacement BIE in the same way ctisrersed
in the boundary element method, collocation poiatsitioned at nodes in conformal interpolations.tamother hand,
interior positions in case of double nodes or isecaf the traction BIE are the basic proceduresatisfy the continuity
requirements. These features simplify the DBEM withreduced number of internal collocation pointsl dhe
possibility to apply conformal interpolation alotige crack surface. It is important to note thattthetion BIE was the
main equation to define the collocation point gositand it was independent of the introductiontef TDO, as shown
from the analysis of the best position. Furthermdhés study strongly suggests the use of the T@ t the
simplifications to treat the singularity (the tneeint of the improper integrals only used the fosder finite part).
Finally, the use of low order elements did not figrtéie precision of the DBEM.

The stress intensity factor were obtained by nipadisplacement extrapolation and it is importamnbte that better
values for stress intensity factors can be obtauméd J-integral technique. The benefit of the t&gral technique was
shown in [Portela, Aliabadi and Rooke (1992)].
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