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Abstract. The aim of this work is to propose a methodology to estimate the fatigue strength limit under fretting condi-
tions which was validated for experimental results taken from the literature for contact between cylindrical pads. This
methodology is founded on the use of the Theory of Critical Distance (LineMethod) associated with the multiaxial fatigue
model proposed by Susmel & Lazzarin (Modified Wöhler Curve Method). The results provided by the Line Method and
the Point Method were compared showing that the Line Method was less conservative than the Point Method. The Line
Method has correctly evaluated, rightly, the fatigue strength for 26 of 29 experimental tests, against 23 of 29 for the Point
Method. Both methods were also compared concerning their sensibility to an increase or decrease of 10% on the value
of the material parameter that determine the critical distance which was used to apply the multiaxial fatigue model. The
results have shown that the Line Method is less sensitive than the Point Method to this parameter for high stress gradients.

Keywords: fretting fatigue, notch fatigue, multiaxial fatigue, critical distance, size effect, point method, line method.

1. INTRODUCTION

Some recent findings (Araújo et al., 2004, Vallelano et el., 2004) show that the problem of estimating fatigue endurance
under fretting conditions can be addressed by taking into account the presence of stress concentration phenomena. To be
precise, the material cracking behaviour under fretting fatigue can be assumed to be similar to that occurring in "conven-
tional" notched components under fatigue loading: crack initiation, and its initial growth, depends on the distribution of
the entire stress field damaging the fatigue process zone. This analogy is very attractive from a scientific point of view,
because it would allow engineers engaged in practical problems to extend the theories already developed to assess notched
components under fatigue loading to components damaged by fretting fatigue. The main problem in coherently extending
this idea to practical situations is that the early stage of crack propagation under fretting fatigue is mixed mode dominated
(Araújo and Nowell, 1999).

In particular, according to the experimental results published by Vallellano et al. (Vallellano et al., 2004) and generated
by testing Al 7075-T6 sphere-plane contacts, initiation and early growth of cracks occur at small angles to the surface.
Subsequently, cracks change their direction to grow along a line almost perpendicular to the contact zone surface. Finally,
the above authors highlighted that even when failures did not occur in the high-cycle fatigue regime, cracks were arrested
by the first grain boundary (as it happens to plain metal specimens under conventional fatigue loading). This experimental
finding makes it evident that, to correctly model the physical processes leading to crack initiation and its initial propagation
under fretting fatigue, two fundamental aspects should be taken into account: the real material morphology in the vicinity
of crack initiation sites and the elasto-plastic behaviour of grains. In other words, predicting the material strength in
the high-cycle fretting fatigue regime is mainly a short crack problem. Unfortunately, it is well-known that to correctly
model short crack behaviour, linear-elastic approaches may not be the most adequate ones. It is evident that modelling
all the phenomena taking place within the fatigue process zone by accounting for grain plasticity is very attractive from
a philosophical point of view, but such an approach would be too cumbersome to be applied to assess real components
in situations of practical interest. For this reason, the problem must be greatly simplified in order to develop approaches
which can be used in the industrial reality.

According to the considerations reported above, this paper attempts to estimate fretting fatigue damage by using a
multiaxial fatigue method we recently developed to assess notched components in the high-cycle fatigue regime (Susmel
and Taylor, 2003): the aim of this work is to predict fretting fatigue damage accounting for the entire stress field in the
vicinity of the contact zone by considering a notch analogue.
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2. FATIGUE DAMAGE AND STRUCTURAL VOLUME

The use of the Modified Wöhler Curve Method (MWCM) in conjunction with the Theory of Critical Distances (TCD)
is based on the assumption that all the physical processes leading to crack initiation are confined within the socalled
structural volume. The size of this volume is assumed not to be dependent on either the stress concentration feature
weakening the component or the complexity of the stress field damaging the fatigue process zone (Susmel, 2004).

To define the size of this volume, consider an infinite plate with a central through-crack (Fig. 1a). This plate is
subjected to a remote fully-reversed uniaxial fatigue loading (R=-1). Observing that, thanks to the above assumptions,
geometry, nominal stress gradient and non-zero mean stress do not affect the crack growth, the above configuration can
be assumed to be representative of the "pure" material cracking behaviour.

Figure 1. Central through-crack in an infinite plate subjected to a remote uniaxial load (a) and Kitagawa and Takhashi’s
diagram (b).

Consider now the classical Kitagawa-Takahashi curve by approximating it to the two straight asymptotic lines plotted
in Fig. 1b: the horizontal line corresponds to the plain fatigue limit, whereas the sloping one is plotted according to the
Linear Elastic Fracture Mechanics (LEFM). The length at which these two lines intersect each other turns out to be:

L =
1
π

(
∆Kth

∆σ−1

)2

(1)

In the above equation,∆σ−1 is the plain fatigue limit and ∆Kth is the range of the threshold value of the stress
intensity factor (both determined under load ratios, R, equal to -1). Based on the fact that the material characteristic
length L is defined by two material properties, it is evident that L turns out to be a material property, which is different for
different materials (Taylor, 1999). Observing now the trend schematised by the two straight asymptotic lines in Kitagawa-
Takahashi’s diagram, it is possible to assume that as long as the half-length of the crack is lower than L, no reduction
of the nominal fatigue limit occurs. Therefore, the size of the structural volume can be considered to be directly related
to the material characteristic length, L. To be precise, in order to avoid a reduction of the nominal fatigue limit, all the
cracking processes must be confined within this area, which can be supposed to be circular in 2D bodies and spherical in
3D components (Fig. 1a).

It is possible to observe now that when a component is in the fatigue limit condition some micro/meso-cracks are
always present within the structural volume, and it holds true independently of the stress concentration feature weakening
the component (Akiniwa et al., 2001). In particular, it is important to remember that the sharper the notches are then
the longer the length of non-propagating cracks. When plain specimens are in the fatigue limit condition, the crack
propagation is arrested either by the first grain boundary or by the first micro-structural barrier (Miller, 1993). On the
contrary, in the presence of sharp notches, the maximum length of non-propagating cracks is equal to:

b0 =
1
π

(
∆Kth

F∆σ−1

)2

(2)

where F is the geometrical correction factor for the LEFM stress intensity factor.
If non-propagating cracks emanate from the tip of a notch weakening a real component, F is always larger than unity

(Tada et al., 2000). This makes it evident that non-propagating cracks are always confined within the structural volume,
even when they reach their maximum length.
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All the above arguments seem to strongly support the idea that the fatigue process zone has a size which is directly
related to the material characteristic length, L. The question now is "What is the material cracking behaviour within the
fatigue process zone?". During the last few years, we extensively investigated crack paths within the structural volume in
the high cycle fatigue regime. In particular, we considered specimens of steel weakened by different geometrical features
and subjected to both uniaxial and biaxial fatigue loading (Susmel and Taylor, 2004).

Our understanding of the phenomenon is that initiation and initial growth of micro/meso-cracks are always mixedmode
governed and this process can be considered to be similar to the classical Stage 1 taking place in plain specimens (Miller,
1993). In particular, independently of stress concentration feature and degree of multiaxiality of the stress field, crack
initiation is mixed-mode dominated and the length of the Stage 1-like crack is equal to about L/2. To be precise, the
transition from a Stage 1-like to a Stage 2-like process occurs at a distance from the notch tip depending on the material
characteristic length, L. When the crack length is larger than about L/2, cracks tend to orient themselves in order to
experience the maximum Mode I loading (Stage 2-like process). Therefore, if crack initiation is assumed to be the most
important stage in determining fatigue limits, it is logical to believe that the critical plane approach is the soundest method
to model the physical reality.

2.1 The Theory of Critical Distances (TCD) and the Modified Wöhler Curve Method (MWCM)

In the recent past, Taylor has proposed a new reinterpretation of the TCD to predict uniaxial fatigue limits of compo-
nents weakened by any kind of stress concentration feature (Taylor, 1999). This approach postulates that the reference
stress to be used to assess notched components can be calculated in different ways. In particular, it can be determined
at a certain distance from the apex of the stress concentrator (Point Method, PM), it can be averaged along a line (Line
Method, LM), or, finally it can be averaged over an area (Area Method, AM). The TCD was seen to be capable of pre-
dictions falling within an error interval of about 20% (Susmel and Taylor, 2003). This method is essentially empirical,
but Taylor has proposed that the LM may be related to the conditions for propagation of a notch-root crack of length 2L.
Unfortunately, this would only justify the use of the method for sharp notches, giving no explanation as to the reason why
the TCD is also successful in predicting fatigue limits in the presence of blunt notches.

In order to formalize the TCD in terms of the PM, consider a notched specimen subjected to a remote uniaxial fatigue
loading. The reference stress to be compared to the plain fatigue limit, ∆σ−1, can be found in different ways, as follows.
For the PM the stress can be calculated at a point positioned along the notch bisector at a distance from the notch tip equal
to L/2 that is expressed mathematically as:

σPM = σ(θ = 0, r = L/2). (3)

For the LM the reference stress can alternatively be averaged along a line of length 2L that is summarized by the
following formula:

σLM =
1

2L

∫ 2L

0

σ(θ = 0, r)dr. (4)

where L is given by Eq. 1 and σ (Cauchy’s tensor) is given by Eq. 8 or 9. It is important to highlight here that, to
properly apply the TCD, L must always be determined for the correct load ratio, R (Susmel and Taylor, 2003). According
to the PM, the point at which the reference stress must be calculated exactly corresponds to the centre of the structural
volume.

The MWCM takes as its starting point the assumption that crack initiation is Mode II dominated, and it holds true
independently of both stress concentration feature and degree of multiaxiality of the stress field damaging the fatigue
process zone. The MWCM formalised to assess components in the high-cycle fatigue regime is written:

τa + m1
σn,max

τa
− λ = 0 (5)

In the above equation, τa is the shear stress amplitude relative to the material plane experiencing the maximum shear
stress amplitude (critical plane), σn,max is the maximum stress perpendicular to this plane and, finally,λ and m1are ma-
terial constants that can be obtained from two fatigue limits generated under different loading conditions. For instance, if
the fatigue limits σ−1 and σ0 generated under fully-reversed (R=-1) and under repeated (R=0) uniaxial load, respectively,
are considered, the two relevant constants of the criterion turn out be:

m1 =
σ−1 − σ0

2
, (6)
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λ = σ−1 −
σ0

2
. (7)

It is interesting to observe that, even though the MWCM can successfully be calibrated using two experimental uniaxial
fatigue limits generated under different load ratios, when one of these two fatigue limits is estimated using a proper
methodology, the MWCM accuracy becomes sensitive to the detrimental effect of non-zero mean stresses on the assessed
material. In other words, it is well-known that fatigue limits under different load ratios can be estimated by using an
experimental fatigue limit generated under a reference load ratio and the material static properties, but, unfortunately,
the accuracy of well-known methods such as those proposed by Smith-Watson-Topper (Smith et al., 1970) or Goodman
(Goodman, 1919) depends on the material fatigue behaviour under superimposed static stresses (Susmel et al., 2004).

Reliability and accuracy of the MWCM were initially checked by considering smooth specimens both in the high-cycle
(Susmel and Taylor, 2003) and in the medium-cycle fatigue regime (Susmel and Petrone, 2003), showing that this method
was capable of successfully accounting for the presence of both non-zero out of phase angles and non-zero mean stresses
(Susmel and Taylor, 2004). Subsequently, the MWCM was applied in conjunction with the TCD to predict high-cycle
fatigue strength of notched components under both uniaxial and multiaxial fatigue loading (Susmel and Taylor, 2003).

In particular, according to the arguments summarized in the previous section, it is possible to say that fatigue limits
have to be estimated by considering a stress state which is representative of the entire stress field damaging the fatigue
process zone. In more detail, using the PM argument, it is possible to assume that the linear-elastic stress state calculated
at the centre of the structural volume supplies all of the engineering information needed to perform an accurate high-cycle
fatigue assessment (Susmel and Taylor, 2003). Moreover, in fatigue limit conditions, and independently of the stress con-
centration feature, the crack initiation phenomenon can be assumed to be governed by a Stage 1-like process. According
to this, fatigue damage reaches its maximum value on the plane experiencing the maximum shear stress amplitude, and
its amount depends on both τa and σn,max when calculated at the center of the structural volume.

2.2 The procedure to apply the MWCM in terms of the TCD to fretting fatigue situations

A fretted component subjected to a system of external contact forces (P and Q) and also experiencing a bulk fatigue
stress (σB) gives rise to a subsurface multiaxial stress field within the contact region (Fig. 2). Further, as also happens to
components containing geometrical discontinuities, the fretting regime is characterized by the presence of stress concen-
tration phenomena at the contact surface which rapidly decay. This suggests that a threshold condition for crack initiation
might be predicted by using methodologies similar to those employed to assess notched components. According to this
idea, we seek to use the MWCM re-interpreted in terms of TCD to address the fretting fatigue problem.

In order to apply the procedure proposed in the present paper, it is initially necessary to determine the radius of the
structural volume (Fig. 2). It must always be calculated using fatigue properties (that is, ∆σ−1 and ∆Kth) determined
under a load ratio, R, equal to -1 (Susmel and Taylor, 2003). In fact, as said above, the reference configuration is the one
given by a through-cracked plate under fully-reversed uniaxial fatigue loading (Fig. 1a) and the presence of nonzero mean
stresses as well as of non-zero out-of-phase angles is directly accounted for by Eq. 5.

It is important to remember here that in real joints some localized plasticity may be induced by the stress concentration
phenomenon present at the contact interface. For this reason, a rigorous analysis to determine the stress field in the vicinity
of the contact region should consider an appropriate constitutive model capable of accounting for the stress redistribution
under the stress raiser. Unfortunately, these kinds of analyses are complex and time-consuming, so that, too often, they
are not compatible with the industrial needs. One of the most important features of the TCD is that stress concentration
phenomena in fatigue can be assessed just by carrying out linear-elastic analysis, reducing time and costs of the design
process. Therefore, and taking advantage from this peculiarity of the TCD, the use of the proposed method is based on
linear-elastic solutions.

When the stress tensor is entirely defined during the load cycle at the centre of the structural volume (y/a = L/2 in
Fig. 2), by using the appropriate algorithms (Papadopoulos, 1998, Weber et al., 1999) it is relatively simple to determine
the critical plane orientation as well as the shear stress amplitude and the maximum normal stress relative to such a plane
(unfortunately, dealing with complex periodic load histories, this calculation is rather time-consuming). Finally, if the
condition expressed by Eq. 5 is assured, then the studied component is predicted to be in the fatigue limit condition. Figure
2 depicts a schematic view of the application of the proposed methodology to a cylinder-on-flat contact configuration under
fretting conditions.

To be precise, our method takes as its starting point the idea that high-cycle fatigue damage in metals depends on both
stress gradients and degree of multiaxiality of the stress field in the vicinity of crack initiation sites. Our understanding of
the phenomenon is that this fact holds always true independently of the causes these two phenomena are originated from:
the MWCM accounts for the multiaxiality of the stress field, whereas the TCD allows the stress gradient effect to be taken
into account.

To conclude this section it is worth noting that, in general, analytical approaches are not adequate to determine the
stress state at the center of the structural volume for real mechanical assemblies. For this reason, engineers engaged in
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Figure 2. The procedure to apply the MWCM in terms of the TCD for fretting fatigue.

practical problems prefer to determine such stress states by post-processing FE results: the proposed methodology is
suitable for being used in conjunction with linear-elastic FE results, with the advantage that parameters such as nominal
stress, equivalent stress intensity, etc. do not have to be defined.

2.3 Available experimental data for cylindrical contacts

In the next section the proposed procedure will be validated by using experimental data for a cylinder-on-plane contact
configuration (Fig 3). These experiments have been reported and discussed in detail elsewhere (Araújo et al., 2004),
hence, only the basic pieces of information necessary to carry out the analysis are briefly reported below. In particular,
a constant normal load, P , was applied to the fretting pads and held constant. A sinusoidal bulk load B(t) applied to
"the dog bone" tensile specimen induced (i) a bulk fatigue stress,σB(t) = σBmaxsin(wt), and (ii) a in-phase shear load,
Q(t) = Qmaxsin(wt), where σBmax and Qmax were the amplitudes of bulk stress and shear load, respectively, w was
the load frequency and t was the time. Tests were designed to run in a partial slip regime, i.e. Q < fP , where the friction
coefficient for the slip zones, f , was equal to 0.75. Four series of tests were considered. Within each series an average of
eight tests using different pad radii varying from 12.5 to 150mm were performed. Although the pad radius changed, the
surface stress field was the same for all tests in a series (but the rate of stress decay varied). This provoked a size effect in
the presence of larger contact widths (or pad radii) causing fatigue failures, whereas for the smallest contacts the tests ran
up to 107 cycles (here considered as infinite life) before being interrupted. The range defined by the largest contact size
causing no failure and by the smallest one resulting in fatigue failures was termed critical contact size range, acrit.

Table 1 reports the relevant load parameters and acrit for each data set. Pads and specimens were made of an Al4%Cu
alloy (Young’s modulus, E = 74GPa, yield stress σy = 465MPa and ultimate tensile strength, σUTS = 500MPa).
Finally, it is important to highlight that in the broken specimens cracks initiated within the slip zone, at or close to the
trailing edge of the contact.

Figure 3. Cylinder on plane contact configuration.
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Table 1. Experimental parameters and critical contact size range.

Series σB,max(MPa) p0(MPa) Q/P acrit(mm)
1 92,7 157 0,45 0,28 - 0,38
2 92,7 143 0,24 0,54 - 0,75
3 92,7 143 0,45 0,18 - 0,27
4 77,2 143 0,45 0,36 - 0,54
5 61,8 120 0,45 0,57 - 0,71

Due to the geometry of the tested configuration, the stress field in the fatigue process zone could be directly evaluated
by using analytical solutions given in closed form. In particular, the direct and shear tractions could easily be defined
according to the solutions proposed by Hertz (Hertz, 1882) and Mindlin (Mindlin, 1949), respectively. These could sub-
sequently be used with Muskhelishivili’s potentials (Muskhelishvili, 1953) to determine the stress components associated
with the normal and the shear load. By superposing these different contributions, it was possible to directly evaluate the
resulting stress tensor. In particular, at the instants of maximum and minimum bulk/shear loads it turned out to be:

σ (x, y, t)
p0

=
σn

(
x
a , y

a

)
p0

± f
σt

(
x
a , y

a

)
p0

∓ f
c

a

σt
(

x−e
c , y

c

)
p0

+
σB(t)

p0
, (8)

being the combination of signs + and - for the maximum load step. On the contrary, during loading or unloading, the
appropriate analytical solution resulted in the following form:

σ (x, y, t)
p0

=
σn

(
x
a , y

a

)
p0

± f
σt

(
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a

)
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d(t)
a

σt

(
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′
(t)

d(t) , y
d(t)

)
p0

+

± f
c

a

σt
(

x−e
c , y

c

)
p0

+
σB(t)

p0
, (9)

For unloading conditions the correct sequence of signs to be considered in Eq. (9) is: -, + and -. In the above equation,
p0 is the peak pressure, c and e are the stick zone half width and its offset from the center of the contact at the instant
of maximum or minimum shear load. At any other time instant d and e′ correspond to the stick zone half width and its
offset from the center of the contact. The superscripts n and t stand for the stress components due to the normal and
the tangential load, respectively. Finally, σB(t) is the stress tensor associated with the bulk fatigue load, henceσxx is its
unique stress component different from zero. Plane strain conditions are assumed. Explicit expressions to compute c, e,
d, e′,σn and σt are given in a convenient form by Hills and Nowell (Hills and Nowell, 1994).

2.4 MWCM accuracy in predicting high-cycle fatigue strength under fretting fatigue

This section summarizes the results obtained when applying the MWCM to estimate the high-cycle fatigue strength of
the experimental configurations considered in this work and briefly discussed above. In order to evaluate the accuracy of
the proposed methodology, the following error index (as defined by Papadopoulos (Papadopoulos, 1995)) was adopted:

SU =
τa + m1

σn,max

τa
− λ

λ
(10)

A negative value of the above error index indicates that fatigue failure should not occur up to a number of cycles to
failure theoretically equal to infinity. On the contrary, when SU > 0, the component is not in the fatigue limit condition,
but, fatigue lifetime cannot be estimated (Fig. 4). It is interesting to observe also that, from a engineering point of view, a
negative value of the SU index is an indication of the fact that the component dimensions could be reduced down to the
limiting condition given by SU = 0.

As briefly explained above, the first step in applying the proposed procedure is to define the material characteristic
length, L. Unfortunately, this experimental information was not directly available in Refs (Araújo and Nowell, 2004), for
this reason it was taken from another source. In particular, Atzori et al. reported in Ref. (Susmell et al., 2005) a value
for L equal to 0.1mm for an Al 4%Cu alloy having the same high-cycle fatigue strength (∆σ−1 = 248MPa) as the one
tested by Nowell under fretting (Araújo and Nowell, 2004). According to this value the radius of the structural volume,
L/2, was assumed to be equal to 0.05mm (Susmel et al., 2005). At this depth and at the trailing edge of the contact zone
(hot spot), i.e. x/a = −1, the cyclic stress tensor was then analytically calculated at twelve different load steps by using
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Eqs (6) and (7) that gives the stress tensor for the point method, σPM . For the LM the cyclic stress tensor was calculated
at twelve different load steps for a given number of points equally spaced over a line positioned between the points (−1; 0)
and (−1; 2L/a). After that, these stress tensors were numerically averaged by using Eq. 4 that yielded the stress tensor
for the line method, σLM . Finally, to predict high-cycle fatigue strength under fretting, the SU index, Eq. 10, needed to
be computed from these average tensors. To compute SU one needs to consider two fatigue parameters generated under
different loading conditions, such as the fatigue limits under fully-reversed bending and torsion, respectively, or two
uniaxial fatigue limits generated under two different load ratios, R. Susmel (Susmel et al., 2005) reported two uniaxial
high-cycle fatigue strengths, determined at 107 cycles to failure, for a material similar to the one considered in the present
study and having L = 0.1mm (R = −1): ∆σ−1 = 248MPa (R = −1) and ∆σ0 = 172MPa (R = 0). These reference
strengths were then used to calculate constants m1 and λ in Eqs 6 and 7, resulting in the following values: m1 = 19MPa
and λ = 81MPa.

Because the above relevant high-cycle fatigue strengths were extrapolated at 107 cycles to failure, the experimental
results were subdivided into two different categories: for Nf < 107 cycles to failure, the specimens were considered as
broken in the medium-cycle fatigue regime, whereas, for Nf ≥ 107 cycles to failure, tests were classified as run outs.
It is interesting to highlight that, as reported in Ref (Araújo et al., 2004), a direct inspection of the run out specimens
(Nf ≥ 107 cycles to failure) did not reveal the presence of cracks either within the fretted zones or elsewhere within the
contact region.

(a) (b)

(c) (d)

Figure 4. Error Index given by MWCM for the experimental series 1 (a), 3 (b), 4 (c) and 5 (d).

Figure 4 depicts SU compute by the PM and LM against the pad radius, R, for all tests within each experimental
data series. It also shows the boundary between the tests that run out and those where failure occurred. It can be noticed
that the error index always indicates failure when it takes place, however in some cases the test reached infinity life and
the SU provided by PM and LM were positive indicating failure for unbroken specimens. This indicates that the two
methods are conservative in the evaluation of the fatigue strength. It is also noticed in Fig 4 that the SU provided by LM
were smaller than those by the PM, which indicates that the LM is less conservative than the PM, especially for larger pad
radius where the stress gradient is milder, being this behavior noticed for all series. For example, in Fig. 4d (R = 75mm
and R = 100mm) and in Fig 4b (R = 25mm), the tests experienced infinity life and the PM indicated failure while the
LM indicated, correctly, safe life.
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(a) (b)

(c) (d)

Figure 5. Variation of the Error Index SU for the PM and LM according to a variation of 10% in the parameter L (Series
1 (a), 3 (b), 4 (c) and 5 (d)).

Being the parameter L a material property that is subjected to experimental uncertanties in its determination, it seems
important to undestand how its variation affects the results provided by the proposed methodology. In order to take
into account this effect, it was supposed a variation of L between +10% and -10% from the reported nominal value
L = 0.1mm. Figure 5 shows the error index variation with respect to the nominal position (∆SU ) for each pad radius
considering experimental series 1, 3, 4 and 5 according to the proposed analysis. It seems clear from these graphs that
the LM is less sensitive to the variation of L than the PM for more severe stress gradient conditions, in other words, for
smaller pad radii. A reduction in L essentially means that the evaluation of the average stress is conducted closer to the
contact surface leading therefore to more severe solicitation which, in turn, will provide ∆SU > 0. The opposite behavior
takes place when the L increases. This variation has a decisive influence on the evaluation of the fatigue strength for tests
that had small error index (|SU | < 3%) and can be responsible for an evaluation of failure or safe life.

3. DISCUSSION AND CONCLUSION

This paper is a continuity of previous work by Araújo et al. (2006), and its aim was to propose a methodology to
estimate the fatigue strength limit under fretting conditions. Such methodology was validated for experimental results
taken from the literature involving the contact between cylindrical pads and a flat tensile "dog bone" specimen. The
proposed methodology is founded on the use of the Theory of Critical Distance associated with the multiaxial fatigue
model proposed by Susmel & Lazzarin (Modified Wöhler Curve Method). The results provided by the Line Method and
the Point Method were compared showing that the Line Method has correctly evaluated the fatigue strength for 26 of the
29 experimental tests considered in this work, against 23 of 29 for the Point Method. Both methods were also compared
concerning their sensibility to an increase or decrease of 10% on the value of the material parameter, which is used to
determine the critical distance. The results have shown that the Line Method is less sensitive than the Point Method to
this parameter for situations of high stress gradients (smaller contacts).



Proceedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

4. REFERENCES

Akiniwa, Y., Tanaka, K., Kimura, H., 2001, "Microstructural effects on crack closure and propagation thresholds of small
fatigue cracks". Fatigue Fract. Engng. Mater. Struct. 24, 817-831.

Araújo, J.A.,Susmel, L., Taylor, D., Ferro, J.C.T, Mamiya, E.N., 2006, "On the use of the Theory of Critical Distances and
the Modified Wöhler Curve Method to estimate fretting fatigue strength of cylindrical contacts". International Journal
of Fatigue 29 (2007) 95-107

Araújo, J.A., Nowell, D. and Vivacqua, R. C., 2004, "The use of multiaxial fatigue models to predict fretting fatigue life
of components subjected to different contact stress fields". Fatigue Fract Engng Mater Struct 27, 967-978.

Araújo, J.A., Nowell, D., 1999, "Analysis of pad size effects in fretting fatigue using short crack arrest methodologies".
Int. J. Fatigue 21 9, 947-956.

Dowling, N., 2004, "Mean Stress Effects in Stress-Life and Strain-Life Fatigue", 2nd SAE Brasil International Conference
on Fatigue, São Paulo, 22-23th June 2004.

Goodman, J., 1919, "Mechanics Applied to Engineering", Longmans, Green and Co., London, 631-636.
Hertz, H., 1882, "Uber die Beruhrung fester elastischer Korper", Jnl. Reine und angewandte Mathematik 92, 156- 171.
Hills, D. A. and Nowell, D., 1994, "Mechanics of fretting fatigue". Kluwer Academic publishers, Dordrecht, 1994.
Miller, K. J., 1993, "The two thresholds of fatigue behaviour". Fatigue Fract. Engng. Mater. Struct. 16, 931-939.
Mindlin, R. D., 1949, "Compliance of elastic bodies in contact". Jnl. App. Mech. 16, 259-268.
Muskhelishvili, N. I., 1953, "Some Basic Problems of Mathematical Theory of Elasticity". Noordhoff, Gröningen.
Nowell, D., 1988, "An analysis of fretting fatigue", D. Phil. thesis, Oxford University.
Papadopoulos, I.V., 1998, "Critical Plane Approaches in High-Cycle Fatigue: on the Definition of the Amplitude and

Mean Value of the Shear Stress Acting on the Critical Plane". Fatigue Fract. Engng. Mater. Struct. 21, 269-285.
Papadopoulos, I. V., 1995, "A High-Cycle Fatigue Criterion applied in Biaxial and Triaxial Out-of-Phase stress condi-

tions". Fatigue Fract. Engng Mater. Struct. 18, 79-91.
Smith, K.N., Watson, P., and Topper, T.H., 1970, "A Stress-Strain Function for the Fatigue of Metals", J. Mater. 5 4,

767-778.
Susmel, L., Atzori, B., Meneguetti, G., 2005, "Material fatigue properties for assessing mechanical components weakened

by notches and defects". Fatigue Fract. Engng. Mater. Struct 28, 1-15.
Susmel, L., Taylor, D., 2004, "Non-propagating cracks under in-phase mode I and II loadings". In: F. Nilsson (Ed.), Proc.

of 15th European Conference of Fracture, Stockholm (Sweden), August 11-13, 2004.
Susmel, L., Taylor, D., 2003, "Two methods for predicting the multiaxial fatigue limits of sharp notches". Fatigue Fract.

Engng. Mater. Struct. 26, 821-833.
Susmel, L., Petrone, N., 2003, "Multiaxial fatigue life estimations for 6082-T6 cylindrical specimens under in-phase and

out-of-phase biaxial loadings". In: A. Carpinteri, M. de Freitas and A. Spagnoli (Ed.), Biaxial and Multiaxial fatigue
and Fracture, Elsevier Science Ltd. and ESIS, Oxford, 83-104.

Tada, H., Paris, C. P.; Irwin, R. G., 2000, "The Stress Analysis of Cracks Ű Handbook". Professional Engineering Pub-
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