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Abstract. The temperature and velocity fields, for two turbulent flows generated by natural convection were investigated
by numerical simulation. The analyzed flows are the natural convection provided by a heated vertical flat plate and
the natural convection inside a tall cavity with side walls in different temperatures. The numerical algorithm applies
a consolidate Reynolds and Favre averaging process for the turbulent variables, and uses the classicalκ − ε model.
The turbulent inner layer is modeled by one velocity and one temperature wall law. Spacial discretization is done by
P1/isoP2 finite element method and temporal discretization is implemented using a semi-implicit sequential scheme of
finite difference. The pressure-velocity coupling is numerically solved by a variation of Uzawa’s algorithm. To filter
the numerical noises, originated by the symmetric treatment to the convective fluxes, it is adopted a balance dissipation
method. The remaining non-linearities, due to the laws of the wall, are treated by a minimal residual method. For
the heated vertical flat plate 13179 nodes and 25840 elements were used, while for the tall cavity, 16317 nodes and
31680 elements were used in the isoP2 mesh. The numerical results are compared to experimental data are velocity and
temperature profiles, and the Nusselt number is taken along the vertical wall.
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1. INTRODUCTION

Processes involving natural convection occurs in many aplications of industrial and enviromental interests. Many
climatization systems are based in the natural convection phenomena provided by heated or cooled flat plates. In na-
ture, many important processes are prevailed by natural convection, wich it’s the main responsible for the ocean and the
atmosphere motion as well as the heat transfer processes involved.

In most of the cases the flows generated by these bouyancy forces are turbulent, or have a predominant region of a
turbulent regime. The interest in studing turbulent flows generated by natural convection, is not only industrial, but also
scientific, since the lack of appropriate correlations to quatify the heat flux in the turbulent boundary layer compels us to
appeal to experimental database, wich is an expensive way to obtain data. The numerical modeling, by the other hand,
seams to be a cheaper way, but needs mindful validation by the comparison of the results obtained with an experimental
database.

The main goal of this work is to provide an analysis of the methodology employed by a RANS algorithm in the
modeling of the natural convection in turbulent boundary layer flows.

The physical reality to be numericaly modeled is based on the works of Nagano et. al (1992), and Betts and Bhokari
(1996). The experimental work of Nagano studied the natural convection provided by a flat vertical plate of 4 meters
height, wich was heated to the temperature of 60oC in an ambient temperature of 15oC. Temperature and velocity profiles
were measured, and also the Nusselt number was taken along the wall. The reference velocity was of 0,0295 m/s, the
profiles were taken at the heights of 1,92m; 2,54m; 3,24m.

The work done by Betts and Bhokari (1996), is the study of the natural convection yphenomena inside a tall cavity
heated in one wall and cooled in the other one, so a recirculating flow is generated in it’s interior. The cavity had 2,18 m
height, 0,076 m of lenght, and 0,52 m wide. The flow is approximately bidimentional in the middle of the cavity, were the
experimental database for comparison was taken.

The solver used, named Turbo2D, is a research Fortran numerical code, that has been continuously develloped by
members of the Group of Complex Fluid Dynamics - Vortex, of the Mechanical Engineering Department of the University
of Brasília, in the last twenty years. This solver is based on the adoption of the finite elements technique, under the
formulation of pondered residuals proposed by Galerkin, adopting in the spatial discretization of the calculation domain
the triangular elements of the type P1-isoP2, as proposed by Brison, Buffat, Jeandel and Serres (1985). The isoP2 mesh
is obtained by dividing each element of the P1 mesh into four new elements. In the P1 mesh only the pressure field is
calculated, while all the other variables are calculated in the isoP2 mesh.

Considering the uncertainties normally existing about the initial conditions of the problems that are numerically simu-
lated, it is implemented a temporal integration of the governing equations system. In the pseudo transient process the
initial state corresponds the beginning of the flow, and the final state occurs when the temporal variations of the velocity,
pressure, temperature and other turbulent variables stop. The temporal discretization of the system of the governing
equations, implemented by the algorithm of Brun (1988), uses sequential semi-implicit finite differences, with truncation
error of order0(∆t) and allows a linear handling of the equation system, at each time step.
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The resolution of the coupled equations of continuity and momentum is done by a variant of Uzawat’s algorithm
proposed by Buffat (1981). The statistical formulation, responsible for the obtaining of the system of average equations,
is done with the simultaneous usage of the Reynolds (1895) and Favre (1965) decomposition. The Reynolds stress
of turbulent tensions is calculated by theκ − ε model, proposed by Jones and Launder (1972) with the modifications
introduced by Launder and Spalding (1974). The turbulent heat flux is modeled algebraically using the turbulent Prandl
number with a constant value of 0,9.

In the program Turbo2D, the boundary conditions of velocity and temperature can be calculated by velocity and
temperature wall laws. In this work, it is used the classic logarithm wall law for velocity and temperature. The numerical
instability resulted of the explicit calculation of the boundary conditions of velocity, trough the evolutive temporal process,
is controlled by the algorithm proposed by Fontoura Rodrigues (1990). The numerical oscillations induced by the Galerkin
formulation, resulting of the centered discretization applied to a parabolic phenomenon, that is the modeled flow, are
cushioned by the technique of balanced dissipation, proposed by Huges and Brooks (1979) and Kelly, Nakazawa and
Zienkiewicz (1976) with the numerical algorithm proposed by Brun (1988).

In order to quantify the wideness of range and the consistence of the numerical modeling done by the solver Turbo2D,
the wall heat fluxes obtained numerically are compared to the experimental data of Nagano et. al (1992), and the temper-
ature and velocity profiles are compared to the datas of Betts and Bhokari (1996) and Nagano et. al (1992).

2. GOVERNING EQUATIONS

The system of non-dimensional governing equations, for a dilatable and one phase flow, without internal energy
generation, and in a subsonic regime (Mach number under 0,3) is:
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In this system of equationsρ is the fluid density,t is the time,xi are the space cartesian coordinates in tensor notation,
µ is the dynamic viscosity coefficient,δij is the Kronecker delta operator,gi is the acceleration due to gravity,T is the
absolute temperature,ui is the flow velocity ,k is the thermal conductivity,Re is the Reynolds number,Fr is the Froud
number,Pr is the Prandtl number, and the non dimensional pressure is

p =
p − pm

ρoU2
o

(5)

wherepm is the average spatial value of the pressure field,p is the actual value of pressure,ρ0 andu0 are the reference
values of the fluid density and the flow velocity. More details about the dimensionless process are given by Brun (1988).
In order to simplify the notation adopted, the variables in their dimensionless form have the same representation as the
dimensional variables. The Reynolds, Prandtl and Froude numbers are defined with the reference values adopted in this
process.

2.1 THE TURBULENCE MODEL

In this work all the dependent variables of the fluid are treated as a time average value plus a fluctuation of this
variable in a determinate point of space and time. In order to account variations of density, the model used applies the
well known Reynolds (1985) decomposition to pressure and fluid density and the Favre (1965) decomposition to velocity
and temperature. In the Favre (1965) decomposition a randomize generic variableϕ is defined as:

ϕ (~x, t) = ϕ̃ (~x) + ϕ
′′

(~x, t) with ϕ̃ =
ρϕ

ρ̄
and ϕ′′ (~x, t) 6= 0. (6)

Applying the Reynolds (1895) and Favre (1965) decompositions, to the governing equations, and taking the time
average value of those equations, we obtain the mean Reynolds equations:
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In these equationsα is the molecular thermal diffusivity and two news unknown quantities appear in the momentum
(8) and in the energy equation (10), defined by the correlations between the velocity fluctuations, the so-called Reynolds
Stress, given by the tensor−ρu′′

i u′′

j , and by the fluctuations of temperature and velocity, the so-called turbulent heat flux,

defined by the vector−ρu′′

i T ′′.
The Reynolds stress of turbulent tensions is calculated by theκ−ε model. For flows with variable density, it is adopted

the formulation of Jones and McGuirk (1979),where
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the turbulent kinetic energy is done by
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whereε is the rate of dissipation of the turbulent kinetic energy. The turbulent heat flux is modeled algebraically using
the turbulent Prandl numberPrt equal to a constant value of 0,9 by the relation
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In the equation (14)Cµ is a constant of calibration of the model, that values0, 09. Once thatκ andε are additional
variables, we need to know there transport equations. The transport equations ofκ andε were deduced by Jones and
Launder (1972), and the closed system of equations to theκ − ε model is given by:
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with the model constants given by:

Cµ = 0, 09 , Cε1 = 1, 44 , Cε2 = 1, 92 , Cε3 = 0, 288 , σκ = 1 , σε = 1, 3 , P rt = 0, 9 .

2.2 NEAR WALL TREATMENT

Theκ − ǫ model is incapable of properly representing the fluid behavior in the laminar sub-layer and in the transition
region of the turbulent boundary layer. To solve this inconvenience, the standard solution is the use of wall laws, capable
of properly representing the flow in the inner region of the turbulent boundary layer. There are four velocity and two
temperature laws of the wall implemented in the Turbo2D code, in wich one temperature and three velocity wall laws
are sensible to pressure gradients. In this work, considering that no significative pressure gradients are involved, only the
logarithm law is used. The logarithm law of the wall for velocity is already well known, and further explanations are
unnecessary.

For the near wall temperature, Cheng and Ng (1982) derived an expression similar to logarithmic law of the wall for
velocity. For the numerical calculation purposes, the intersection point between laminar and logarithmic sub-layers are
defined aty∗ = 15, 96, with y∗ = ufδ/ν, whereuf is the friction velocity calculated by the relation
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ν is the kinetic viscosity andδ is the distance until the wall. The temperature wall laws for laminar and logarithmic
sub-layers are respectively
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whereT0 is the environmental temperature andTf is the friction temperature, defined by the relation
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In the equation (26) the constantsKNg andCNg are, respectively, 0,8 and 12,5. The turbulent Prandtl numberPrt is
assumed constant and equal to 0,9.

For the turbulent kinetic energyκ and for the rate of dissipation of the turbulent kinetic energyε, the near wall values
are taken by the following relations
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with K = 0, 419.
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3. NUMERICAL METHODOLOGY

The calculation domain adopted in this work, for both simulations is described bellow.

Figure 1. Calculation domain. (a) Nagano et. al (1992) test case and (b) Betts and Bhokari (1996) test case

The figure 1(a) represents the calculation domain for the Nagano et.al (1992) test case. The points A,B and C, represent
the sections where the profiles were taken, their heights are respectively 1,92m, 2,54m and 3,24m. The boundary inlet
conditions for this test case are: velocity, temperature,κ andε experimental profiles. In the outlet atmospheric pressure
condition was setted up. The right wall was heated up to a constant temperature of 60oC. The boundary wall velocity was
calculated with the classic logarithmic wall law, in a distance abouty+ = 4.8. For the left wall a null derivative condition
for all the variables was adopted. This decision was based in the fact that the fluid is acelerated as it passes throught
the heated wall, since the size of the domain is constant, by the continuity principle, some mass must be injected in the
domain, and in this case, it is done by it’s lateral in the left border of the domain. With the adoption of this boundary
condition, the solver was capable to determinate this lateral flow, as it will be shown in figure 3.

The figure 1(b) represents the calculation domain for the Betts and Bhokari (1996) test case. The points D,E,F and G
represent the sections where the profiles were taken, theis heights are respectively 0,66m, 1,09m, 1,31m, and 1,53m. It
is important to note that this test case consists in a recirculating flow, so there isn’t an inlet or an outlet. The boundary
conditions in the lower and upper part of the domain are constant temperature gradients. The side walls are maintained
at constant temperatures. For the right wall a temperature of 36oC was imposed, while for the left wall a temperature of
15 oC was setted up. The boundary wall velocity was calculated with the classic logarithmic wall law, in a distance about
y+ = 2.

The meshes used in the simulation consists in a P1 mesh with 3360 nodes and 6460 elements and a isoP2 mesh with
13179 nodes and 25840 elements for the Nagano et. al (1992) test case, and a P1 mesh with 4199 nodes and 7920 elements
with a isoP2 mesh with 16317 nodes and 31680 elements for the Betts and Bhokari (1996) test case.

It is important to say that a mesh study was done in order to define the necessary refinement level of the meshes used
in this work. The isoP2 meshes for both test cases are shown in the figure 2.
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Figure 2. Meshes used in the simulations. (a) Nagano et. al (1992) test case and (b) Betts and Bhokari (1996) test case

4. NUMERICAL RESULTS

Some qualitative results for both test cases are shown in figure 3.
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Figure 3. Nagano et. al (1992) test case - velocity field (a), temperature field (b). Betts and Bhokari (1996) test case -
velocity field (c), temperature field (d)
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It can be observed from the heated vertical flat plate studied by Nagano (1992), by the streamlines presented in figures
3a and 3b that a lateral flow exists. This flow is explained by the continuity principle, since the fluid is accelerated as
it flows through the plate, and the calculation area domain is constant, some mass must be injected in the domain, and
it’s done by it’s lateral, with the null derivative velocity boundary condition imposed in the left border of the domain, the
solver is capable to calculate this lateral flow. In the test case of Betts and Bhokari, the great recirculating region can be
observed, by the streamlines presented in figures 3c and 3d. The values in the legend are in the non dimentional form

U∗ =
U

U0

and T ∗ =
T − T0

T0

(29)

where the index0 indicates reference values and∗ represent the non dimention form of the component. In figure 4, the
velocity and temperature profiles, taken for the test case of Nagano (1992) are shown, followed by the analysis of the
Nusselt number along the plate in figure 5.
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Figure 4. Nagano et.al (1992) test case - Velocity and temperature profiles, taken at the heights of 1,92m (a),(b), 2,54m
(c),(d), and 3,24m (e),(f)

In a general way, the numerical modeling of the velocity and temperature field in the Nagano et. al (1992) test case is
good. The maximum values of velocity are well modeled in figure 4c and 4e (points B and C). In the figure 4a (point A) the
maximum velocity value is underestimated. In figure 4e (point C), despite the good prediction of the maximum velocity
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value, a superestimated velocity profile is observed as the distance from the wall is raised. The numerical modeling
obtained for the temperature field presents in figures 4b,4d,4e, a good agreement with the experimental values. In figure
5, the heat flux along the plate for the Nagano et.al (1992) test case is represented by the variation of the local Nusselt
number as a function of the Rayleigh number, both defined as:

Nux =
hx

k
and Rax =

gβ(Tw − T∞)x3

να
(30)

In equation (30),β is the thermal expantion coefficient,α is the thermal difusivity, andx is the local coordinate in
the flow direction. It is possible to notice that the numerical values obtained for the local Nusselt number are under the
experimental uncertainty interval along all the observed domain.
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Figure 5. Nagano et. al (1992) test case - Local heat flux, quantified in a Nusselt x Raighley graphic

In the work of Betts and Bhokari (1996), the main idea was to measure the thermal and dynamic behavior of a
recirculating flow inside a tall cavity, in wich turbulence in low Reynolds number occurs. Figures 6 and 7 show velocity
and temperature profiles for the Betts and Bhokari (1996) test case.
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Figure 6. Betts and Bhokari (1996) test case - Velocity and temperature profiles, taken at the heights of 0,66m (a),(b) and
1,09m (c),(d)
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Figure 7. Betts and Bhokari (1996) test case - Velocity and temperature profiles, taken at the heights of 1,31m (a),(b) and
1,53m (c),(d)
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The numerical results of the velocity and temperature profiles obtained for the Betts and Bhokari (1996) test case show
a good agreement with the experimental data in all the analyzed sections. In this test case the velocity profiles are closer
to the experimental values than the velocity profiles.

5. CONCLUSIONS

The velocity, temperature profiles and the wall heat flux for the Nagano et.al (1992) test case, obtained numericaly are
in a good agreement with the experimental data in both test cases, as shown in the figures 4,5,6 and 7.

The lack of a better agreement between the experimental and the numerical velocity profile in figure 4e (point C) of
Nagano et. al (1992) test case, may be atributed to the uncertainty in the boundary velocity condition in the left side of
the calculation domain, due to existence of a lateral flow.

The determination of the local Nusselt number shows that the differences between the numerical and the experimental
values are under the experimental uncertainty interval in all the observerd domain, showing that the numerical methodol-
ogy employed can reproduce well the heat fluxes measured experimentaly.

The qualitative results shows that the velocity contours and the streamlines represents very well the great recirculation
zone inside the cavity of Betts and Bhokari (1996), and the lateral mass flux in the vertical heated flat plate of Nagano et.
al (1992).

In a general way the numerical methodology employed in the Turbo2D code produces a good numerical modeling of
cases involving turbulent natural convection over flat geometries, such as in vertical walls (test case of Nagano et.al) as in
recirculating cavities (test case of Betts and Bhokari).
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