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Abstract. The ceramic material has been playing a greatly relevant role on the technological industrial development. 
Due to its physical characteristics, it can be applied on extreme temperature conditions. However, its fragile and low 
thermal conductivity   make it highly susceptible to fissures on its surface or inner parts because of the high tension 
that results from the heat transfer. That is why the choice of the material is very important to sustain the structural 
integrity, especially on application that involves high temperatures. For a long time, this choice has been made only on 
a qualitative basis, through thermal shock tests. The tensions that appear on a ceramic material due to the high 
temperature gradients is quantitatively determined through the solution of an one-dimensional problem of transient 
heat transfer for the conduction-radiation coupling, on a semi-transparent environment with anisotropic scattering and 
constant thermal characteristics. On this article the Generalized Integral Transform Technique (GITT) and the 
Galerkin Method are used to solve the necessary energy and the radioactive transfer equations simultaneously. The 
final results allow the analysis of the influence that the conduction-radiation parameter and the scattering type cause 
on the thermal tensions during the heat of the body. 
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1. INTRODUCTION 
 

When the temperature of a material varies, its internal energy varies as well, manifesting important properties for the 
engineering projects such as thermal dilatation, heat capacity, conductivity, thermal diffusion and the thermal shock 
resistance parameter.  

The ceramic material, due to its properties such as low conductivity and high fusion temperature can not be replaced 
in some industrial application, mainly when high temperature is required. Due to its low conductivity, temperature 
differences in a short length cause the adjacent fibers dilatations and contractions generating thermal tensions that may 
cause fissures on the surface or in the interior of the body and that may as a result compromise the quality of the 
product. The knowledge of the temperature field allows knowing the intensity of the tensions and consequently the 
thermal shock resistance parameter. Diniz et al (2005a) and Diniz et al (2006a) analyzed the thermal tensions on a 
ceramic body taking into consideration the scattering of the isotropic thermal radiation on the body during the cooling 
and heat respectively. On the present article it is considered the anisotropic scattering for different functions of phase. 

In order to determine the transient thermal field on semitransparent materials, such as ceramics, it is required to 
solve simultaneously the energy and radiation transference equations (ETR). The former, which has a not linear nature, 
subjected to the boundary conditions involving the radiation and convection heat exchange between the body and the 
medium is solved using the GITT methodology presented by Cotta (1993). The Galerkin method is used to compute the 
radioactive part of the problem which is characterized by a non linear integral differential equation subjected to the 
semitransparent boundary conditions that emit and reflect the thermal radiation diffusely. 

Unlike Diniz et al (2005b) and Diniz et al (2006b) who used an expansion on a potency series, the integral form of 
the radioactive transference equation is transformed in a set of algebra equations to find the expansion associated to the 
representation for the radiation on Legendre polynomials on the spatial variant. 

Once the expansion is determined, practical interest values for the engineering such as radioactive intensity, 
radioactive heat liquid flow, incident radiation and the divergent of the hear flow by radiation are obtained in any part of 
the medium. 
 
2. PHYSICAL PROBLEM AND MATHEMATICAL MODELLING 
 

The physical problem consists of a semitransparent medium, plane and parallel that emits, absorbs and scatters 
anysotropically the incident radiation. A body with initial temperature, Ti, is put in an isothermal environment with 
uniform temperature, Tf and submitted to external sources of radiation. Fig. 1 shows in a simplified manner the 
coordinate system, the heat transfer terms that occurs in each boundary surface and the radiative properties on the 
internal and external surfaces of the body. 



 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Physical and geometrical representation of the problem. 

 
where ρi (i = 0, 1, 2, 3) e εi (i = 1, 2) represent respectively the reflectivity and emission of the boundary surface. The 
functions fi(µ) (i = 1, 2), represent the intensity of the external radiation that act upon the  body. 

The energy equation for simultaneous heat transfer by conduction and radiation in a participant medium, without 
internal heat generation is written in the non dimensional form by: 
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According to Siegel (1998) and Sadooghi (2005), for transparent boundary surfaces it can be written that: 
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with inlet condition: 
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and the radiation heat flow divergent in the dimensionless form is given as: 
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where K* and α* represent the conductivity and thermal diffusivity of the body. Bi is the Biot number, Θ is the 
dimensionless transient temperature, τ represents the medium optical thickness, ω is the number of the simple 
scattering, ξ is a timing dimensionless variant, N is the factor of the conduction and radiation coupling and µ is the 
direction of the radiation. 

In the dimensionless solution of the problem, it was used the following groups and the dimensionless parameters: 
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where ρ̂  and CP are the density and specific heat for the medium, β is the coefficient of extinction , n the coefficient of 
refraction, σ  the Stefan-Boltzmann constant and ψ(τ, µ) represents the dimensionless radioactive intensity. 

The conductivity and diffusivity that appear in Eq. (1-3) are respectively expressed in function of the dimensionless 
temperature, as proposed by Nishikawa et al (1995) as: 
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where A and B are constants. 

 
The term ),(* µτnG  that appears in Eq. (5), according to Özişik (1973) is the dimensionless incident radiation, 

defined by:  
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where Pn(µ) is the order n Legendre polynomial and argument µ. 

The Eq. (11) is solved by the Galerkin Method and ψ (τ, µ) must satisfy the dimensionless radiative transfer 
equation below, considering the anisotropic scattering of radiation: 
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The function of phase, p (µ, µ’), represents the probability in which the incident radiation in the direction µ will be 

scattered in the direction µ’ (Özişik, 1973). The functions Fi(µ) (i = 1, 2), represent the dimensionless external radiation 
intensity on the body. 

 
3. PROBLEM SOLUTION 

 
The energy and radiative transfer equations are coupled due to the temperature of the body. Therefore, the resolution 

process must occur simultaneously. The temperature distribution in the medium is obtained from the energy equation 
which involves the radiative heat flow divergent and that is determined by the solution of the radiative transfer equation, 
which can not be solved without the knowledge of temperature field. 

 
3.1. Auxiliary Eigenvalue Problem 
 

Following the Generalized Integral Transform Technique methodology, the first step consists in choosing the 
auxiliary eigenvalue problem that will be used in the integral transformation of the equation system to be solved. As the 
proposed model is described by a second-order differential equation system, the auxiliary problem is related to the 
classical Sturm-Liouville problem (Mikhailov e Özişik, 1984, Özişik, 1980 e Cotta, 1993): 
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The problem described by the Eq. (15-17) is solved, and the eigenfunctions, eigenvalues and norms are obtained 

respectively by: 
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3.2. Determination of the Inverse and Transformed Formulas 

 
The second step in the use of the GITT as a proposed resolution tool is the definition of two formulas: 

transformation and inversion. According to the eigenfunctions orthogonal properties: 
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3.3. Integral Transformation of the Partial Differential Equations 
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 is applied in Eq. (1) in order to obtain the integral transformation of the energy 

equation: 
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where: 
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The term ),(* µτnG  that appears in Eq. (24) has formal resolution by: 
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Where it was defined that: 
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The dimensionless incident radiation is represented in terms of Legendre polynomials on the optical variable, τ 

according to Cengel (1984), being: 
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where cnk are the expansion coefficients to be determined. Once the coefficients are known, the radiation intensities, the 
incident radiation, radioactive thermal heat and the divergent of radioactive heat flow are determined on any point from 
the medium by its definitions. 

The Galerkin method applied to Eq. (29) with ),(G *

n µτ  given by Eq. (34) will result: 
 



[ ]

[ ]
⎪⎭

⎪
⎬
⎫

+′′−′+−+−

+⋅−
⎩
⎨
⎧

++++⋅−=

∑∑∫

∫∫

= =−

−−+−
∗

N

n

K

k
nknkn

n

ZcadESEK

deFEKdeFG

0 0
102220

4
2

1

0

)(

2302110
4

1

1

0

)(

10

)(|)(|)()(2),(

)()1()(2),()()1(
2
1)(

0

0

00

τωττττττρξτΘε

µµρττρξτΘεµµρτ

τ

τ

µ
ττ

µ
ττ

 (35) 

 
with the expansion coefficient, cnk obtained from the following matrix system: 
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3.4. Dimensionless average temperature Calculus 
 

The average temperature, such as in Fig. 1, is calculated according to the distribution of the temperature in the 
following way: 
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3.4. Dimensionless Thermal Tension Calculus 
 

The low conductivity of the ceramics cause thermal gradients in very short length from the surface that was 
submitted to temperature variation. Considering that the temperature shown in Illustration 1 is function only of the 
direction x, and the thermal tension in the dimensionless form, considering Timoshenko and Goodier (1970) is defined 
by: 

 
( ) ( )ξτΘ−ξΘ=ζ∗ ,med  (50) 

 
4. RESULTS AND DISCUSSION 
 

The transformed problem was solved by a computational code written in programming language Fortran, using the 
software Fortran PowerStation 4.0 and implemented in a Pentium personal computer III–750Mhz. 

The effect of the scattering upon the thermal tensions and the temperature distribution is analyzed for three different 
cases: isotropic scattering, forward linear and backward linear anisotropic scattering. The obtained results are shown 
respectively in Figures 2 and 3. On the analyses, it was considered the following parameters and dimensionless groups: 
τ0=1.0, ω=0.5 and N=0.05. The boundary surfaces, transparent, are subjected to a low range of heat transference by 
convection proportional to Biot = 5 and external isotropic radiation of unit intensity (F0 = F3 = 1). 



 
 

Figure 2- Effect due to the scattering of the thermal tensions in a ceramic body with constant thermal properties and 
N = 0.05, Biot number = 5 and external radiation F0(µ) = F3(µ) = 1.0. 

 
 

 
 

Figure 3: Effect of the scattering in the distribution of temperature in a ceramic body with constant thermal properties 
such as N = 0.05, Biot = 5 and external radiation sources F0(µ) = F3(µ) = 1. 

 
In Fig. 2, it is possible to perceive that the scattering cause a strong influence on the thermal tension when external 

source of radiation act upon the body and it can be put aside if the sources do not exist, as shown in Fig. 4. 
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Figure 4: Effect of the scattering in the thermal tensions of a ceramic body with constant thermal properties such as  
N = 0.05, Biot = 5 and external radiation sources F0(µ) = F3(µ) = 0. 

 
The Figures 3 and 5 show the effect of the scattering on the temperature distribution in a body with maximum 

thermal tensions. It is possible to perceive, on the presence of external radiation sources, the local temperature, on the 
forward linear scattering, is bigger than when that occurs linearly backwards. That happens because the diffusion in the 
former case happens on the heat flow direction. 

 

 
 

Figure 5: Effect of the scattering in the temperature distribution on a ceramic body with Constant thermal properties 
such as N = 0.05, Biot = 5 and external radiation sources F0 (µ) = F3 (µ) = 0. 
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