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Abstract. NEM is a meshless numerical method for the solution of partial differential equations. In this paper the 
application of the NEM to boundary value problems in two dimensional small displacement fluid-structure interaction 
is presented. In the natural element method, the approximate functions are constructed using natural neighbor 
interpolants. These interpolants are based on the Voronoi tessellation of the set of nodes N.  In one-dimensional, NEM 
is identical to linear finite elements. The NEM interpolant is strictly linear between adjacent nodes on the boundary of 
the convex hall, which fascilates imposition of the essential boundary conditions. A standard Galerkin procedure is 
used to obtain the discrete system of linear equations. Application of the NEM to a dam-reservoir system and two types 
of tanks is presented. The obtained results using NEM are compared with others solution. Excellent agreement with 
previous solution is obtained, which exemplifies the accuracy and robustness of NEM and suggests its potential 
application in other classes of problems e.g. the problems with large deformations. Two examples are solved: the free 
vibrations of a Pine Flat dam-reservoir system and two types of tanks. The computed results using NEM are compared 
with the results obtained by finite element method. 
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Introduction 

The hydrodynamic response analysis of many practical engineering problems, such as a dam-reservoir system 
differs from that of any other ground structure. It is because the hydrodynamic pressures modify the dam deformations, 
which in turn modify the hydrodynamic pressure causing them. It means that the fluid–structure interaction can 
significantly affect the dynamic response of the dams and needs to be properly taken into account in the analysis. 

One of the first meshless methods proposed is the Smooth Particle Hydrodynamics (SPH) (Monaghan 1988), which 
was the basis for a more general method known as the Reproducing Kernel Particle method (RKPM) (Liu et al. 1995). 
Starting from a completely different and original idea, the Moving Least Squares shape function (MLSQ) (Nayroles et 
al. 1992) has become very popular in the meshless community. More recently, the equivalence between MLSQ and 
RKPM has been proven, so that both methods may now be considered to be based on the same shape functions (Aluru 
and Li 2001). The MLSQ shape function has been successfully used in a weak form (Galerkin) with a background grid 
for the integration domain (Nayroles et al. 1992, Belytschko et al. 1994 a,b). Onate et al. (1996 a,b) used MLSQ in a 
strong form (Point Collocation) avoiding the background grid. Liu et al. (1995 a,b) have used the RKPM in a weak 
form, while Aluru [2000] used it in a strong form. Other authors use different integration rules or weighting functions 
[De and Bathe 2000, Atluri and Zhu 2000] with the same shape functions. 

A newcomer meshless method is the Natural Element Method (NEM). This method is based on the natural neighbor 
concept to define the shape functions (Sibson 1980). NEM has been used with a weak form (Sukumar et al. 2001). The 
main advantage of this method over the previously used meshless methods is the use of Voronoi diagrams to define the 
shape functions, which yields a very stable partition. The added advantage is the capability for nodal data interpolation, 
which facilitates a mean to impose the essential boundary conditions. Finally, all the shape functions, including the 
FEM shape functions, may be defined as Partition of Unity approximations (Babuska and Melenk 1995, Cueto et al. 
2003, Alfaro et al. 2005). Several other shape functions may also be developed using this concept. 

 

Natural neighbour-based interpolants 

Voronoi diagram and Delaunay triangulation 



Procedings of COBEM 2007                          19th International Congress of Mechanical Engineering 
                                                                                                               November 5-9, 2007, Brasilia, DF 
 

Consider a bounded domain  in d-dimensions described by a set N of M scattered nodes: N = {nΩ 1, n2, . . . , nM}. 
The Voronoi diagram )(Nυ  of the set N is a subdivision of the domain into regions V(nI ), such that any point in V(nI 

) is closer to node nI than to any other node )( IJNnJ ≠∈ . The region V (nI) (first-order Voronoi cell) for a node nI 
within the convex hull is a convex polygon (polyhedron) 

 
{ }IJddnV JI

d
I ≠∀<∈= ),(),(:)( xxxxx R    (1) 

Where  is an appropriate distance function (usually the standard Euclidean distance is used) between ),( JId xx

Ix and . Jx
The dual of the Voronoi diagram, the Delaunay tessellation, is constructed by connecting nodes that have a 

common (d-1)-dimensional Voronoi facet. Given any nodal set N, the Voronoi diagram is unique, whereas the 
Delaunay tessellation is not (a simple example is the triangulation of a square where choosing either diagonal leads to 
two valid Delaunay triangulations). In Fig. 1a, the Voronoi diagram and the Delaunay triangulation are shown for a 
nodal set consisting of seven nodes (M=7). A Voronoi vertex and an edge are also indicated in this Fig 1a. An 
important property of Delaunay triangles is the empty circumcircle criterion. It means that if DT (nJ, nK, nL) is any 
Delaunay triangle of the nodal set N, then the circumcircle of DT contains no other nodes of N. In Fig 1b, the Delaunay 
circumcircles for three triangles are shown. 

 
 

       
(a)                                                                                     (b) 

 
(c) 

Figure 1. (a) Voronoi diagram and Delaunay triangulation; (b) Delaunay circumcircles; and (c) Natural 
neighbours (filled circles) of inserted point P. 

 
Consider now the introduction of a point p with coordinates 2R∈x  into the domain  (Fig 1b). The Voronoi Ω

diagram V(n1, n2, . . . , nM, p) or equivalently the Delaunay triangulation DT (n1, n2, . . . , nM, p) for the M nodes and the 
point p is constructed. Now, if the Voronoi cell for p and nI have a common facet (segment in and polygon in ), 2R 3R
then the node nI is said to be a natural neighbor of the point p. The Voronoi cells for the point p and its natural 
neighbors are shown in Fig 1c, together with the convex hull of the set of points. 

Sibson interpolation 

The natural neighbor (Sibson) interpolant was introduced by Sibson. For simplicity and ease of exposition, we 
restrict our attention to 2-dimensions, although every concept is easily extended to d > 2. The definition of the Voronoi 
diagram (first-order) appears in equation (1). By a similar extension, one can construct higher order (k-order, k > 1) 
Voronoi diagrams in the plane. Of particular interest in the present context is the case k = 2, which is the second-order 
Voronoi diagram. The second order Voronoi diagram of the set of nodes N is a sub-division of the plane into cells VIJ , 
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such that VIJ is the locus of all points that have nI as the nearest neighbor, and nJ as the second nearest neighbor. The 
second-order Voronoi cell VIJ (I J) is defined as  ≠

{ }JIKdddV KJI
d

IJ ,),(),(),(: ≠∀<<∈= xxxxxxx R           (2) 
In order to quantify the neighbors for a point p with coordinate x = (x1, x2) that is inserted into the tessellation, 

Sibson used the concept of second-order Voronoi cells, and thereby introduced natural neighbors and natural neighbor 
coordinates. Natural neighbor coordinates (shape functions) are used as the interpolating functions in natural neighbor 
(Sibson) interpolation, and as trial and test functions in a Galerkin implementation for the solution of partial differential 
equations. Consider Fig 2a, where a point p is inserting into a tessellation. The natural neighbor shape function of p 
with respect to a natural neighbor I is defined as the ratio of the area of the second-order Voronoi cell (AI) to the total 
area of the first-order Voronoi cell of p (A): 

∑
=

==
n

J
J

I
I AA

A
A

1
)()(

)(
)()( xx

x
xxφ     (3) 

where n = 5 for the point p in Fig 2a. In 3-d, the Sibson shape function is defined as the ratio of polyhedral 
volumes. 

The derivatives of the Sibson shape functions are obtained by differentiating equation (3) 

)x(
)x()x()x(

)x( ,,
, A

AA jIjI
jI

φ
φ

−
=  )2,1( =j    (4) 

If the point , then Ixx → 1)( =xIφ and all other shape functions are zero. Therefore, the properties of positivity, 
interpolation, and partition of unity are straightforward: 

10 ≤≤ Iφ ,     IJJI δφ =)(x ,                                 (5) 1)(
1
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Natural neighbor shape functions also satisfy the local coordinate property, namely 

I

n

I
I xxx ∑

=

=
1

)(φ                                                                        (6) 

and hence in conjunction with the partition of unity property, it is readily derived that the Sibson interpolant can 
exactly represent any linear field which is known as linear completeness in the finite element method. 

 

Governing equations for solid and fluid domains 

Let  and  be the domains occupied by the solid and fluid respectively. The fluid and solid boundaries may sΩ fΩ

be divided into four different parts according to their properties, the fluid-structure interface,  with  its unit 1Γ n
normal vector pointing outwards , a free surface with prescribed external pressure, fΩ 2Γ , a surface with prescribed 

displacements as essential boundary conditions, 3Γ and a traction free surface, 4Γ  with η  its unit outward normal 
vector. 

In the absence of external forces the governing equations for free motions of the system are as following: 
The equation of motion for the solid domain is as follows 

ubσ &&ss ρρ =+⋅∇    (12) 

Where  is the solid displacement,  is the density of solid,  is the body force vector and σ  is the Cauchy u sρ b
stress tensor. 

The equilibrium and state equations for an inviscid compressible fluid are written as  

00 =∇+
∂
∂ p

t
vρ    (13) 

0)(2
0 =∇+

∂
∂ .vc

t
p ρ    (14) 

Where  is the fluid velocity vector, v 0ρ  is the reference density,  is the pressure in the fluid, and  is the p c
speed of sound in the media. Assuming the irrotational flow, considering small amplitude motions and introducing 
displacement potential ψ  and displacement field of the fluid  as fu

ψ∇=fu      (15) 
the following equation can be obtained  
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ψψ 22
2

2

∇=
∂
∂ c

t
     (16) 

The boundary conditions for the solid domain are 

3Γ= on0u     (17) 

4Γ== on0ησt     (18) 

Where t  is the prescribed traction on . The required boundary condition on4Γ 2Γ  can be obtained using the 
linearized wave assumption as  (Daneshmand and Niroomandi 2007) 

0
2

2

ρ
ψψ ep
t

g −
∂
∂

−=⋅∇ n    (19) 

 

Natural element discretization 

The derived equations in previous section are discretized in this section using natural element method. Using the 
Sibson shape functions, the displacement vector and the displacement potential ),( th xu ),( th xψ  can be written as 

∑
=

=
n

I
II

h tut
1

)()(),( xxu φ     (20) 

∑
=
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II
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Where  and )...,,2,1( nII =u )...,,2,1( nII =ψ  are the vector of nodal displacements and the displacement 

potentials at the  natural neighbours of point , respectively and n x )(xIφ  is the shape functions associated with each 
node. Note that the shape functions are time independent and the nodal displacements are functions of time only.  

Solid Domain 

The matrix equation for the solid is given by 
                     (22) LUKUM =+ ssss

&&

Where  is the vector including the unknown nodal values of the displacement, and  and  are the U sM sK
structural mass and stiffness matrix, respectively. L is the load vector includes both the external structural loads and 
the load vector due to coupling effects.  

The  can be rewritten as L

  ΨMLΨntbL &&&&
csJ

T
III ddd

t

−=⎟
⎟
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⎝
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⎟
⎠

⎞
⎜
⎜
⎝

⎛
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ΓΓΩ

φφρ
1

0         (23) 

The total assembled system of equations using the 
( ) Ω= ∫

Ω

dJIsIJs φφρM      (24) 

( ) Ω= ∫
Ω

dJ
T

IJs I
BCBK      (25) 

Where consistent mass matrix is used in calculating mass matrix,  is the constitutive matrix, and  is the C IB
matrix of shape function derivatives. 

Fluid Domain 

Using the test function ),( yxww = , equation (16) can be integrated over the fluid domain to yield 

Ω∇=Ω ∫∫
ΩΩ

dcwdw tt ψψ 22
,     (26) 

Using Green’s formula on the right-hand side and rearranging 
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and finally, 

Γ+−Γ=

Ω∇⋅∇+Ω

∫∫

∫∫
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Choosing  according to the Galerkin method, the matrix form of equation (39) becomes w
LΨKΨM ′=+ ff

&&                            (29) 

In which  is the vector including the unknown nodal values of the displacement potential and Ψ
( ) Γ+Ω= ∫∫

ΓΩ

dgcdg JIJIIJf

2

2
00 φφρφφρM   (30) 

( ) Ω∇∇= ∫
Ω

dgc J
T

IIJf )()(2
0 φφρK    (31) 

Ω−Γ=′ ∫∫
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22
0 φφρL    (32) 

In which  is the structural displacement component perpendicular to the fluid boundary. Now, the whole sfu
assembled system of equations using the displacement potentials and displacements as the field variables in the fluid 
and solid domains leads to 
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Numerical results 

5.1 Frequency analysis of a dam-reservoir system 
In the first example, free vibration of the Pine Flat dam is considered (Calayir and Dumanoglu 1992). This example 

has been previously studied by many researchers (Greeves and Dumanoglu 1989, Chakrabarti and Chopra 1973). The 
dimensions of the problem are shown in Fig 2. The slop of the reservoir bed is assumed to be 0.05 in 1.0. The upstream 
face of the dam is assumed to be vertical. H=116.12 m is the reservoir height. The dam-reservoir system is considered 
over a rigid and horizontal foundation.. The displacements of the interface of dam-reservoir system are assumed to be 
equal in normal direction for the solid and fluid domains. Three different reservoir length L, are considered for the 
problem (L=H, L=2H and L=3H). We assume the boundary condition on the truncated boundary as the rigid stationary 
boundary.  

The mass density, the elasticity modulus and poisson’s ratio of the dam are taken as 2500 kg/m3, 355×108 N/m2 and 
0.2, respectively. The water is taken as compressible and inviscid fluid with the bulk modulus, mass density and speed 
of sound are taken as 207×107 N/m2, 1000 kg/m3 and 1430 m/s, respectively.  

The first mode shapes of the solid and fluid part of the problem are shown in Fig. 3, 4. The problem is solved for 
three different cases. As the first case, the natural frequencies of the solid domain (dam) without fluid are calculated. In 
the second case, the frequencies of the fluid domain without any interaction with the solid are investigated. Finally, as 
the third case, the elastic solid (dam) with water is investigated that means the fluid-structure interaction is considered. 
The computed frequencies for dam, reservoir and dam-reservoir system are shown in Tab. 1 (for reservoir length L=H). 
It should be noted that the finite element results given in this table are obtained using 8-node solid elements.  

It should also be noted that the first frequency obtained from the present study for L=3H is 2.97 Hz which is close 
to the value 2.90 Hz obtained by Chakrabarti and Chopra (1973) and is also close to value 3.24 Hz obtained by Greeves 
and Dumanoglu (1989). The comparison between the results of the present study and those obtained by Chakrabarti 
and Chopra for various reservoir lengths are also shown in Tab. 2. The first and second frequencies of the coupled 
system with various reservoir lengths are also given in Tab. 3. 
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Figure 2. Dimensions and Model of Pine Flat Dam 

 
Figure 3. 1st mode shape of Model of Pine Flat Dam 

 
Figure 4. 1st mode shape of fluid in Pine Flat Dam  

 
5. 2 Free vibration analysis of rectangular liquid storage structures 
Free vibration analysis of two different types of rectangular liquid storage structures are considered as the second 

example. The first structure is a tall tank 10m wide and 15m tall, and the second one is a broad tank 30m wide with the 
same height. The wall thickness is taken to be 1.2m for both structures. The storage structures are assumed to be filled 
with water up to 13m (height) above the base. The actual dimensions of tanks are given in Fig. 5. The interaction 
surface is assumed to be vertical. The relative motion of the fluid along the wall is allowed only in the tangential 
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direction to the wall. The system is considered over a rigid and horizontal foundation. The natural element model 
consists 502 nodes including 96 and 434 solid and fluid nodes, respectively and 28 common nodes on the interaction 
surface. The solid is assumed to be homogeneous and isotropic. The material properties of the reinforced concrete 
storage structures are E=1.962×1010 N/m2 , ρ=2400 kg/m3 and ν=0.18. The water is taken as compressible and inviscid 
fluid with the bulk modulus, mass density and speed of sound as 207×107 N/m2 , 1000 kg/m3 and 1430 m/s, 
respectively.  

The first mode shapes for two tanks are shown in Fig. 6 to 9. These example has been previously studied by Kim 
and Yun (1997). The comparison between their results and the present results are shown in Tab. 4. Good agreements 
can be observed between the results calculated by two different approaches. It can be seen from Table 4 that the natural 
element method predicts the first frequency of the broad tank as 2.04 Hz which is in good agreement with the value 
2.12 Hz (Kim and Yun 1997). The same statement is true for the first frequency of the tall tank obtained by the natural 
element method and previous work (Kim and Yun 1997). 

 

  
Figure 5. Dimensions of Tanks 

 
Figure 6. . 1st mode shape of  Broad Tank 

 
Figure 7. 1st mode shape of fluid in Broad Tank 
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Figure 8. 1st mode shape of Tall Tank  

 

 
Figure 9. 1st mode shape of fluid in Tall Tank  

 
Conclusion 
 
Meshless methods have constituted an active field of research during the past decade, and have lead to many new 

and novel developments within computational mechanics. One of these methods, coined as the natural element method 
(NEM) or in its generality referred to as natural neighbour Galerkin methods, presents a few distinct and attractive 
features among meshless methods. The review of the NEM and its applications in free vibration analysis of fluid 
structure interaction problems has been the subject of this paper. In spite of previous efforts, the use of natural element 
method in solving such problems is a new idea and has not been considered so far. A comprehensive review of the 
method is conducted, including a description of the Sibson and the Laplace interpolants in two- and three-dimensions. 
Natural neighbour Galerkin methods use natural neighbour interpolation (either Sibson or Laplace interpolation) to 
construct the Galerkin discrete system of equations. These interpolate nodal data and are precisely linear on the 
boundary, and hence the imposition of essential boundary conditions can be carried out as is done in finite element 
method. This is in contrast to many meshless methods (such as element-free Galerkin method or those based on radial 
basis functions), in which the interpolating character is absent. 

In conclusion, it is the authors’ belief that natural neighbour-based techniques provide an appealing choice for 
many engineering problems and are a potential alternative to finite element method as well as some of the other 
meshless methods in computer modeling and simulation of complex phenomena in fluid structure interaction problems. 
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TABLES: 

Table 1. Frequencies (Hz) for Dam, Reservoir and Dam-Reservoir system (L=H) 
 

Solid (Dam) Fluid (Reservoir) Dam-Reservoir 
Mode 

NEM FEM NEM FEM NEM FEM 

1 4.18 4.12 3.10 3.05 2.87 3.03 

2 9.19 8.76 6.89 6.75 3.92 3.90 

3 11.11 11.06 9.24 9.16 6.76 6.77 

4 15.94 15.00 11.10 10.85 8.92 8.54 

5 23.50 22.63 13.09 12.80 9.41 9.26 
 

Table 2. Fundamental Frequency (Hz) for Dam-Reservoir system  
 

Dam-Reservoir system 
Mode Present 

Study 
Chakrabarti and Chopra 

(REF) 
L=H 2.87 2.78 

L=2H 2.94 2.87 

L=3H 2.97 2.89 
 

Table 3. Frequencies (Hz) for Dam-Reservoir system 
 

Mode L=H L=2H L=3H 

1 2.87 2.94 2.97 

2 3.92 3.63 3.41 
 

Table 4. Frequencies of the storage tanks (Hz) 
 

Tall tank Broad tank 
Mode 

Present REF Present REF 

1 2.12 2.05 2.04 1.98 

2 10.35 11.41 10.57 10.50 

3 31.81 31.76 28.80 30.97 
 
 
 
 


