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Abstract. The Finite Element Method  is well established for modeling complex problems in applied mechanics and related fields. 
However, in several classes of problems, the mesh generation may lead to additional costs. To prevent this drawback, numerical 
techniques have been developed in such a way that the mesh is not more necessary to discretize the problem. In these methods, 
called meshless or meshfree, the trial functions are constructed entirely in terms of a set of nodes without the necessity of element 
discretization for the construction of the equations. The ideal requirement for a method be considered meshless is that the mesh 
structure be completelly eliminated from the problem solution process, but considering the minimum requirement, it is sufficient that 
the mesh be dispensable in field variable interpolation. Element Free Galerkin  method (EFG) is one of the most interesting type of 
meshless methods.  Although it is considered meshless, the EFG utilizes a background mesh to assembly the equations system that 
describes the problem. To implement this technique, it is necessary to characterize the following parameters: I) influence domain, 
II) weight function, III) number of cells, and  IV) number of nodes. The goal of this work is to verify the influence of these 
parameters in the numerical model results. This will be done  by comparing the displacement and stress fields  obtained by the EFG 
method for different combinations of the parameters related above with the respective analytic solution of the stress analysis 
problem.  
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1. INTRODUCTION  
  

Some problems of practical importance are handled through conventional methods like finite elements, finite 
differences, and finite volumes. However these methods can present many difficulties and be computationally 
expensive for certain classes of problems such as crack propagation, problems with phase change, large-strain 
deformations, etc, for the fact these methods are related to meshes. Meshless methods appear as an attractive alternative 
for analyzes of these classes of problems (Duarte, 1995).  

Meshless methods are used to establish systems of algebraic equations for the domain altogether of a problem 
without a predefined mesh. These methods operate with a set of distributed points inside the domain Ω as well as with 
sets of points distributed on its boundary to represent (but not discretize) the domain of the problem and its boundary. 
This set of distributed points does not generate a mesh, meaning that it is not required any information about the 
relations between these points (Liu, 2004) (Belytschko et al, 1996).  

The minimum requirement for a method to be considered meshfree is that it is not necessary a predefined mesh, at 
least in the interpolation of the field variables. The ideal requirement for a meshfree method is that no mesh is necessary 
during the whole solution process of the problem for an arbitrary geometry governed by a system of partial differential 
equations, for all kind of boundary conditions employed (Liu, 2004). 

This work presents some results obtained with the simulation of Timoshenko’s beam modeled by the Element Free 
Galerkin (EFG) method. Analyses are made on the effect of the parameters associated to the formulation of the EFG in 
the response of the model, through graphical output of the displacement fields and of normal and shear stress fields as 
well as through the computation of the norm of the error relative to the analytical solution.  Among these parameters we 
have: domain of influence, weight functions, number of cells and number of points in the domain. 

 
2. ELEMENT FREE GALERKIN 
 

The main characteristic of the EFG method is the use of an auxiliary mesh composed only of quadrature elements 
that completely cover the domain of the analyzed problem. The Element Free Galerkin method proposed by Belytschko 
et al (1994) is based on the diffuse element method developed by Nayroles et al (1992). In Element Free Galerkin 
method only a set of points and the description of the model of boundaries are necessary to generate the discrete 
equations. The connectivity among points and the trial functions are completely built by the method. Although the EFG 
method be considered a meshfree method when it relates to the construction of the shape function or function 
approximation, a mesh is necessary to construct the partial differential equations by the Galerkin approximation 
procedure (Dolbow and Belytschko, 1998). The EFG method is based on the Moving Least Square Method (MLSM) to 
approximate a function u(x) to uh(x) in a domain Ω using a set of nodal points xI, I = 1..nt, to formulate the discrete 
model (Belytschko, 1996). These approximations are built up from three elements: (i) a weight function with a compact 
support, associated to each nodal point, (ii) a polynomial basis, and (iii) a set of coefficients depending on its 



coordinates. The MLSM is an approximation based on the weighted least squares, with a weight function w moving to 
the interpolation point x. An important property of the MLSM is its consistency of order k, where k is the degree of the 
highest order of the basis p(x). For k = 0 (zero order consistency) the concept of partition-of-unity is also satisfied by 
the MLSM. 
 
2.1. System of equations 

 
Consider the function u(x) of a field variable defined in the domain Ω. An approximation of u(x) in the nodal point 

x is designated as uh(x). The first approximation by the MLSM has the form: 
 

h T( ) ( ) ( ) ( ) p ( ) ( )≅ = = ⋅∑x x x x x a x
m

j j
j

u u p a
 (1) 

 
where p is a vector storing monomials, m is the number of monomial terms, and a the vector of coefficients:   

 
pT(x) = [1   x   x2  ...  xm],    and    aT(x) = [a0   a1   a2  ...  am]. (2) 

 
The coefficients a(x) are obtained by minimizing the quadratic functional J. The functional of a weighted residual is 

obtained using the approximate values of the function field and the nodal parameters uI = u(xI). J is given by 
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where w(x-xI) is the weight function. The P matrix has the dimension of the number of terms of the monomial base m 
multiplied by the number of nodes in the influence domain n. The diagonal matrix W stores the weight function values 
w(x-xI). For the two-dimensional linear base (m = 3) we have 
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where xI e yI are the nodes spatial coordinates that belong to the influence domain analyzed. The minimization of the 
quadratic functional J, ∂J/∂a = 0, gives: 
 

A(x) ⋅ a(x) = B’(x) ⋅ U (5) 
 

The vector U stores the nodal parameters for the field variables analyzed for all nodes of the influence domain, 
being A, the moment matrix, and B’ given by: 
 

T Tand 'A(x) = P × W(x)× P B (x) = P × W(x)  (6) 
 

Isolating a in Eq. (5), and substituting it in Eq. (1), we can define the shape function φ as: 
 

φ(x) = pT(x) ⋅ A-1(x) ⋅ B’(x)  (7) 
 

Equation (1) can be rewritten into the form:  
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The discrete equation system is obtained by imposition of boundary conditions using Lagrange’s multipliers in a 
weak form of a problem of linear elasticity and by making use of the approximation equations for field variables: 
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where K is the stiffness matrix, G is the boundary condition matrix, u is the nodal displacements vector, λ are the 
Lagrange multipliers, f is the force vector and q is a boundary condition vector, and 
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where N is the Lagrange’s interpolating polynomial matrix, D is an elasticity matrix for the state of plain stress, matrix 
B stores the shape function derivates, b is a body forces vector and t is a superficial forces vector  In the two-
dimensional case we have: 
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2.2. Weight functions 
 

A common characteristic of all meshfree methods is the weight function, defined as not null only in a small 
neighborhood of xI, called domain of influence of the nodal point, which is a subdomain ∆ΩI, where a specific point 
contributes to the approximation to generate a set of sparse discrete equations, i.e. the weight function has a compact 
support. The supports more used are rectangles and circles. The overlapping of influence domains define the 
connectivities among points (Dolbow and Belytschko, 1998) (Belytschko et al, 1996).  

The choice of the weight function affects the results of the approximation function uh. When considering the one-
dimensional case, dI = || x – xI ||, and  r = dI /dmI, where dmI is the size of the influence domain of the Ith point, the weight 
function can be written as a function of the standardized length r. The most used weight functions are: cubic spline (Eq. 
(15), Belytschko et al,1996); quartic spline (Eq. (16), Belytschko et al,1996); fifth order spline (Eq. (17), Xiaofei, 
2004); Exponential1, Exp1 (Eq. (18), Belytschko,1996); Exponential2, Exp2 (Eq. (19), Shuyao, 2003); Gaussian (Eq. 
(20), Belytschko et al,1994) and conic (Eq. (21), Belytschko et al,1994). 
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where α, β and k are weight function parameters. The weight function in the two-dimensional case for any nodal point 
can be written as: 
 

w(x-xI) = w(rx) ⋅ w(ry) = wx . wy (22) 
 

where w(rx) or w(ry) is obtained by substitution of r by rx or ry , respectively, in the weight functions given by Eq.(15) to 
Eq. (21). The values of rx and ry are calculated by:  
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− −
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The size of the influence domain dmI, is given by:  
 

dmx = dmax . cxI     and        dmy = dmax . cyI (24) 
 

where cxI e cyI are the distance between a particular nodal point and the k-th closest points, and dmax is a scale factor. If 
the nodal points are uniformly distributed, cxI and cyI are the distances between points in x e y directions, respectively. 
 
3. CASE STUDY  
 

The problem studied deals with a cantilever beam with length L, width D and unit height, subjected to a 
concentrated load, P, at its free end, as represented in Fig. 1: 
 

 
 

Figure 1. Cantilever beam with bending load applied at its free end (Timoshenko’s beam) 
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Timoshenko and Goodier (1970) had considered the solution for a state of plain stress. The expressions for 
displacements in x direction, ux, and in y direction, uy, are respectively: 
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P is the maximum load applied, E is the modulus of elasticity, x and y are the coordinates in x axis and y axis for the 
analyzed nodal point and Im is the inertial moment, Im = D3/12. The stresses are given by: 
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4. NUMERICAL RESULTS 
 

The numerical results presented in this section allow an analysis of the response of the EFG method in relation to its 
parameters. Among these related parameters they are the size of the influence domain, the weight function used, the 
number of points in the domain, etc. The energy norm and the relative error norm for any field variable a, Eq. (28) and 
Eq. (29), respectively, are used to check the error generated by the method. The results are classified into three cases. 
Each of them allows the evaluation of some parameters pertinent to the method. All the results presented on this section 
are relative to a beam with a dimension of 48×12 units of length as indicated in Fig. 1. Four points of Gauss were used 
in each one of the directions in the numerical integration. The interpolating polynomial used on the shape function is 
linear and the solution to the Eq. (9) is obtained by the LU direct method. 
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where ε is a strain.  
 

4.1. Case 1: validation 
 

The first case was used to validate the program written in the C language. A comparison is made with the numerical 
values obtained and the analytical solution of the Timoshenko’s beam for stress fields and displacements. We consider a 
beam with 55 points uniformly distributed (11×5), 40 cells of background integration (Fig. 2a), and rectangular 
influence domain with dmax equal to 3.5, cxI and cyI constants and equal to the length and height of the integration cells, 
respectively. The weight function used is the cubic spline, Eq. (15). The parameters cited above and used for validation 
were obtained from Dolbow and Belytschko, (1998), since they present acceptable results for the same problem.  

Figures 2b, 2c and 2d show the displacement fields in y direction, normal and shear stresses fields on the 55 points 
of the domain, respectively. Figure 2 gives a better qualitative and quantitative understanding of the numerical values 
obtained for the domain.  

Figure 3 shows the comparison between the analytical values of shear stress, Eq. (27), and the values obtained on 
Gauss’s sample point in three sections of the beam. The weight functions used was the cubic spline (Fig. 3a) and the 
quartic spline (Fig. 3b). 

Table 1 shows the error calculated using the energy norm for the two spline functions tested for the domain points 
and Gauss’s sample points. These errors are relatively small, hence the response given by the program is close to the 
exact solution. The results shown are better for the cubic spline function than for the quartic spline. This can be due to 
the fact that the value of dmax proposed by Dolbow and Belytscho, (1998) is more specifically related to the cubic spline 
weight function tested by them. 



       
         (a)       (b) 

 
        (c)       (d) 

Figure 2. (a) background mesh; (b) displacement field in y direction; (c) normal stress field; and (d) shear stress field 
 

 
   (a)                   (b) 
 

Figure 3. (a) Values of analytical and numerical shear stress for three sections of the beam for the cubic spline  
and (b) quartic spline weight functions  

 
Table 1. Error computed by energy norm for a rectangular domain, with dmax = 3.5. 

 
Energy norm Computed at 

Cubic spline Quartic spline 
Sample Gauss points 0.026291 0.030096 

Points of domain 0.007730 0.012441 
 
4.2. Case 2: weight function influence 
 

To verify the influence of the weight function on the model response, we tested seven weight functions represented 
by Eq. 15 to Eq. 21. The two exponential functions were evaluated for five values of α (from 0.1 up to 0.5). The 
Gaussian weight function was computed for five values of β, i.e. {2.0, 2.5, 3.0, 3.5, 4.0}, maintaining k = 1. The conic 
function was tested for k = 0.5 (linear) and k = 1.0 (second order). In this section we present the norms of the relative 
errors of displacement in the y direction, normal stress, and shear stress for two point and cell configurations of the 
beam represented in Fig. 1. The first configuration is the same represented in Fig.2a, 11x5 points uniformly distributed, 
dmax = 1, dm = {6..30}. The second one is formed by 85 uniformly distributed points and 64 integration cells. Fig. 4 
shows the error obtained for the best responses of the tested weight functions, according to the size of the support, dm. 
Figures 4a, 4b and 4c show the errors of the first configuration and Figs. 4d, 4e and 4f for the second one. 
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(a) (b) 

 

 
              (c)             (d) 

 
             (e)               (f) 
 

Figure 4. Relative error norm in function of dm for: y displacements (Luy), normal stress (Lσ), shear stress (Lτ).  
Figs. 4a, 4b, and 4c show the values for 55 points and Figs. 4d, 4e, and 4f for 85 points 

 
The size of the support r of the weight function associated to the desired point must be chosen big enough so that the 

number of points covered by the influence domain guarantee the regularity of A. Very small values can generate big 
errors when numerical integration based on Gaussian quadrature is used to calculate the array elements of the matrix. 
On the other hand, r should be small enough to maintain the local characteristics for the approximation by MLSM 
(Shuyao, 2003). The choice of the adjustment parameter α is of great relevance when using the exponential functions. 
For small values of α, the exponential weight function Exp1 presents some problems in the assembly of the matrix A, 
caused by the accentuated decay of the exponential. The exponential weight function Exp2 presents high percentage 
errors for shear stress in both configurations for all the tested values of α. On the other hand the Exp1 function presents 
very satisfactory results for some values of α. 



The Gaussian function presents very similar errors for the three fields, but the scale where the error varies is higher 
for stress, specially shearing. The minimum errors for the β coefficients tested are similar for the two configurations, 
but the absolute minimum error is obtained for different values of dm. Small variations of dm produce big variations on 
the percentage error of the model. The response to the linear conic function (k = 0.5) is superior to the second order one 
(k = 1.0), however, the error associated to the shear stress field is very high for both conics tested (not shown). 

The spline functions produce good results for all fields in the two configurations. Small variations in dm produce 
great variations in the percentage of the error. Table 2 indicates the range values of dm that the relative error diminishes, 
and the amount of points associated to these conditions. The range values of smaller errors are different for the two 
cases. However, it can be verified that the number of points associated to the size of the domain of influence presents 
similar values for both configurations. The use of dmax allows the determination of the desired number of points for 
several uniform configurations of points without the direct use of the parameter dm. 
 

Table 2. Average, maximum and minimum number of points inside the influence domains  
of the sample Gauss points in the integration of the stiffness matrix K. 

 
Weight function Cubic spline Quartic spline Fifth order spline 

dm range for 55 nodes dm range for 55 nodes dm range for 55 nodes Nº of points dm = 15 dm = 21 dm = 12 dm = 24 dm = 15 dm = 30 
Average 28.7 32.2 23.0 40.0 28.7 46.0 

Maximum 35 40 25 50 35 55 
Minimum 20 20 15 30 20 35 

dm range for 85 nodes dm range for 85 nodes dm range for 85 nodes Nº of points dm = 9 dm = 15 dm = 9 dm = 18 dm = 9 dm = 15 
Average 25.3 43.7 25.3 50.6 25.3 43.7 

Maximum 30 50 30 60 30 50 
Minimum 16 30 16 35 16 30 

 
4.3. Case3: Variation of size of influence domain, dm  
 

In the two previous cases the values of dm were fixed during all execution, that is, the influence domains had the 
same size. The value of dm can be kept fixed in cases where the distribution of points is uniform, The value of dm can 
be kept fixed in cases where the distribution of points is uniform, since knowing the rate of points distribution in the 
space a value of dm can be determined where the condition of the minimum number of points by influence domain can 
be satisfied. In non uniform distribution cases the k points closer to the point i of integration must be looked for and 
then determine the value of dm for i. We present the results of simulations made for the configuration with 64 cells and 
85 points. cxI and cyI are calculated for the k nearest points. k was kept equal to 12 and dmax varied from 1.0 up to 3.5. 
The weight functions used are the cubic and quartic spline.  

Figures 5a, 5b, and 6a present the percentage of error of the displacement field and stress for the tested cases. Figure 
6b shows the average, maximum and minimum number of points contained in the influence domain of the sample 
Gauss points for the integration of the stiffness matrix. The number of points satisfying the minimum error for case 2 
(constant dm) with 85 points, approximate to dmax = 1.5 for the cubical spline function and dmax = {1.5 .. 2.0} for the 
quartic spline function. It is verified that the error associated to the shear stress is very high, even for the intervals of 
dmax where a better response was expected for the model. 

 

 
             (a)          (b) 
 

Figure 5. (a) Percentage error for  normal stress and (b) shear stress, for k = 12 and 85 points 
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           (a)             (b) 
 
Figure 6. (a) Percentage error for  y displacements, (b) the average, maximum and minimum number of points contained 

in the influence domain of the sample Gauss points for the integration of the stiffness matrix 
 

Figure 7 represents the responses for the cubic and quartic spline weight functions for normal and shear stress and 
for the displacement field obtained in the y direction for dmax = 1.5. Table 3 shows the average, maximum and minimum 
number of points inside the influence domain of the sample Gauss points in the integration of the stiffness matrix K. 

 

  
   (a)               (b) 

   
   (c)               (d) 

   
   (e)               (f) 
 
Figure 7. Displacements in y direction, normal stress, and shear stress fields are shown in (a), (c), and (e), respectively, 

for the cubic spline weight function and (b), (d) and (f) for quartic spline weight function 
 

Table 3 shows that in all cases the minimum value for dm corresponds to 58.5% of the maximum value. Points 
belonging to the influence domains are located on the vertices of the integration cells. The distribution of Gauss sample 
points maintains the same arrangement for all cells. For example, the first sample point of each cell is located on the 
same position relative to the vertices for all cells. In consequence, in cases where dm is constant during the numerical 
integration, the weight assigned to the points with the same relative position will be the same. However, in cases where 
a minimum specified number of points is used to determine the dm this does not happen (see Fig. 8). 



Table 3. Variation of dm in the integration of the stiffness matrix K. 
 

dm dmax = 1.0 dmax = 1.5 dmax = 2.0 dmax = 2.5 dmax = 3.0 dmax = 3.5 
Maximum 9.22 13.83 18.44 23.06 27.67 32.28 
Average 6.33 9.50 12.67 15.84 19.01 22.18 

Minimum 5.39 8.09 10.79 13.49 16.19 18.89 
Standard deviation 0.71 1.07 1.42 1.78 2.14 2.50 

 
 

              
                           (a)                                          (b)                                       (c)                                     (d) 

 
Figure 8. (a) Sample Gauss points inside of integration cells. (b) Influence domain for the first sample Gauss point  

in the first cell, and (c) for the 2th cell maintaining dm constant, and (d) minimal specified number of points  
 
5. CONCLUSION 
 

This paper presents an analysis of the influence of the parameters related to the EFG method, as well as the 
validation of the developed program, for a uniform distribution of nodes. This analysis takes in consideration different 
weight functions, the size dm of the influence domain, and the variation of dm during the integration for a uniform 
distribution of nodes. With regard to the tested weight functions we verify that the spline, the Gaussian, and the Exp1 
had presented the best results. The advantage to work with the spline functions is that they do not present any parameter 
of adjustment that must be taken in consideration when using another configuration of points and meshes. The change 
of the weight function strongly affects the response of the model, and changes in the size of the influence domain lead 
to coarse variations in the response for the same function. We also verify that the minimum error is associated with a 
range of dm that encompasses a certain amount of points inside of the influence domains. With regard to the changes of 
dm during the integration we verify that even working in this range, the response of the model lost accuracy due to 
possible changes in weighting nodes inside the influence domain as explained in section 4.3. We also verify that the 
results for normal stress and displacement fields are better than the response of the shear stress field because we utilize 
a linear basis in the approach (first-order consistency). 
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