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Abstract. The purpose of this paper is to deal with the attitude dynamics and control of a three-axis stabilized satellite
which is subjected to different kinds of perturbation, including gravity gradient. In this study the satellite is represented
as a rigid body and the attitude motion of the satellite is described by using Euler parametrization in the kinematics equa-
tions. A set of thrusters is used for attitude control; each thruster has been modeled as a limited impulsive function. This
work analyzes the feasibility of satisfying the attitude control requirements (for example: point accuracy) for three-axis
stabilized spacecrafts on Low Earth Orbits (LEO). The simulations have been carried out using some of the parameters
of the Brazilian satellite PMM (Multi-Mission Platform). The Linear Quadratic Regulator (LQR) approach is the control
strategy which is adopted. In order to control the attitude of the satellite, we’ve tested maneuvers as well as stabilization
in various nominal attitudes. Some uncertainties have been included in order to analyze if the LQR approach would work
in the presence of noise. The projected control law is applied in order to complete the dynamics model, i.e. the non-linear
model. In summary, this paper presents a detail study of attitude dynamics and control as well as a virtual environment
that may be used for a visualization of the system.

Keywords: Satellite Attitude Dynamics, Satellite Attitude Control, Three-Axis Attitude Stabilization, Thrusters, Linear
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1. INTRODUCTION

The attitude of an artificial satellite can be defined as the space orientation of this spacecraft. For the attitude rep-
resentation, different parameters can be used. One of the most important parameters set are the Euler’s angles and the
quaternions. The control of the satellite attitude is crucial for the adequate performance of the payload functions, as to
say remote sensing, meteorology, communication, and other applications (Wertz, 1978).

The problem of the satellite attitude control has already been studied extensively. Different approaches has been
proposed and tested on specific satellite configurations, including the hazardous situation of the control of a satellite on
failure mode (one pair of attitude actuators doesn’t work properly). For instance, in Show et al. (2002), a robust PID
controller is proposed. Nonlinear control approaches using only two control gas-jets are shown in Morin et al. (1995)
and in Tsiotras et al. (1995). In Yang and Kung (2000), the satellite attitude is controlled using an applied nonlinear H∞
controller; while in Wu and Chen (1999) a mixed H2 / H∞ approach is investigated.

On this study, we suppose that the problem of attitude determination, i.e. the process of computing the orientation of
the spacecraft with respect to a known orbital frame or to some object of interest, is satisfactorily solved. This procedure
usually involves several types of sensors in each spacecraft and sophisticated data processing (Wertz, 1978).

In this paper, we consider a specific satellite that has been developed in the context of Brazilian Space Program (AEB,
1998), the PMM satellite (Multi-Mission Platform), and we use some of its physical characteristics and dimension data.
We give the study focus to the spacecraft stabilization using as actuators three pairs of gas-jets and we adopt a Linear
Quadratic Regulator (LQR) control strategy. The main purpose is to contribute to the researches concerning this satellite,
conceived for repeated use in the Brazilian Space Program.

The validation of the theoretical and analytic studies of the satellite attitude control problem was accomplished using
numerical simulations of the system dynamics.

First, the problem formulation is presented in Section 2, with the aspects of attitude representation and the kinematic
and dynamic models. Besides that, the adopted control strategy is discussed in Section 3. Then, a description of the
numerical simulations, as well the presentation and analysis of their results, are shown in Section 4. The final remarks
and the perspective of future works conclude the paper (Section 5).

2. SATELLITE KINEMATICS AND DYNAMICS

The satellite attitude will be defined in this work by the position of the three principal axes of inertia with respect an
orbital reference frame. Naming R the direction cosine matrix between the orbital frame and the reference frame fastened
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to the satellite body, and using Euler angles in an asymmetric sequence 3-2-1 for describing a rotation (Kaplan, 1976;
Wertz, 1978), one finds:

R = R321 = R1(φ)R2(θ)R3(ψ) (1)

R3(ψ) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 (2)

R2(θ) =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (3)

R1(φ) =

 1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 (4)

R321 =

 cosψ cos θ sinψ cos θ − sin θ
− cosφ sinψ + sinφ sin θ cosψ cosφ cosψ + sinφ sin θ sinψ sinφ cos θ
sinφ sinψ + cosφ sin θ cosψ − sinφ cosψ + cosφ sin θ sinψ cosφ cos θ

 (5)

The kinematics equation for the satellite attitude is given by:

Ṙ(t) = S(ω(t))R(t) (6)

where S is the skew-symmetric operator with respect to angular velocity ω.
For the rotation sequence 3-2-1, the satellite attitude kinematics can be described as follows (Wertz, 1978; Wie and

Arapostathis, 1989): φ̇

θ̇

ψ̇

 =
1

cos θ

 cos θ sinφ sin θ cosφ sin θ
0 cosφ cos θ − sinφ cos θ
0 sinφ cosφ

ωb
ib +

ω0

cos θ

 sinψ
cos θ cosψ
sin θ sinψ

 (7)

where ω0 is the medium orbital speed and ωb
ib is the satellite angular velocity vector with respect to an orbital reference

frame, expressed in the reference frame fastened to the satellite body.
The linearized kinematic equation is given by:

ωb
ib =

 φ̇

θ̇

ψ̇

+ ω0

 −ψ
−1
φ

 (8)

The dynamic of a satellite attitude, equipped with six jets, can be modeled using the Euler equations and can be
represented starting from the angular momentum rate with respect to the reference frame fastened to the satellite body.
Consequently:

τext =
[
dh

dt

]
b

+ ωb
ib × hb (9)

where hb = Jωb
ib, ḣb =

[
dh
dt

]
b

= Jω̇b
ib, J is the satellite inertia matrix and τext are the external torques that act in the

system.
Rewriting the Eq. (9), we have:

Jω̇b
ib + S(ωb

ib)Jω
b
ib = τ b

d + τ b
p (10)

where τ b
d represents all the disturbance torques and τ b

p represents the jet control torques.
The visualization of the considered satellite is given by a graphical interface of the numerical simulations developed

in Arantes Jr (2005). The Fig. 1 illustrates the satellite model using this virtual environment.
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Figure 1. The graphic interface of the simulation tool showing the satellite model.

The jet control torques on the three principal axes of inertia, are given by:

τ b
p(roll) = du1 + du2 (11)

τ b
p(pitch) = du3 + du4 (12)

τ b
p(yaw) = du5 + du6 (13)

where u is the control vector and d is the distance from the mass center to each jet.We consider three pairs of jets, one pair
acting on each principal axis of inertia of the satellite body. The value of the jet thrust, considering the model discussed
in Salles et al. (2005), is 5N .

The gravity gradient torque is caused for the difference in the intensity and direction of the gravitational force with that
satellite different parts are attract for the Earth (Sene et al., 2006). Due to the fisical characteristic of PMM, the gravity
gradient torque is very small and for a final desired atitude, it acts as a "colaborator". For small angle maneuvers, we can
use the model of the gravity gradient torque given by (Wie and Arapostathis, 1989; Kaplan, 1976):

τ b
g = 3ω2

0

 (Jz − Jy)φ
(Jx − Jz)θ

0

 (14)

Using the linearized kinematics Eq. (8), replacing in the Eq. (10), and including the jet control torques and the gravity
gradient torque, we obtain the following dynamic equations:

Jxφ̈ = φ
[
4ω2

0(Jz − Jy)− ω0θ̇(Jz − Jy)
]

+ θ̇ψ̇(Jy − Jz) + ψ̇ω0(Jx − Jy + Jz) + du1 + du2 + τ b
d (15)

Jy θ̈ = 3ω2
0(Jx−Jz)θ+φ

[
ψω2

0(Jx − Jz) + φ̇ω0(Jz − Jx)
]
+ ψ̇ψω0(Jx−Jz)+ ψ̇φ̇(Jz−Jx)+du3 +du4 + τ b

d(16)

Jzψ̈ = ψ
[
ω2

0(Jx − Jy) + θ̇ω0(Jy − Jx)
]

+ φ̇
[
ω0(Jy − Jx − Jz) + θ̇(Jx − Jy)

]
+ du5 + du6 + τ b

d (17)

The state equation for this system, i.e. the expression given by:

ẋ = Ax+Bu (18)

is obtained from the Eq. (15), (16) and (17), where the matrices A and B are given by:

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

4ω2
0(Jz−Jy)

Jx
0 0 0 0 ω0(Jx−Jy+Jz)

Jx

0 3ω2
0(Jx−Jz)

Jy
0 0 0 0

0 0 ω2
0(Jx−Jy)

Jz

ω0(Jy−Jx−Jz)
Jz

0 0


(19)
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B =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
d

Jx

d
Jx

0 0 0 0
0 0 d

Jy

d
Jy

0 0
0 0 0 0 d

Jz

d
Jz

 (20)

Finally, the state equation becomes:



φ̇

θ̇

ψ̇

φ̈

θ̈

ψ̈


=



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

4ω2
0(Jz−Jy)

Jx
0 0 0 0 ω0(Jx−Jy+Jz)

Jx

0 3ω2
0(Jx−Jz)

Jy
0 0 0 0

0 0 ω2
0(Jx−Jy)

Jz

ω0(Jy−Jx−Jz)
Jz

0 0





φ
θ
ψ

φ̇

θ̇

ψ̇

+



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
d

Jx

d
Jx

0 0 0 0
0 0 d

Jy

d
Jy

0 0
0 0 0 0 d

Jz

d
Jz




u1

u2

u3

u4

u5

u6



(21)

3. THE LQR CONTROL APPROACH

The LQR (Linear Quadratic Regulator) method is based on the linearization of the dynamic system, since the method-
ology is formulated for linear systems. The linearized and time invariant system in Eq. (18) is used in the control design.

The optimization problem consists of finding a linear control law of the type:

u = −Kc(t)x (22)

that minimizes the quadratic performance index given by:

Jp =
∫ T

0

[
xTQcx+ uTRcu

]
dt (23)

The matrices Qc and Rc are defined to ponderate the relative importance of the term concerning the state vector and
the control vector, respectively.

For the existence and stability of the LQR problem solution, the necessary and enough condition is that the system
is completely controllable (Dorato and Cerone, 1995; Maciejowski, 1989). The controllability analysis made for the Eq.
(18) guarantees the LQR problem solution.

The LQR problem solution, that is, the control gain calculation is gotten deciding the equation of Ricatti. As the
system described by Eq. (18) is time invariant and considering the optimization interval as infinite, the Ricatti matrix
differential equation becomes an algebraic matrix equation:

0 = −PcA−ATPc + PcBR
−1
c BTPc +Qc (24)

Taking the solution for Ricatti equation, we obtain a control law for the system given by Eq. (18):

u = −R−1
c BPcx (25)

where the matrices A and B are given in Eq. (19) and Eq. (20), respectively, and the control gain is defined by:

Kc = R−1
c BPc (26)

The Fig. 2 shows the block diagram of the feedback system using the LQR strategy.
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Figure 2. The block diagram of the LQR controller.

4. NUMERICAL SIMULATIONS AND RESULTS

The parameters and specifications considered in this work are shown in Tab. 1. Some of this data corresponds to the
satellite PMM (Multi-Mission Platform), developed by the Brazilian Institute for Space Research - INPE (AEB, 1998).
This table also shows the initial conditions used in the simulations.

The numerical simulations for the proposed control validation use two different PMM configurations. The principal
momentum of inertia, for each configuration, is given in Tab. 2.

We apply the linear control law presented in Section 3, to the nonlinear model for the two configurations of the
PMM. We present here some of the obtained results. The time variation of attitude angles on the realized simulation is
shown in Fig. 3. The Fig. 4 illustrates the Euler rates for the two configurations of the PMM. The time variation of the
control variables that act in the nonlinear system is shown in Fig. 5. The Fig. 6 shows the simulated noise acting in the
attitude angles and another one acting in the Euler rates. These figures show the stabilization of the satellite attitude in an
appropriate time, i.e. the attitude parameters go to the desired values, including the null angular velocities. The control
torques reach their upper limit in the beginning of the maneuver but promptly fall to low values when the attitude moves
to the commanded pointing direction.

Table 1. Simulation parameters

Parameters Values
d(m) 0.5

Medium Orbital Speed (rad/s) ω0 = 0.001
Mass (Kg) 578.05239

Height (Km) 750
Maximum Torque (Nm) 2.5

Eccentricity ∼= 0
Ascending Node Ascension (degrees) 30

Inclination (degrees) 20
Orbital Period ∼= 1h40min

Initial Attitude (degrees) (φ,θ,ψ)=(10,10,10)
Initial Angular Rate (degrees/s) ωb

ib = [1, 1, 1]T

Table 2. The values of the principal momentum of inertia.

Configuration Values (Kgm2)
Jx = 305.89126

1 Jy = 314.06488
Jz = 167.33919
Jx = 296.16226

2 Jy = 505.52026
Jz = 361.12732
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Figure 3. The attitude angles evolution during the simulated maneuver.

Figure 4. The Euler angle rates during the simulated maneuver.



Procedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

Figure 5. The control variables evolution during the simulated maneuver.
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Figure 6. The simulated noise signals disturbing the system.

The obtained results, using some realistic models and physical parameters of the PMM satellite, allow us to conclude
positively about the validity of the proposed control strategy based on the Linear Quadratic Regulator Theory. In spite
of this approach simplicity applied to a highly nonlinear system, the satellite kinematic and dynamic equations, we have
shown that this strategy can be considered to this problem with interesting advantages for the controller implementation.

5. CONCLUSION

The results presented by the numerical simulations lead to the conclusion that the control law based on the LQR control
theory stabilizes the system exponentially. This is an interesting result since the problem of satellite attitude stabilization
constitutes a nonlinear control system problem and the application of linear approaches represents an attractive issue in
terms of experimental and real-time implementation.

This study on satellite attitude control aims to contribute to the PMM technological project, the Brazilian standard
satellite conceived to be used on a large number and different types of missions, in the context of an ever-advancing
Brazilian space program.

The perspectives of continuation of this study include the attitude control of the satellite on failure mode (i.e. when
the satellite can use only two gas-jet pairs), the analysis of the condition of the stabilization for this critical situation, the
simulations of the satellite model taking into account other systems perturbations and dynamical effects, and the extension
of the LQR approach performance analysis to improve the design of the controller.
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