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Abstract. Welding causes residual stresses in structures which may lead to buckling distortion, if they exceed the 
critical buckling stress of the structure, This paper presents a predictive distortion analysis approach for welded 
structure. 3-D thermo-mechanical welding process simulations are performed to determine the residual stress and 
deformation. The critical buckling stresses along with the buckling mode are computed through a 3-D eigenvalue 
analysis. The correctness of results is confirmed experimentally. This work clearly show that the proposed 3D analysis 
welding can predict not only the time of occurance but also the shape of buckling during welding. Also, one is able to 
see the behavior of shell after buckling. In addition, the effect of external constraint and thickness on the buckling 
behavior due to welding is also studied.  
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1. INTRODUCTION  
 

Welding, among all mechanical joining processes, has been employed at an increasing rate for its advantage in 
design flexibility, cost saving, reduced overall weight and enhanced structural performance. However, welding induces 
various types of distortion as discussed in detail by Masubuchi (1980). To study the effect of welding on structural 
efficiency, and in turn to implement various distortion mitigation techniques, a valid method for predicting welding 
induced distortion is necessary. 

Thinner section components are commonly utilized in fabricating large structures to achieve reduction in overall 
weight and more controllable manufacturing. However, for structures made of relatively thin components, welding can 
introduce significant buckling distortion which causes loss of dimensional control, structural integrity and increased 
fabrication costs due to poor fit-up between panels. A predictive analysis technique can determine the susceptibility of a 
particular design to buckling distortion.  

Welding-induced buckling of thin walled structures has been investigated in greater detail in (Murakawa et al. 
,1995, Michaleris and Debiccari, 1997, Tsai et al. ,1999). Murakawa et al. (1995) presented a methodology to determine 
the buckling behavior of plates by large elastic deformation FEA and employing inherent strain distributions. 
Mickaleris et al.(1996,1997,2003) developed a predictive buckling analysis technique for thin section panels, combining 
decoupled weld process simulations and eigenvalue buckling analysis. Phase transformation and transformation 
plasticity have also been incorporated in the analysis as recent developments showed (Oddy et al., 1990, Watt et al., 
1988).    

In this work the 3-D thermo elastic-viscoplastic finite element analysis technique is applied to evaluate welding 
induced buckling of the welded shell. The results are checked by 3-D eigenvalue simulations and experimental work.  
Moreover effects of the shell thickness and mechanical constraint are also investigated.    

   
2. MECHANICAL MODEL OF WELDING 
 

The Lagrangian description of body motion is used in the formulation of welding as a thermo-mechanical 
problem for metals. The displacement ),( tXu  and temperature ),( tXθ  in a weld joint are unknown and the initial 

position of the particle ),,( 0
3

0
2

0
1 XXX=X  and the time t  are taken as independent variables. The vector joining the 

point X  and actual position in the space ),,( 1
3

2
2

1
1 XXX=x  is the displacement vector given by xXu −= . The 

constitutive variables, i.e. the stress and strain measures used in the Lagrangian formulation are the second Piola-
Kirchoff stress tensor T  and its deviator S , as well as the Green-Lagrange total strain tensor L  and deviator E . 
  Welding is a coupled thermo-mechanical process and its mathematical model consists of two principles 
expressing thermal and mechanical equilibrium, i.e. the balance of internal energy and balance of momentum as well as 
satisfying initial and boundary conditions. The equilibrium condition for a solid is given by the following equations: 
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where JJ XN ∂∂≡∇ / , and the comma "," is the usual abbreviated notation for a gradient component. The balance of 
internal energy for a non-rigid conductor can be expressed in the form of: 
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where e is the energy density per unit mass, q  is the vector of heat flux transferred through the particle ΩX∈  , qext  is 
the heat flux supplied to the welded body through the outer surface Ω∂ , and R is heat losses through radiation. By 
considering thermal homogeneity for the welded material and after some manipulations, the indicial form of equation of 
internal energy balance could be rewritten as a function of temperature θ  (Ronda and Oliver, 1998): 
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In the above equation, Bfθ  plays the role of thermo-mechanical coupling between the mechanical and thermal 
systems. The magnitude of this term in welding is very small compared to the heat energy of arc and has a negligible 
effect on thermal history of plates (Argyris et al., 1982, Hong, et al., 1998, Sarkani et al., 2000). Due to this 
approximation, some investigators have neglected its effect.  This assumption makes the problem to be thermo-
mechanically uncoupled. Then, two separate analysis, thermal and mechanical analysis have been performed. 

   
2-1-Finite element approximation 
 

The finite element method for the fully coupled thermo-mechanical problem is based on the Ritz’s 
approximation of variational equation, i.e. the principle of virtual work and the balance of internal energy. 

The combined global finite element equation for the fully coupled thermo-mechanical problem is expressed by 
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where n
uK  is the stiffness matrix corresponding to mechanical effects, n

uθK  is the matrix which transforms thermal 

energy into mechanical one, and n
uθK  transforms mechanical energy into the thermal one. The thermal stiffness n

θK is 

the sum of stiffness matrix corresponding to conduction, the stiffness related to convection phenomena, and the 
stiffness associated with radiation effects. ( )i|uΔ   and iθΔ  are  the vector of displacement and temperature 

increments respectively, 1+n
uR   is the vector of externally applied nodal point loads, 1

1 | −
+

i
n

uF  is the vector of nodal 

point forces equivalent to the internal stresses. 1+n
θR  is the summation of vectors of nodal thermal loads correspond to 

the thermal conditions. 1
1

−
+

i
n
θF is the vector of nodal thermal loads correspond to the heat flux through the body 

surface(Ronda and Oliver, 1998) .     
The matrixes in equation (4) are taken at the current, n+1, and previous, n, time steps and current, (i), and 

previous, (i-1) iterations at the current time step.  
The nonlinear FM system of equations is solved iteratively by the Newton-Raphson scheme. 
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After neglecting the effect of Bfθ , the stiffness matrices n
uKθ becomes zero. This will happen because Bfθ  

which is equal to LT &:  plays the role of thermo-mechanical coupling between the mechanical and thermal systems. 

Then, after the uncoupled finite element equations for thermo-mechanical problem are obtained after Bfθ  is being 
omitted. 

 
2-2 –Mechanical model 
 

If transient thermal stresses produced in welding are completely elastic and no incompatible strains are formed, 
no residual stresses will remain. However, plastic strains are formed in the region around the weld. In this region, 
temperature rapidly increases and reaches near the melting point of the material. At high temperatures, yield strength of 
metals reduces. Therefore, transient thermal stresses exceed the yield point of the material, and weldment undergoes 
plastic deformation. In addition, material is at high homologous temperature in this region, and experiencing rapid 
temperature changes, could result high thermal strain rate. Thus, rate dependent effects are relatively significant. For 
these reasons, thermoelastic-viscoplastic model is used to simulate the material behavior.  

A simple set of constitutive equations for large, isotropic, visco-plastic deformations is the single-scalar 
internal variable model proposed by Anand (1989). Two basic features exist in Anand model. First, this model needs no 
explicit yield condition and no loading-unloading criterion. Second, this model employs a single scalar as an internal 
variable to represent the averaged isotropic resistance to plastic flow. The inelastic strain rate PE& for Anand model is 
defined by (Ronda and Oliver, 1998): 
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where the constitutive function Pε~  was proposed by Anand (1989). Evolution equations for the internal variable 

1z are given by [11]: 
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with the criterion number 
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where ,,,,,,,, 0 zahzmQA ξ and η are constants of Anand model and R is the Boltzman's constant. The material 
constants for Anand model, which are used in the present work, are listed in table 1. 
 

Table1. Constants of Anand's viscoplastic model for the selected material 
 

Parameter Value Unit Represent: 
Q/R 

314.8
3.175

 
KmoleKJ

moleKJ
o/

/
 

contentgasUniversal
energyActivation

 

A 1.91e7 Sec-1 Pre-exponential factor 

ξ  7 Dimension less Multiplier of stress 

m 0.23348 Dimension less Strain rate sensitivity of 
stress 

h0 1115.6 Mpa Hardening/softening constant 
z  125.1 Mpa Coefficient for deformation 

resistance saturation value 
η  .07040 Dimension less Strain rate sensitivity of 

saturation value 
a 1.3 Dimension less Strain rate sensitivity of 

hardening/softening 



2-3 Thermal model 
 

Because of the small size of melted region (weld pool), the variation of temperature through the pool has a 
negligible effect on the thermal history of the joining plates. In other words, the temperature of the welding pool is 
assumed to be uniform and taken as the melting temperature of the welded materials. Due to this assumption, in this 
work the arc power and its movement were modeled by assuming that the welded region is an isothermal melted pool 
and this pool has a constant temperature and its location discretely changes with respect to time. In this way, the length 
of each welded layer, or each welded block, is divided into a number of parts and according to the welding sequence, 
the location of the melted pool is changed with respect to time. The applied heat is then injected into the weldments in 
the moving weld pool and transferred from its boundary to the other regions by conducting through the solid materials 
and convection to the surroundings. During a short time in welding, the welded region remains red-colored and a 
portion of heat is also dissipated by radiation. In comparison to the two other modes of heat transfer, the part of the arc 
power transferred by radiation is small, so the effect of this mode of heat transfer is neglected in this study.  

Welding time in this work is calculated by dividing the welder speed obtained from the practical welding 
characteristic data over the length of welded region. The welding lag, inter-pass temperature and the temperature 
dependent thermal properties of material were also incorporated into the model (table 2). 

 
Table2: variation of material thermal and mechanical properties with temperature 

 
T(C) Thermal 

Conductivity 
k(W/m.K) 

Specific Heat 
Cp(J/kg.K) 

Coeff. of Thermal 
Expansion 

(10-6) 

Youngs Modulus 
E(Gpa) 

20 222 904 23.3 72 
50 230 930 23.6 72 

100 230 930 24 70 
150 250 965 25 67 
200 260 965 25 67 
250 272 985 25 61.5 
300 272 980 26 61.5 
350 278 1040 26 53 
400 278 1100 26 45 
450 283 1100 26 45 
500 285 1100 26 35 
550 285 1100 26 35 
600 320 1100 26 17 
650 400 1100 26 10 
700 400 1100 26 10 

 
2-4-Element birth technique 
 

If material is added to (or removed from) a system, certain elements in the model may become "existent" (or 
"nonexistent"). The element birth and death options can be used to deactivate or reactivate selected elements in such 
cases.  To achieve the "element death" effect, the program does not actually remove "killed" elements. Instead, it 
deactivates them by multiplying their stiffness (or conductivity, or other analogous quality) by a severe reduction factor. 
This factor is usually sets to a small value (order of 10E-6) but can accept other values, as well. Element loads 
associated with deactivated elements are zeroed out of the load vector. Similarly, mass, damping, specific heat and other 
such effects are set to zero for deactivated elements. The mass and energy of deactivated elements are not included in 
summations over the model. An element's strain is also set to zero as soon as that element is deactivated. 

In like manner, when elements are "born", they are not actually added to the model; they are simply 
reactivated. When an element reactivated, its stiffness, mass, element loads, etc return to their full original values. The 
weld elements in front of the weld are always kept inactive until the front border of the heat source enters the element in 
the thermal analysis. The element is activated at melting point temperature in the thermal analysis. In the mechanical 
analysis the elements are kept inactive until the front border of the heat source has passed the inactive element by about 
one element length. In this analysis, the element is activated with very soft properties (material property at melting point 
temperature). 

 
2-5 Three-dimensional eigenvalue analysis 
 

The buckling distortion and critical buckling stresses are consequently determined by an eigenvalue analysis 
through applying the mostly uniform and compressive longitudinal plastic strain field of the weld model on a 3-D 
structural model as equivalent load. 
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A constant, negative thermal load is applied at the weld region to introduce the effect of welding into 3-D structure 
as suggested by Michaleris et al. (1997,2003). Thermal loading is used instead of mapping the plastic strain field, which 
would required a complex analysis procedure. After that, an eigenvalue analysis is performed to determine the critical 
residual stresses and buckling distortion. Finally, this value is compared with longitudinal residual stress that is obtained 
by 2D finite element analysis of welding. Also, the capability of this method to estimate the critical stresses and 
buckling mode is evaluated by experiments (Michaleris et al., 1997,2003)  . 

Some investigators estimated the final stress pattern of welded plates by parabola sine curves or the like and used it 
in a 3D eigenvalue analysis to predict the critical stresses (Masubuchi, 1980). This value is compared with longitudinal 
residual stress of welded plates. Pattee (1975) examined the ability of this method to estimate the critical stresses 
experimentally.   

These methods only estimate that if the plate buckles or not but no words ever mentioned about the time of 
buckling and the behavior of plate after buckling. 

In this work the actual stress pattern of the shell in each time step is used in a 3D eigenvalue analysis to determine 
the critical residual stresses and to estimate the time of buckling (during and/ or after opening fixtures). It is used to find 
a simple way to estimate buckling with a 3D welded analysis. The accuracy of the results are confirmed with 
experimental data also the final results are compared with two different methods, namely the works of Michaleris 
(1997,2003) and Pattee (1975).  
 
2-6 Model validation 
 

To confirm the accuracy of the proposed method, a specimen was constructed with a length, width and thickness of 
L=1800, W= 300, t= 1.5 mm respectively. The symmetrical finite element model was used. Fig.1 shows the variation of 
longitudinal residual stress of a middle point of shell with respect to time for present model and Pattee's experimental 
work [10]. As the Fig.1 illustrates, the variation of computed stress has a pattern similar to the pattern of experimental 
data and shows a good compatibility between the results. Therefore, the procedure presented here is suitable for the 
analysis of residual stresses and distortions due to welds.  

 
Figure 1: Comparison between present method and experiment.   

 
 
3- MODEL ANALYSIS 
  

In this work two thin shell sections are jointed by a single pass butt welded. The length, width, thickness and radius 
of the shell are assumed to be 500, 400, 1.5 (3) and 1000 mm, respectively. The mechanical properties are dependent on 
the temperature history as listed in table 1. The symmetrical finite element model, that is made with 4000, three-
dimensional, 20 nodes elements, is used. 
 
4-RESULTS 
 

To evaluate the response of a welded structure, small elastic deformation eigenvalue analysis is being used. Small 
deformation analysis requires limited computational resources, and for this reason, it cannot fully predict buckling 
behavior. However, here, it is only used to estimate stress pattern that causes buckling in each time-step of welding. For 
this purpose, the true stress pattern of the shell is used in eigenvalue analysis in each time step of welding and the 
nearest eigenvalue to 1 is selected as buckling time. It is clear that the eigenmode  is very similar to the shape of shell at 
this time.  
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According to the 3D-eigenvalue analysis, the thin shell has experienced the first buckling mode 36s after the 
welding has started (λ=0.94). Reviewing the history of deformation would reveal that most of the shell points have a 
simultaneous and sudden variation in radial direction at the buckling time as Masubuchi (1980) has pointed out [4]. The 
second buckling occurs at time 60s (λ=1.006) and it is very similar to the first one. For both of them, a sudden jump at 
the edge of shell and appearance of a new cavity near the weld line are noticeable. 

After the second buckling, number of waves in the upper portion of the shell is completed but can not be seen at the 
edge of shell, also it is not seen any simultaneous and sudden variation again. The history of deformation reveals that 
after the second buckling, the pattern of deformation changes slightly and the waves move; when the distribution of 
stresses reaches a stable pattern, they are into their final form (Fig.2). Figure 3 and Fig.4 show estimated final buckling 
mode by the work of Michaleris (1997, 2003) and experiment respectively. Comparison between Fig.2, 3 and 4 
confirmed the accuracy of present analysis.      

 

 
Figure 2a: The final deformed shape of thin shell 

 
                                               b-1                                                                     b-2 

Figure 2b: The shape of wave near the edge (b-1) and near the weld line (b-2) 

 

 
Figure 3: The estimated mode of buckling  by the work of  Michaleris  
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Figure 4a: The magnitude of shell jumping    

 

 
 

      
                                        1                                               2                                                       3 
 

Figure 4b:  The shape of waves near weld and near edge.  
 

Twenty seconds after welding has started, simultaneous and sudden variation in radial direction can be observed at a 
small zone of the shell and one may consider this phenomenon as local buckling and exactly 16s after that the global 
buckling occurs (Fig. 5). This behavior can be seen at 52s, again (Fig.5).  

 
Figure 5: displacement with respect to time of sample node belong to two different local buckling 

 
During the time between the two buckling observation (local/global buckling), the deformation pattern of the shell 

does not change and only the magnitude of deformations varies.   
Examination of the stress pattern illustrates that the nodes experience a negative longitudinal stress at the buckling 

time but after that it may vary especially at the upper portion of the shell. Figure 6 shows the variation of stress with 
respect to time for two different points which experience local buckling at different times. These points are on the 
surface and at the upper portion of the shell (near the weld line).  
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Figure 6: stress with respect to time of sample node belong to two different local buckling 

 
In this work, the effect of external constraint on buckling behavior of thin shells is also studied. Figure 7 shows 

variation of displacement with respect to time for nodes belong to the upper portion of shell (near the weld line). On the 
basis of Fig.7, the fixed-fixed shell experiences six different local buckling during the welding. The first one occurs at 
4s after the welding has started and the last is at 52s which is coincident with the time of the last buckling of free-free 
shell.  

 
Figure 7: variation of displacement with respect to time for different points near the weld line before releasing the 

fixtures 
 

Comparison between Fig.5 and 7 illustrates that the shape of first local buckling of fixed-fixed and free-free shell 
are similar but the last ones are different; one of them is concave and the other is convex. Finally two complete waves 
are seen on the upper portion of shell.  Also the fixed-fixed case experiences its first local buckling sooner and at closer 
distance from the edge of plate than free-free. At the end of welding, after the shell has been cooled down and the 
fixtures are released from the sides of the shell, the overall jump is seen that shows the global buckling of shell after 
cooling (Fig.8).  
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a 

 
a-1 

 
b 

Figure 8: The shape of shell after opening the clamps (free-free condition).  a) proposed method  b) experiment 

 
As the last example, the buckling behavior of the 3mm shell with fixed-fixed boundary condition is analyzed. By 

increasing the thickness of shell not only global buckling but also local buckling are eliminated and no jump (overall or 
local) can be seen during welding and after opening the fixtures (Fig.9).  

 
 

 

Figure 9: The final deformed shape of 3mm thin shell 



 
Table 3 has summarized the above discussion. Moreover, the results based on Michaleris' method and Pattee's method 
are also listed.    
 

Table 3: Comparison between present model with two previous models 
 

Case Average predicted  
stress before 

buckling 

The first mode 
critical stress 

(Michalrris' method) 

The first mode 
critical stress 

(Pattee' method) 

Is case buckled? 
Estimated/Experiment 

Free-free 1.5 
mm shell 

39Mpa 36.82Mpa 37.5Mpa Yes/ Yes During 
welding 

Fix-fix 1.5 mm 
shell 

40.3 Mpa 39.02Mpa 21.138Mpa Yes/ Yes  After 
opening fixtures 

Fix- fix 3 mm 
shell 

32.82 Mpa 76.66Mpa 45.8 Mpa No/ No  neither 
during welding nor 

after opening fixtures 
 
 
5-CONCLUSIONS  

This work clearly shows that the proposed 3D analysis welding can predict not only the time but also the shape of 
buckling during welding. Also, one is able to see the behavior of the shell after buckling. In addition, the effect of 
external constraint and thickness on the buckling behavior due to welding are also studied. The global buckling was not 
seen in the fixed-fixed case before opening the fixtures but more local buckling occurred and finally, the shell buckled. 
The increase of thickness can eliminate both local and global bucklings.   
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