
Procedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

ANALYSIS OF THIN PLATE SUBJECTED TO AN UNIFORM LOAD AND
UNILATERAL CONTACT

Ivan Moura Belo, ivanbelo@gmail.com
Marcelo Krajnc Alves, krajnc@emc.ufsc.br
Universidade Federal de Santa Catarina - UFSC - Campus Universitário Trindade, Dep. Engenharia Mecânica - Bloco A, GMAC - Piso
2, CEP:88040-900, Florianópolis - SC

Marcelo Maldaner, maldaner.eng@gmail.com
Universidade Tecnológica Federal do Paraná, Dep. Engenharia Mecânica, Av. Sete de Setembro, 3165 - Rebouças, CEP: 80.230-901,
Curitiba - PR

Abstract. The problem of a thin plate subjected to an uniform load and unilateral contact is developed. The formulation is
based on a Classical Laminated Plate Theory (CLPT), known asthe Kirchhoff Model, and on the Equivalent Single-Layer
Theory assumptions. The objective of this paper is to delvelop an approximate solution to the displacement which is
treated as a nonlinear discretized problem solved by Newton’s Method. Hence, in order to solve the variational inequality
problem the Exterior Penalty Method is considered. Also, anapproximate solution to this problem can be obtained by
applying Ritz method. In this case, the approximation finitedimensional space is defined. It is demonstrated through
this solution that the discrete problem is nonlinear since,for the given distributed loadf(x), we are not able a priori to
know if the string will be constrained by the support or not. Therefore, to define the contact area in the contact problem,
the load is applied following an incremental technique, based on the response of displacements and forces for the load
applied at a previous step. The problem is implemented into aMatlab R© code. Finally, to validate this procedure, results
are shown considering the unilateral contact problem related to the thin plate clamped in two edges with a rigid obstacle.

Keywords: Unilateral Contact Problems, Exterior Penalty Method, Newton’s Method, Kirchhoff Plate Model

1. INTRODUCTION

In this work, the Ritz Method is applied first, to plate bending considering small strains and second, to the unilateral
contact analysis, without friction, between a plate and a rigid obstacle. The Kirchhoff’s model, which is a refined theory
that holds for thin plates, is used. The algorithm and the procudure used to numerical implementation are described.

2. PRELIMINARIES

2.1 Kirchhoff Plate Theory

2.1.1 Kinematics Assumptions

In this paper, the analyses of plates is based on Equivalent single-layer theory (ESL) – (Reddy, 2004), which is derived
from 3D elasticity model by suitable assumptions. Thus, theproblem is reduced to a 2D. The Kirchhoff Plate Theory is
the simplest ESL plate model and it is based on the following displacement field:

u(x, y, z, t) = u0(x, y, t)− z
∂w0

∂x

v(x, y, z, t) = v0(x, y, t)− z
∂w0

∂y

w(x, y, z, t) = w0(x, y, t)

(1)

It is assumed that the Kirchhoff Hypothesis holds: (a) straight lines perpendicular to the midsurface before deformation
remain straight after deformation; (b) the transverse normals are inextensible and (c) the transverse normals rotate such
that they remain perpendicular to the midsurface after deformation.

2.1.2 Constutive Equations

In the classical plate theory, all three transverse strain components are zero by definition, i.e,εzz = εxz = εyz = 0.
For assumed displacement fiel in Eq. (1), the strains reducesto
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For generalized plane stress, the strian-stress relationsis given by:

σxx =
E

(1− ν2)
(εxx + νεyy)

σyy =
E

(1− ν2)
(εyy + νεxx)

σxy = Gγxy

(3)

where the constantsE andν represent the Young modulus and the Poisson ratio, respectively.

2.2 Variational Method

The virtual work and variational principles can be used to obtain governing differential equations and associated
boundary conditions, (Deus, 2004). So, a special case of theprinciple of virtual displacements that deals with linear as
well as nonlinear elastic bodies is known as the principle ofminimum total potencial energy and it is applied to solve the
variational problem. Letu0 be the solution to the problem. Then,

π(u0) ≤ π(u) ∀u ∈ K (4)

thus,u0 minimizeπ(u), where:

π(u) =
1

2

∫

Ω

Dε · ε dΩ−

∫

Ω

b · u dΩ−

∫

ΓT

t · u dΓT (5)

Notice that,

ε =
1

2

(

∇u +∇uT
)

σ = D · ε
(6)

replacing Eq. (6) into Eq. (5), the first integral is equal to

π1(u) =
1

2

∫

Ω

Dε · ε dΩ =
1

2

∫

Ω

(σxxεxx + σyyεyy + σxyγxy) dΩ (7)

substituting the relations of Eq. (3) implies that,

π1(u) =
1

2

∫

Ω

[

E

1− ν2
(ε2

xx + νεxxεyy) +
E

1− ν2
(ε2

yy + νεxxεyy) + Gγ2
xy

]

dΩ (8)

thus,

π1(u) =
1

2

∫

Ω

[

E

1− ν2
(ε2

xx + ε2
yy + 2νεxxεyy) + Gγ2

xy

]

dΩ (9)

Denoting,

A = ε2
xx + ε2

yy + 2νεxxεyy

B = γ2
xy

(10)

and substituting the relations of Eq. (1) inA andB gives,

A =
[

(u,x − zw,xx)2 + (v,y − zw,yy)2 + 2ν(u,x − zw,xx)(v,y − zw,yy)
]

B = [(u,y + v,x)− 2zw,xy]
2

(11)

hence,

π1(u) =
1

2

∫

Ω

[

E

1− ν2
(A) + G(B)

]

dΩ (12)

Let Ω = Λ ×
[

−h
2
, h

2

]

, whereh is the thickness andΛ is the area of the plate. Integrating trough the thickness
(

z ∈
[

−h
2
, h

2

])

, i.e. dz,

∫ h/2

−h/2

1 dz = h

∫ h/2

−h/2

z dz = 0

∫ h/2

−h/2

z2 dz =
h3

12
(13)
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the functional is given by,

π1(u) =
1

2

∫

Λ

{

Eh

1− ν2
(A1) +

Eh3

12(1− ν2)
(B1) + Gh(u,y + v,x)2 −

4Gh3

12
w2

,xy

}

dΛ (14)

with,

A1 =
[

u2
,x + v2

,y + 2νu,xv,y

]

B1 =
[

w2
,xx + w2

,yy + 2νw,xxw,yy

] (15)

Defining,

D =
Eh3

12(1− ν2)
G =

E

2(1 + ν)
(16)

this implies that,

4Gh3

12
= 2D(1− ν) (17)

so,

Eh

(1− ν2)
2(1− ν)u,xv,y = 4Ghu,xv,y (18)

Substituting all relations and considering the static bending in the absence of in-plane forces, the functional takes the
form,

π1(w) =
1

2

∫

Λ

D
{

(w,xx + w,yy)2 + 2(1− ν)[w2
,xy − w,xxw,yy]

}

dΛ (19)

Now, supposing that the plate is subjected to a uniform loadq, the second part of the functional reduces to:

π2(w) =

∫

Ω

b · u dΩ +

∫

ΓT

t · u dΓT =

∫

Λ

q · w dΛ (20)

Therefore, the problem is reduces to determinatew(x, y) that minimize the following functional:

π(w) =
1

2

∫

Λ

D

{

(

∂2w

∂x2
+

∂2w

∂y2

)2

+ 2(1 + ν)

[

(

∂2w

∂x∂y

)2

−
∂2w

∂x2

∂2w

∂y2

]}

dΛ−

∫

Λ

q · w dΛ (21)

2.3 Exterior Penalty Method

Consider again the string problem with an obstacle. The problem consists in the minimization of the functionalπ(w)
subjected to the constraintw ∈ K, i.e., in the determination ofu ∈ K such that

π(u) = minπ(w), ∀w ∈ K (22)

whereK = {w ∈W |w − g ≤ 0 at(x, y) ∈ (0, L)× (0, L)}.
With the introduction of the indicator of the convex setK, defined as

IK(w) =

{

0, if w ∈ K

∞, if w /∈ K
(23)

The application of the exterior penalty method determines the solution of Eq. (22) by solving a sequence of uncon-
strained problems, formulated as: Findu ∈ K that

u = lim
ǫ→0

uǫ (24)

whereuǫ is the solution of: Givenǫ > 0, determineuǫ ∈W solution of:

uǫ = argmin
w∈W

πǫ(w) (25)

in which

πǫ(w) = π(w) +
1

2ǫ
P (w) (26)

The functionalP (w) must satisfy the following conditions:
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1. P (w) = 0, if w ∈W

2. P (w) ≥ 0 andP (w)→∞, for ‖w‖ → ∞, w /∈ K

Differents forms to construction of the functionalP (w) are presented in the literature. In this paper, will be considered
the functionals differentiables, representing the restriction of the unilateral contact, so the contact in one point is given by
P (w) = [〈w(x∗, y∗)− g〉

+
]2. Where,

〈w − g〉
+

=

{

w − g, if w − g > 0
0, if w − g ≤ 0

Consequently, the extended functional considered just in one point of contact yields:

πǫ(w) =
1

2

∫

Λ

D

{

(

∂2w

∂x2
+

∂2w

∂y2

)2

+ 2(1 + ν)

[

(

∂2w

∂x∂y

)2

−
∂2w

∂x2

∂2w

∂y2

]}

dΛ

−

∫

Λ

q · w dΛ +
1

2ǫ
[〈w(x∗, y∗)− g〉

+
]2

(27)

2.4 Approximate Numerical Solution – The Ritz Method

An approximate solution to this problem can be obtained by applying Ritz method, (Glowinski, 1984). In this case, it
is defined by

waprox(x, y) =
N

∑

j=1

ajφj(x, y) (28)

whereφj are linear independent function given byφj(x, y) = x1+my1+n with m,n = 1, ..., N .
Thus, replacing Eq.( 28) into Eq.( 27) yields,

πǫ(w) =
1

2

∫

Λ

D
{

[A3]
2 + 2(1 + ν)[B3]

}

dΛ−

∫

Λ

q · [C3] dΛ +
1

2ǫ
[D3]

2 (29)

where

A3 =

N
∑

j=1

aj
∂2φj

∂x2
+

N
∑

j=1

aj
∂2φj

∂y2

B3 =





N
∑

j=1

aj
∂2φj

∂x∂y





2

+





N
∑

j=1

aj
∂2φj

∂x2









N
∑

j=1

aj
∂2φj

∂y2





C3 =
N

∑

j=1

ajφj(x, y)

D3 =





N
∑

j=1

ajφj(x
∗, y∗)− g





+

(30)

At this point, the problem is to finda ∈ R
N thata = argmin[πǫ(a)] and the discretized functional can be written as,

πǫ(a) = π(a) +
1

2ǫ
P (a) (31)

From the necessary optimality criteria fora ∈ R
N to be the minimun ofπǫ(a):

∂πN
ǫ

∂ai

∣

∣

∣

a
= 0 πN

ǫ : R
N → R (32)

Note that the discrete problem is nonlinear since, for the given distributed load, we are not ablea priori to know if the
plate will be constrained by the support or not.

The necessary optimality criterion establishes that

∇πǫ|a = 0 ⇒ ∇π|a +
1

2ǫ
∇P (a) = 0 (33)
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π(a) is a quadratic function ina. Also,∇π|a is given by[K1]a−F , where[K1] is a constant matrixN ×N andF is
a constant vector. So, in this case:

P (a) =







[

∑N
j=1

ajφj(x
∗, y∗)− g

]2

, if
∑N

j=1
ajφj(x

∗, y∗) ≥ g

0, if
∑N

j=1
ajφj(x

∗, y∗) ≤ g
(34)

∇P (a)|a is given by[K2(a)]a. Thus,

[K1]a +
1

ǫ
[K2(a)]a = F ⇒

[

K1 +
1

ǫ
K2(a)

]

a = F (35)

denoting

[K(a)] = K1 +
1

ǫ
K2(a) (36)

Finally, from the optimality criterion thata must satisfy the following set of nonlinear equations:

[K(a)]a = F (37)

For the solution to the set of nonlinear equations, in Eq. (37), Newton’s method is applied.

2.5 Newton’s Method

Let R(ak) = F − [K(ak)]ak the residual vector, the problem consists in finding an approximate solutionak such that
∥

∥R(ak)
∥

∥ < tol = 10−6. The algorithm may be described as:

1. initializeak, error = 1, tol =10−6 and set k = 0

2. while (error > tol) do:

• compute the corrector∆ak by solving the following linear system

[K(ak)]∆ak = −R(ak) (38)

• compute the new trial solutionak+1

ak+1 = ak + ∆ak (39)

• compute the error measure

error=
∥

∥R(ak+1)
∥

∥ (40)

• perform the update procedure

k = k + 1, ak ← ak+1 (41)

3. end while

By the way, the iterative procedure associated with Newton’s method is obtained.

3. NUMERICAL APPLICATION

3.1 Problem Analysed

Consider the unilateral contact problem related to the thinplate problem, shown in Fig. 1. The problem is a square
plate clamped in two edges, subjected to a uniform load. The mechanical properties and dimensions of the laminae are
the following: E = 210 GPa,ν = 0.3, h = 5 mm,a = 2m andb = 2m. The definition of the numbers of base functions
used in the aproximation procedure isN = 3. Also, the gap or penalty factor is∆ = 10mm.

To compare the displacements before and after the plate reach a rigid obstacle, four loads are choosen, namely:
q01

= 2.5 kN/m2, q02
= 5 kN/m2, q03

= 50 kN/m2 andq04
= 500 kN/m2. In the first case, the obstacle is not hitted. In

the second load, the plate is tangent with the rigid obstacle. The third and fourth loads reach the obstacle. The problem is
solved using an uniform mesh (20× 20).
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Figure 1. The plate subjected to an uniform load,q0, and a rigid obstacle.

The displacement plots in Fig. 2(a) through Fig. 3(b) help todemonstrate the behavior of the solutions.
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Figure 2. Transverse displacements,w.
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Figure 3. Transverse displacements,w.

The effects of the error through the loads is shown in Tab. 1. To solve the first case of the problem two iterations are
needed.

Table 1. Error evolution.

Error
Iteration q01

q02
q03

q04

1 0.534 1.068 10.681 1.068E+2
2 2.654E-13 1.824E+5 4.524E+6 4.794E+7
3 — 0.006 2.919 2.278
4 — 3.695E-9 1.548E-6 1.593E-6
5 — — 2.740E-9 1.127E-7
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4. SUMMARY AND CONCLUSIONS

This paper is concerned with the analysis of plate employingthe Ritz method. To solve the problem of the nonlin-
ear equations, the Newton’s method is employed. Also, the algorithm is described. The paper focuses on the plate’s
displacements and how it affects the good behavior of a numerical solution. Using the transparency of the continuum
mechanics, the problem of the thin plate subjected to an uniform load and unilateral contact is solved. Four cases of load
were analyzed using the model.

It can be concluded that it is advantageous to use Newton’s method to solve a set of nonlinear equations and the
MatlabR© code used is efficient.
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